EP0391283B1 - Double-based high-pressure discharge lamp - Google Patents

Double-based high-pressure discharge lamp Download PDF

Info

Publication number
EP0391283B1
EP0391283B1 EP90106195A EP90106195A EP0391283B1 EP 0391283 B1 EP0391283 B1 EP 0391283B1 EP 90106195 A EP90106195 A EP 90106195A EP 90106195 A EP90106195 A EP 90106195A EP 0391283 B1 EP0391283 B1 EP 0391283B1
Authority
EP
European Patent Office
Prior art keywords
pressure discharge
discharge lamp
lamp according
length
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90106195A
Other languages
German (de)
French (fr)
Other versions
EP0391283A3 (en
EP0391283A2 (en
Inventor
Jürgen Dr. Heider
Achim Gosslar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0391283A2 publication Critical patent/EP0391283A2/en
Publication of EP0391283A3 publication Critical patent/EP0391283A3/en
Application granted granted Critical
Publication of EP0391283B1 publication Critical patent/EP0391283B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors
    • H01J61/368Pinched seals or analogous seals

Definitions

  • the invention relates to a high-pressure discharge lamp according to the preamble of claim 1.
  • Lamps of this type have so far been used only for spotlights and lighting systems for stage, film and television.
  • high power is to be understood in a range of approximately 1000-4000 W.
  • the wall load is of the order of 30 - 60 W / cm2,
  • DE-OS 35 06 295 discloses a high-pressure discharge lamp with a metal halide filling which is suitable for this optical application.
  • these lamps are manufactured without an outer bulb and with the shortest possible electrode spacing (approx. 30 mm).
  • the quartz glass discharge vessel is equipped with very long cylindrical electrode shafts, in which long molybdenum foils are embedded by means of melting.
  • This sophisticated technology which can only be carried out manually, is necessary because when the discharge vessel is burning freely, the temperature at the end of the film near the base, which is exposed to the oxidizing oxygen and thus the lamp life that limits lamp life, should be below 400 ° C.
  • the cumbersome melting technology makes these lamps very expensive. The lifespan is very limited (approx. 250 hours).
  • this lamp Due to the large arc length and the outer bulb, this lamp is only of limited suitability for optical applications. However, due to the short overall length and low wind load, it is still used for floodlights and building lighting.
  • the object of the invention is to provide a lamp for optical applications of all kinds, which is additionally characterized by high economy and small lamp dimensions and high efficiency and which is also suitable for outdoor lighting.
  • the lamp according to the invention has a very high luminous efficiency (more than 100 lm / W).
  • the service life is extended up to 1500 and more hours by restricting the temperature of the film end near the base to a maximum of 350 ° C (when installed).
  • the pinch seal particularly advantageously prevents the light guide effect (cf. DE-OS 33 19 021), which in the case of the cylindrical seals forces the length to be increased.
  • the invention makes it possible to shorten the overall length of the lamp shaft (by ⁇ 50%) and the section of the electrode embedded in the pinch (stabilizes e.g. the color temperature). In order to achieve optimal conditions, a balanced compromise was made with regard to current load, film length, film thickness and geometry of the discharge vessel, the use of the new lamp shafts in squeeze technology ultimately proving to be the key to success.
  • the lamp itself is more compact, which enables the construction of smaller lamps. This means a lower wind resistance for headlights, which is of considerable importance for outdoor applications.
  • the lamp shafts according to the invention are considerably longer than the previously known lamp shafts using squeeze technology.
  • the squeezing process therefore requires maximum precision.
  • Two opposing quartz glassware to be squeezed Rotating gas burners produce a very even squeezing temperature of 2300 ⁇ 50 ° C thanks to an optimized gas profile, which is generated by four rows of holes with different hole diameters. Larger temperature differences would lead to problematic tensions in the lamp shaft and poor film embedding and thus increase the rejects (early failures).
  • FIG. 1 shows a 2000 W high-pressure discharge lamp 1 with a length of 190 mm, which is intended for use in a reflector, not shown here.
  • the lamp is inserted axially into the reflector, a short overall length being of great importance (cf. FIG. 3 of DE-OS 35 06 295).
  • the very good approximation isothermal discharge vessel 2 made of quartz glass with a wall thickness of approx. 2 mm (or 2.5 mm) is designed as a barrel body, the generator of which is an arc with a radius of curvature of 38.25 mm, the wall thickness being towards the central area 3 of the barrel body increases to approx. 3 mm, since here the wall load (approx.
  • the largest outside diameter the barrel body is 36 mm, the axial length is about 51 mm.
  • the outer diameter at the barrel ends 4, on each of which a lamp shaft 5 is formed measures approximately 16 mm, so that there is a discharge volume of approximately 20 cm3.
  • the rod-shaped tungsten electrodes 6, the tips of which are spaced 30 mm apart, are each held axially in the lamp shaft 5 and have a double-layer filament 7 in the vicinity of the electrode tip.
  • the lamp shafts 5 have a length of approximately 40 mm and a width of approximately 16 mm.
  • the electrodes 6 are connected to massive power supply lines 9 via molybdenum foils 8, which are melted into the lamp shafts in a vacuum-tight manner by means of an I-shaped pinch seal that encompasses the entire lamp shaft 5.
  • the molybdenum foils 8, which are lenticularly etched in a manner known per se, have a central, maximum thickness of approximately 50 ⁇ m and a length of approximately 30 mm with a width of 8 mm.
  • a ceramic sleeve base 10 is fastened with cement, which consists of a slotted cylindrical holding part 11 and a flattened end body 12 facing the socket.
  • the discharge vessel 2 contains a filling of an inert gas (argon) as the ignition gas and mercury as the main component (approx. 220 mg) as well as the rare earths DyBr3 (1 ⁇ mol) and TmBr3 (0.5 ⁇ mol) per cm3 discharge volume, also 1 ⁇ mol TlBr, 2 ⁇ mol CsBr and 0.5 ⁇ mol ThJ4.
  • the thorium can be replaced by hafnium. Overall, this filling results in a color temperature of approx. 5600 K with a color rendering index of 92 (level 1a).
  • the higher losses of known lamps result from the considerably longer length of the melting (approx. Factor two) and the higher currents (17 - 25 A).
  • the favorable overall design of the 2000 W lamp makes it possible to increase the total light output to 105 lm / W and to achieve an extremely long lifespan of approx. 2000 hours.
  • the specific arc power is 67 W / mm.
  • the isothermally designed discharge vessel has a maximum bulb temperature of approx. 1030 ° C (hot spot), which drops to 1000 ° C at the cold spot (behind the electrodes at the end of the vessel). At the end of the film, the temperature has dropped to 250 ° C (free-burning). In the headlight, this corresponds to a temperature of 350 ° C.
  • the lamp is manufactured using a cylindrical quartz tube with a wall thickness of 2 mm.
  • the ellipsoid-like shape of the discharge vessel is produced under computer control, the reinforcement of the wall thickness in the central area being produced by compression of the tube.
  • the subsequent production of the pinch seal requires a refined pinch technology with this pinch length, as already explained above.
  • a 1000 W lamp is shown as a further embodiment. Its dimensions correspond to the 2000 W version. The same reference numbers correspond to the same lamp parts.
  • the supply voltage is 220 V with an operating current of 10.3 A.
  • the ends of the discharge vessel are provided with a ZrO2 coating 13 for the heat accumulation.
  • the filling contains the same components, but the iodine: bromine ratio has shifted in favor of iodine.
  • the lamp fill can also contain other metal halides (eg NaJ, SCJ), which allow different color temperatures.
  • the color locus can be varied within certain limits by carefully selecting the iodine: bromine ratio.
  • the sequence of the squeezing process (FIG. 3) will be described below.
  • the lamp bulb is placed vertically and the electrode system consisting of power supply, foil and electrode is inserted.
  • the lamp shaft located at the bottom, initially still tubular, is now successively brought up to the pinch temperature from the bottom upwards until the discharge volume begins with the aid of two gas burners located opposite one another.
  • the two gas burners B (only one is shown) rotate here around the lamp shaft.
  • the softened lamp shaft is held together or even shortened by the surface tension, so that simultaneous heating of the entire lamp shaft is possible without any problems.
  • the film thickness should not exceed 50 ⁇ m. This stiffening by bending is sufficient to hold an extremely long molybdenum foil (30 mm) with electrode shaft and electrode precisely aligned in an interchangeable holder W. During the squeezing process itself, the foil bend is ironed out again. A good stabilization of the color temperature in the lamp described in Fig. 1 (and in Fig.
  • the color temperature can therefore be set in a more targeted manner (less scatter) and the drift of the color temperature reduced and shortened during the first several hundred operating hours. This also improves the light yield and maintenance.

Description

Die Erfindung betrifft eine Hochdruckentladungslampe gemäß dem Oberbegriff des Anspruchs 1. Lampen dieser Art wurden bisher nur für Scheinwerfer und Beleuchtungssysteme für Bühne, Film und Fernsehen eingesetzt. Bei dem hier beschriebenen Lampentyp ist unter hoher Leistung in etwa ein Bereich von 1000 - 4000 W zu verstehen. Die Wandbelastung liegt dabei in der Größenordnung von 30 - 60 W/cm²,The invention relates to a high-pressure discharge lamp according to the preamble of claim 1. Lamps of this type have so far been used only for spotlights and lighting systems for stage, film and television. In the case of the lamp type described here, high power is to be understood in a range of approximately 1000-4000 W. The wall load is of the order of 30 - 60 W / cm²,

Aus der DE-OS 35 06 295 ist eine für diese optische Anwendung geeignete Hochdruckentladungslampe mit Metallhalogenidfüllung bekannt. Um Verzerrungen des optischen Systems zu minimieren, werden diese Lampen ohne Außenkolben und mit möglichst kurzem Elektrodenabstand (ca. 30 mm) gefertigt. Das Entladungsgefäß aus Quarzglas ist mit sehr langen zylindrischen Elektrodenschäften ausgestattet, in denen lange Molybdänfolien mittels einer Einschmelzung eingebettet sind. Diese anspruchsvolle, nur manuell ausführbare Technik ist erforderlich, da bei frei brennendem Entladungsgefäß die Temperatur am sockelnahen Folienende, das dem oxidierenden und damit die Lampenlebensdauer begrenzenden Luftsauerstoff ausgesetzt ist, unterhalb von 400 °C liegen sollte. Die umständliche Einschmelztechnik macht diese Lampen sehr teuer. Die Lebensdauer ist sehr begrenzt (ca. 250 Stunden). Ein unerfreulicher Nebenaspekt ist außerdem, daß der relativ hohe elektrische Widerstand der langen Molybdänfolien (bei 400 °C beträgt er ca. 0,043Ω) zu hohen elektrischen Verlusten und damit verbunden zu einer Aufheizung des Schaftes und letztendlich zu einer unbefriedigenden Lichtausbeute des Gesamtsystems (ca. 80 1m/W) führt. Die fehlende Wirtschaftlichkeit und die großen Abmessungen ließ diesen Lampentyp bisher nicht für andere Zwecke, insbesondere für die Außenbeleuchtung, wo die Windlast eine Rolle spielt, geeignet erscheinen.DE-OS 35 06 295 discloses a high-pressure discharge lamp with a metal halide filling which is suitable for this optical application. To minimize distortion of the optical system, these lamps are manufactured without an outer bulb and with the shortest possible electrode spacing (approx. 30 mm). The quartz glass discharge vessel is equipped with very long cylindrical electrode shafts, in which long molybdenum foils are embedded by means of melting. This sophisticated technology, which can only be carried out manually, is necessary because when the discharge vessel is burning freely, the temperature at the end of the film near the base, which is exposed to the oxidizing oxygen and thus the lamp life that limits lamp life, should be below 400 ° C. The cumbersome melting technology makes these lamps very expensive. The lifespan is very limited (approx. 250 hours). Another unpleasant aspect is that the relatively high electrical resistance of the long molybdenum foils (at 400 ° C it is approx. 0.043Ω) to high electrical losses and thus to a heating of the shaft and ultimately to an unsatisfactory luminous efficacy of the entire system (approx. 80 1m / W). The lack of economy and the large dimensions have not made this type of lamp seem suitable for other purposes, especially for outdoor lighting, where the wind load plays a role.

Eine ähnliche Lampe mit gleichermaßen kurzer Lebensdauer von 250 Stunden, jedoch sehr hoher Leistung (4000 - 12000 W) ist aus der DE-PS 34 27 280 bekannt. Ausführliche Beschreibungen dieses Lampentyps finden sich in den Technisch-wissenschaftlichen Abhandlungen der OSRAM-Gesellschaft, Springer Verlag, Bd. 11, Seite 163 ff und S. 189 ff sowie Bd. 12, Seite 83 ff.A similar lamp with an equally short life of 250 hours, but very high power (4000 - 12000 W) is known from DE-PS 34 27 280. Detailed descriptions of this type of lamp can be found in the technical-scientific treatises of OSRAM-Gesellschaft, Springer Verlag, Vol. 11, page 163 ff and p. 189 ff and Vol. 12, page 83 ff.

Eine äußerst aufwendige Anordnung, um die Temperatur dieser Lampen in Sockelnähe auf 350 °C zu begrenzen, ist aus der DE-OS 26 19 505 bekannt. Zwischen Einschmelzung und Sockel sind mehrere gasgefüllte Hohlräume angeordnet. In der DE-OS 33 19 021 wird die Temperatur des Lampenschafts dadurch verringert, daß die Endfläche der als Vollzylinder geformten Einschmelzung nicht glatt und spiegelnd, sondern trichterförmig ist. Durch Unterbindung der Rückreflektion am glatten Ende kann die Temperaturbelastung des Lampenschafts etwas verringert werden. Dieses Problem stellt sich deswegen, weil der vollzylindrische Lampenschaft ähnlich einem Lichtleiter wirkt, in den Wärme und Licht aus dem Entladungsvolumen eingekoppelt wird. Doch trotz dieser Maßnahmen wird für eine 2500 W-Lampe immer noch ein Lampenschaft von 110 mm Länge benötigt.An extremely complex arrangement for limiting the temperature of these lamps near the base to 350 ° C. is known from DE-OS 26 19 505. Several gas-filled cavities are arranged between the melting point and the base. In DE-OS 33 19 021 the temperature of the lamp shaft is reduced in that the end face of the melt shaped as a solid cylinder is not smooth and reflective, but is funnel-shaped. By preventing back reflection at the smooth end, the temperature load on the lamp shaft can be somewhat reduced. This problem arises because the fully cylindrical lamp shaft acts like a light guide into which heat and light from the discharge volume are injected. But despite these measures, one will 2500 W lamp still requires a lamp shaft of 110 mm in length.

Andererseits ist ein anderer Typus von Hochdruckentladungslampen mit Metallhalogenidfüllung bekannt, der sich mehr für allgemeine Beleuchtungszwecke eignet (vgl. z.B. EP-OS 159 620), wo es auf hohe Wirtschaftlichkeit ankommt. Diese Lampen sind mit einem Außenkolben ausgestattet, der das Problem der Luftoxidation zwar entscheidend entschärft und eine Lebensdauer von mehreren tausend Stunden ermöglicht, jedoch die optische Qualität verschlechtert. Andererseits können dadurch die Schäfte am Entladungsgefäß sehr kurz gehalten werden und problemlos mit der maschinenfreundlichen und preisgünstigen Quetschtechnik ausgeführt werden. Die Temperatur am Ende der Quetschung ist erheblich höher als 350 °C, was jedoch wegen der inerten oder evakuierten Atmosphäre innerhalb des Außenkolbens keine Rolle spielt. Der relativ große Elektrodenabstand (ca. 100 mm) und die höhere Versorgungsspannung (380 V) führen zusammen zu einer ähnlichen Lichtausbeute (85 lm/W) des Gesamtsystems. Diese Lampe ist wegen der großen Bogenlänge und dem Außenkolben für optische Anwendungen nur bedingt geeignet. Wegen der kurzen Baulänge und geringen Windlast wird sie jedoch trotzdem für Flutlicht und Gebäudeanstrahlung verwendet.On the other hand, another type of high-pressure discharge lamp with a metal halide filling is known which is more suitable for general lighting purposes (cf. e.g. EP-OS 159 620), where high economic efficiency is important. These lamps are equipped with an outer bulb which, while significantly alleviating the problem of air oxidation and allowing a service life of several thousand hours, worsens the optical quality. On the other hand, the shafts on the discharge vessel can be kept very short and can be easily carried out with the machine-friendly and inexpensive crimping technique. The temperature at the end of the crushing is considerably higher than 350 ° C, which does not matter due to the inert or evacuated atmosphere inside the outer bulb. The relatively large electrode spacing (approx. 100 mm) and the higher supply voltage (380 V) together lead to a similar luminous efficacy (85 lm / W) for the overall system. Due to the large arc length and the outer bulb, this lamp is only of limited suitability for optical applications. However, due to the short overall length and low wind load, it is still used for floodlights and building lighting.

Aufgabe der Erfindung ist es, eine Lampe für optische Anwendungen aller Art bereitzustellen, die sich zusätzlich durch hohe Wirtschaftlichkeit und kleine Lampenabmessungen sowie hohem Wirkungsgrad auszeichnet und die auch für die Außenbeleuchtung geeignet ist.The object of the invention is to provide a lamp for optical applications of all kinds, which is additionally characterized by high economy and small lamp dimensions and high efficiency and which is also suitable for outdoor lighting.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Weitere vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.This object is achieved by the characterizing features of claim 1. Further advantageous configurations can be found in the dependent claims.

Insbesondere weist die erfindungsgemäße Lampe eine sehr hohe Lichtausbeute (mehr als 100 lm/W) aus. Die Lebensdauer wird durch die Beschränkung der Temperatur des sockelnahen Folienendes auf höchstens 350 °C (im eingebauten Zustand) bis zu 1500 und mehr Stunden verlängert. Hierbei wird durch die Quetschdichtung besonders vorteilhaft der Lichtleitereffekt (vgl. DE-OS 33 19 021) unterbunden, der bei den zylindrischen Einschmelzungen dazu zwingt, die Baulänge zu vergrößern. Es wird durch die Erfindung eine Verkürzung der Baulänge des Lampenschafts (um∼50%) und des in die Quetschung eingebetteten Abschnitts der Elektrode (stabilisiert z.B. die Farbtemperatur) ermöglicht. Zur Erzielung optimaler Verhältnisse wurde ein ausgewogener Kompromiß in bezug auf Strombelastung, Folienlänge, Foliendicke und Geometrie des Entladungsgefäßes eingegangen, wobei sich letztlich der Einsatz der in dieser Form neuen Lampenschäfte in Quetschtechnologie als Schlüssel zum Erfolg erwies.In particular, the lamp according to the invention has a very high luminous efficiency (more than 100 lm / W). The service life is extended up to 1500 and more hours by restricting the temperature of the film end near the base to a maximum of 350 ° C (when installed). The pinch seal particularly advantageously prevents the light guide effect (cf. DE-OS 33 19 021), which in the case of the cylindrical seals forces the length to be increased. The invention makes it possible to shorten the overall length of the lamp shaft (by ∼50%) and the section of the electrode embedded in the pinch (stabilizes e.g. the color temperature). In order to achieve optimal conditions, a balanced compromise was made with regard to current load, film length, film thickness and geometry of the discharge vessel, the use of the new lamp shafts in squeeze technology ultimately proving to be the key to success.

Wegen der kürzeren Lampenschäfte ist die Lampe selbst kompakter, was den Bau kleinerer Leuchten ermöglicht. Dies bedeutet bei Scheinwerfern einen geringeren Windwiderstand, was bei Anwendungen im Freien von erheblicher Bedeutung ist.Because of the shorter lamp shafts, the lamp itself is more compact, which enables the construction of smaller lamps. This means a lower wind resistance for headlights, which is of considerable importance for outdoor applications.

Im Vergleich zu den bisher bekannten Lampenschäften in Quetschtechnologie sind die erfindungsgemäßen Lampenschäfte erheblich länger. Der Quetschvorgang erfordert daher höchste Präzision. Zwei einander gegenüberstehende und um das zu quetschende Quarzglasgut rotierende Gasbrenner erzeugen eine sehr gleichmäßige Quetschtemperatur von 2300 ± 50 °C durch ein optimiertes Gasprofil, das durch vier Bohrlochreihen mit unterschiedlich großen Bohrungsdurchmessern erzeugt wird. Größere Temperaturdifferenzen würden zu problematischen Spannungen im Lampenschaft und schlechten Folieneinbettungen führen und somit den Ausschuß (Frühausfälle) erhöhen.The lamp shafts according to the invention are considerably longer than the previously known lamp shafts using squeeze technology. The squeezing process therefore requires maximum precision. Two opposing quartz glassware to be squeezed Rotating gas burners produce a very even squeezing temperature of 2300 ± 50 ° C thanks to an optimized gas profile, which is generated by four rows of holes with different hole diameters. Larger temperature differences would lead to problematic tensions in the lamp shaft and poor film embedding and thus increase the rejects (early failures).

Die erfindungsgemäße Lampe soll anhand zweier Ausführungsbeispiele näher erläutert werden. Es zeigen schematisch

Figur 1
eine Hochdruckentladungslampe mit einer Leistung von 2000 W
Figur 2
eine Hochdruckentladungslampe mit einer Leistung von 1000 W.
Figur 3
ein Detail für die Herstellung der Lampe gem. Fig.1
The lamp according to the invention will be explained in more detail using two exemplary embodiments. They show schematically
Figure 1
a high-pressure discharge lamp with an output of 2000 W.
Figure 2
a high-pressure discharge lamp with an output of 1000 W.
Figure 3
a detail for the manufacture of the lamp acc. Fig. 1

In Figur 1 ist eine 2000 W-Hochdruckentladungslampe 1 mit einer Länge von 190 mm dargestellt, die für den Einsatz in einem hier nicht dargestellten Reflektor gedacht ist. Die Lampe wird axial in den Reflektor eingesetzt, wobei eine kurze Baulänge von großer Bedeutung ist (vgl. Figur 3 der DE-OS 35 06 295). Das in sehr guter Näherung isotherme Entladungsgefäß 2 aus Quarzglas mit ca. 2 mm (oder 2,5 mm) Wandstärke ist als Tonnenkörper ausgeführt, dessen Erzeugende ein Kreisbogen mit einem Krümmungsradius von 38,25 mm ist, wobei die Wandstärke zum Zentralbereich 3 des Tonnenkörpers hin auf ca. 3 mm zunimmt, da hier die Wandbelastung (ca. 50 W/cm²) wegen der Konvektionskrümmung des Entladungsbogens am größten ist. Der größte Außendurchmesser des Tonnenkörpers beträgt 36 mm, die axiale Länge etwa 51 mm. Der Außendurchmesser an den Tonnenenden 4, an dem jeweils ein Lampenschaft 5 angeformt ist, mißt ca. 16 mm, so daß sich ein Entladungsvolumen von ca. 20 cm³ ergibt. Die stabförmigen Wolfram-Elektroden 6, deren Spitzen einen Abstand von 30 mm aufweisen, sind jeweils axial in dem Lampenschaft 5 gehalten und weisen eine doppellagige Wendel 7 in der Nähe der Elektrodenspitze auf. Die Lampenschäfte 5 haben eine Länge von ca. 40 mm und eine Breite von ca. 16 mm. Die Elektroden 6 sind über Molybdänfolien 8, die vakuumdicht mittels einer den gesamten Lampenschaft 5 umfassenden I-förmigen Quetschdichtung in die Lampenschäfte eingeschmolzen sind, mit massiven Stromzuführungen 9 verbunden. Die Molybdänfolien 8, die in an sich bekannter Weise linsenförmig geätzt sind, besitzen eine zentrale, maximale Dicke von etwa 50 µm und eine Länge von etwa 30 mm bei einer Breite von 8 mm.FIG. 1 shows a 2000 W high-pressure discharge lamp 1 with a length of 190 mm, which is intended for use in a reflector, not shown here. The lamp is inserted axially into the reflector, a short overall length being of great importance (cf. FIG. 3 of DE-OS 35 06 295). The very good approximation isothermal discharge vessel 2 made of quartz glass with a wall thickness of approx. 2 mm (or 2.5 mm) is designed as a barrel body, the generator of which is an arc with a radius of curvature of 38.25 mm, the wall thickness being towards the central area 3 of the barrel body increases to approx. 3 mm, since here the wall load (approx. 50 W / cm²) is greatest due to the convection curvature of the discharge arc. The largest outside diameter the barrel body is 36 mm, the axial length is about 51 mm. The outer diameter at the barrel ends 4, on each of which a lamp shaft 5 is formed, measures approximately 16 mm, so that there is a discharge volume of approximately 20 cm³. The rod-shaped tungsten electrodes 6, the tips of which are spaced 30 mm apart, are each held axially in the lamp shaft 5 and have a double-layer filament 7 in the vicinity of the electrode tip. The lamp shafts 5 have a length of approximately 40 mm and a width of approximately 16 mm. The electrodes 6 are connected to massive power supply lines 9 via molybdenum foils 8, which are melted into the lamp shafts in a vacuum-tight manner by means of an I-shaped pinch seal that encompasses the entire lamp shaft 5. The molybdenum foils 8, which are lenticularly etched in a manner known per se, have a central, maximum thickness of approximately 50 μm and a length of approximately 30 mm with a width of 8 mm.

Am sockelfernen Ende des Lampenschaftes 5 ist ein keramischer Hülsensockel 10 mit Kitt befestigt, der aus einem geschlitzten zylindrischen Halteteil 11 und einem abgeflachten, der Fassung zugewandten Endkörper 12 besteht.
Das Entladungsgefäß 2 enthält eine Füllung aus einem Edelgas (Argon) als Zündgas und Quecksilber als Hauptkomponente (ca. 220 mg) sowie pro cm³ Entladungsvolumen die Seltenen Erden DyBr₃(1 µmol) und TmBr₃ (0,5 µmol), außerdem 1 µmol TlBr, 2 µmol CsBr und 0,5 µmol ThJ₄. Das Thorium kann durch Hafnium ersetzt werden. Insgesamt ergibt sich mit dieser Füllung eine Farbtemperatur von ca. 5600 K bei einem Farbwiedergabeindex von 92 (Stufe 1a).
At the end of the lamp shaft 5 remote from the base, a ceramic sleeve base 10 is fastened with cement, which consists of a slotted cylindrical holding part 11 and a flattened end body 12 facing the socket.
The discharge vessel 2 contains a filling of an inert gas (argon) as the ignition gas and mercury as the main component (approx. 220 mg) as well as the rare earths DyBr₃ (1 µmol) and TmBr₃ (0.5 µmol) per cm³ discharge volume, also 1 µmol TlBr, 2 µmol CsBr and 0.5 µmol ThJ₄. The thorium can be replaced by hafnium. Overall, this filling results in a color temperature of approx. 5600 K with a color rendering index of 92 (level 1a).

Die angegebene Seltene Erdfüllung hat als Farbort die Werte x = 0,3325, y = 0,3460.The specified rare earth filling has the values x = 0.3325, y = 0.3460.

Durch eine Versorgungsspannung von 380 V wird eine Brennspannung von 210 V und ein Lampenstrom von 10.3 A erzielt. Dies senkt die Verluste im Quetschungsbereich im Vergleich zu den bekannten Lampen (R (400 °C) = 0,043Ω ) erheblich auf R (400 °C) = 0,021Ω. Die höheren Verluste bekannter Lampen resultieren aus der erheblich größeren Länge der Einschmelzung (ca. Faktor zwei) und den höheren Strömen (17 - 25 A).A supply voltage of 380 V achieves an operating voltage of 210 V and a lamp current of 10.3 A. This significantly reduces the losses in the crushing area compared to the known lamps (R (400 ° C) = 0.043Ω) to R (400 ° C) = 0.021Ω. The higher losses of known lamps result from the considerably longer length of the melting (approx. Factor two) and the higher currents (17 - 25 A).

Die günstige Gesamtkonzeption der 2000 W-Lampe ermöglicht es, die Gesamtlichtausbeute auf 105 lm/W zu erhöhen und dabei eine extrem hohe Lebensdauer von ca. 2000 Stunden zu erzielen. Die spezifische Bogenleistung beträgt 67 W/mm.The favorable overall design of the 2000 W lamp makes it possible to increase the total light output to 105 lm / W and to achieve an extremely long lifespan of approx. 2000 hours. The specific arc power is 67 W / mm.

Das isotherm gestaltete Entladungsgefäß weist eine maximale Kolbentemperatur von ca. 1030 °C (hot spot) auf, die am cold spot (hinter den Elektroden am Gefäßende) auf 1000 °C absinkt. Am Folienende ist die Temperatur auf 250 °C abgesunken (frei brennend). Im Scheinwerfer entspricht das einer Temperatur von 350 °C.The isothermally designed discharge vessel has a maximum bulb temperature of approx. 1030 ° C (hot spot), which drops to 1000 ° C at the cold spot (behind the electrodes at the end of the vessel). At the end of the film, the temperature has dropped to 250 ° C (free-burning). In the headlight, this corresponds to a temperature of 350 ° C.

Versuche mit unterschiedlicher Folienlänge bei einer 2000 W-Lampe zeigen die abnehmende Temperaturbelastung in eindrucksvoller Weise. Bei einer Länge von 20 mm ergab sich eine Folienendtemperatur von 400 °C; dagegen war eine 25 mm lange Folie nur mehr mit 265 °C belastet. Schließlich erbrachte eine weitere Verlängerung um 5 mm eine Absenkung der Endtemperatur um weitere 20 °. Wird der Lampenschaft zusätzlich mattiert (durch Sandstrahlen), was die Wärmedissipation verbessert, so läßt sich die Temperatur nochmals um 50 ° absenken.Experiments with different film lengths in a 2000 W lamp show the decreasing temperature load in an impressive way. With a length of 20 mm, the final film temperature was 400 ° C .; in contrast, a 25 mm long film was only loaded at 265 ° C. Finally, a further extension of 5 mm brought the final temperature down by another 20 °. Will the lamp shaft additionally matted (by sandblasting), which improves heat dissipation, the temperature can be reduced by another 50 °.

Die Herstellung der Lampe erfolgt ausgehend von einem zylindrischen Quarzrohr mit einer Wandstärke von 2 mm. Die ellipsoidähnliche Gestalt des Entladungsgefäßes wird rechnergesteuert hergestellt, wobei die Verstärkung der Wanddicke im Zentralbereich durch eine Stauchung des Rohres erzeugt wird. Die anschließende Herstellung der Quetschdichtung erfordert bei dieser Quetschungslänge eine verfeinerte Quetschtechnologie, wie oben bereits erläutert.The lamp is manufactured using a cylindrical quartz tube with a wall thickness of 2 mm. The ellipsoid-like shape of the discharge vessel is produced under computer control, the reinforcement of the wall thickness in the central area being produced by compression of the tube. The subsequent production of the pinch seal requires a refined pinch technology with this pinch length, as already explained above.

In Figur 2 ist als weiteres Ausführungsbeispiel eine 1000 W-Lampe gezeigt. Sie entspricht in ihren Abmessungen der 2000 W-Version. Gleiche Bezugsziffern entsprechen gleichen Lampenteilen. Die Versorgungsspannung beträgt 220 V bei weiterhin 10.3 A Betriebsstrom. Um bei diesen Spezifikationen die für den optimalen Dampfdruck nötige Temperatur erzielen zu können, sind die Enden des Entladungsgefäßes mit einer ZrO₂-Beschichtung 13 für den Wärmestau versehen. Die Füllung enthält die gleichen Komponenten, doch ist das Jod : Brom-Verhältnis zugunsten des Jods verschoben.In Figure 2, a 1000 W lamp is shown as a further embodiment. Its dimensions correspond to the 2000 W version. The same reference numbers correspond to the same lamp parts. The supply voltage is 220 V with an operating current of 10.3 A. In order to be able to achieve the temperature required for the optimum vapor pressure with these specifications, the ends of the discharge vessel are provided with a ZrO₂ coating 13 for the heat accumulation. The filling contains the same components, but the iodine: bromine ratio has shifted in favor of iodine.

Die Lampenfüllung kann auch andere Metallhalogenide enthalten (z.B. NaJ, SCJ), die andere Farbtemperaturen ermoglichen. Der Farbort kann durch sorgfältige Auswahl des Jod : Brom-Verhältnisses in gewissen Grenzen variiert werden.The lamp fill can also contain other metal halides (eg NaJ, SCJ), which allow different color temperatures. The color locus can be varied within certain limits by carefully selecting the iodine: bromine ratio.

Nachfolgend soll der Ablauf des Quetschvorgangs (Fig. 3) beschrieben werden. Zur Vorbereitung der Quetschung wird der Lampenkolben senkrecht gestellt und das Elektrodensystem, bestehend aus Stromzuführung, Folie und Elektrode, eingeführt. Der unten befindliche, zunächst noch rohrförmige Lampenschaft wird nun von unten ausgehend nach oben fortlaufend bis zum Ansatz des Entladungsvolumens mit Hilfe zweier einander gegenüberstehender Gasbrenner sukzessive auf Quetschtemperatur gebracht. In dem Moment, wo auch der dem Entladungsvolumen nächstliegende Bereich der Quetschung erweicht ist, wird der gesamte Lampenschaft durch zwei Quetschbacken gequetscht. Die beiden Gasbrenner B (nur einer ist gezeigt) rotieren hierbei um den Lampenschaft. Sie erzeugen letztendlich eine sehr gleichmäßige Temperatur von 2300 ± 50 °C durch ein optimiertes Gasprofil, das durch vier Bohrlochreihen im Gasbrenner mit unterschiedlich großen Bohrungsdurchmessern bewirkt wird, wobei sich die großen Bohrungsdurchmesser am Schaftende befinden (Fig. 3). Anschließend wird der Lampenkolben umgedreht, so daß der noch offene Lampenschaft wieder unten liegt, und das beschriebene Verfahren nochmals angewendet. Dieses Quetschverfahren der sukzessiven Erwärmung ist vorteilhaft, weil bei gleichzeitiger Erwärmung des gesamten Lampenschafts dieser zu taumeln beginnen würde und eine Justierung des Elektroden-Systems dadurch verhindert würde. Bei sukzessiver Erwärmung wird jedoch das Taumeln bis zum Schluß verhindert. Darüber hinaus wird hierdurch auch das Problem gelöst, daß der erweichte Lampenschaft unter seinem eigenen Gewicht sich längen und "durchsacken" würde. Bei kurzen Quetschungen besteht dieses Problem nicht; im Gegenteil wird hier der erweichte Lampenschaft durch die Oberflächenspannung zusammengehalten oder gar verkürzt, so daß eine gleichzeitige Erwärmung des gesamten Lampenschafts problemlos möglich ist. Um eine exakte Justierung des Elektrodensystems zu garantieren, ist es schließlich noch vorteilhaft, die Molybdänfolie vor dem Einführen V-förmig oder kastenförmig in Längsrichtung zu biegen. Die Foliendicke sollte dabei 50 µm nicht überschreiten. Diese Versteifung durch Biegen reicht aus, um eine extrem lange Molybdänfolie (30 mm) mit Elektrodenschaft und Elektrode exakt ausgerichtet in einer Wechselaufnahme W zu haltern. Beim Quetschvorgang selbst wird die Folienbiegung wieder ausgebügelt.
Eine gute Stabilisierung der Farbtemperatur bei der in Fig. 1 (und in Fig. 2) beschriebenen Lampe wird dadurch erzielt, daß der Abschnitt 6′ der Elektrode, der zwischen Folienende und Entladungsvolumen in die Quetschung eingebettet ist, extrem kurz (3mm) gehalten werden kann. Dadurch wird die Kapillare, die sich entlang dieses Abschnitts ausbildet, erheblich verkürzt und das dadurch gebildete Totvolumen für den cold spot reduziert. Letztendlich läßt sich daher die Farbtemperatur gezielter einstellen (geringere Streuung) und die Drift der Farbtemperatur während der ersten mehreren hundert Betriebsstunden reduzieren und verkürzen. Weiterhin verbessert sich dadurch insbesondere die Lichtausbeute und die sog. maintenance.
The sequence of the squeezing process (FIG. 3) will be described below. To prepare the pinch, the lamp bulb is placed vertically and the electrode system consisting of power supply, foil and electrode is inserted. The lamp shaft located at the bottom, initially still tubular, is now successively brought up to the pinch temperature from the bottom upwards until the discharge volume begins with the aid of two gas burners located opposite one another. At the moment when the area of the pinch closest to the discharge volume has softened, the entire lamp shaft is squeezed by two pinch jaws. The two gas burners B (only one is shown) rotate here around the lamp shaft. Ultimately, they produce a very uniform temperature of 2300 ± 50 ° C thanks to an optimized gas profile, which is caused by four rows of holes in the gas burner with different-sized bore diameters, with the large bore diameters at the end of the shaft (Fig. 3). The lamp bulb is then turned over so that the lamp shaft which is still open is at the bottom again, and the method described is used again. This squeezing process of successive heating is advantageous because if the entire lamp shaft were heated at the same time, it would start to wobble and an adjustment of the electrode system would thereby be prevented. With successive heating, however, the wobble is prevented until the end. In addition, this also solves the problem that the softened lamp shaft would elongate and "sag" under its own weight. With short bruises not this problem; on the contrary, the softened lamp shaft is held together or even shortened by the surface tension, so that simultaneous heating of the entire lamp shaft is possible without any problems. Finally, in order to guarantee an exact adjustment of the electrode system, it is advantageous to bend the molybdenum foil in the longitudinal direction before it is inserted in a V-shape or a box-shape. The film thickness should not exceed 50 µm. This stiffening by bending is sufficient to hold an extremely long molybdenum foil (30 mm) with electrode shaft and electrode precisely aligned in an interchangeable holder W. During the squeezing process itself, the foil bend is ironed out again.
A good stabilization of the color temperature in the lamp described in Fig. 1 (and in Fig. 2) is achieved in that the section 6 'of the electrode, which is embedded between the film end and discharge volume in the pinch, are kept extremely short (3 mm) can. As a result, the capillary which forms along this section is considerably shortened and the dead volume thus formed for the cold spot is reduced. Ultimately, the color temperature can therefore be set in a more targeted manner (less scatter) and the drift of the color temperature reduced and shortened during the first several hundred operating hours. This also improves the light yield and maintenance.

Claims (15)

  1. High-pressure discharge lamp (1) which is capped at two ends and has a high power (approximately 1000-4000 W) and a high wall loading and which is suitable for optical applications, comprising an elongated discharge vessel (2) made of high-temperature-resistant, light-transparent material as the sole bulb, two high-temperature-resistant electrodes (6) which are held in two lamp shanks (5) attached to the discharge vessel and situated opposite one another, the connection between the electrodes (6) and electrical contacts (9) of the cap (10) being made via foils (8), and a filling of mercury, at least one noble gas and metal halides, characterized in that a foil temperature near the cap of not more than 350°C is achieved by forming the lamp shanks (5) as pinch seals whose length is approximately equal to the length of the discharge vessel (2), the foil (8) embedded in the lamp shank (5) extending over most of the length of the lamp shank.
  2. High-pressure discharge lamp according to Claim 1, characterized in that the length of the lamp shank (5) is equal to between 2/3 and 4/3 of the length of the discharge vessel.
  3. High-pressure discharge lamp according to Claim 1, characterized in that, for a power of 1000-2000 W, the length of the pinch seal is approximately 40 mm, while the length of the discharge vessel is approximately 50 mm.
  4. High-pressure discharge lamp according to Claims 1 to 3, characterized in that the foil length is approximately 60-80 % of the length of the lamp shank.
  5. High-pressure discharge lamp according to Claim 4, characterized in that the central foil thickness is about 0.2 % of the foil length.
  6. High-pressure discharge lamp according to Claims 1 to 3, characterized in that the specific power (the rated power/electrode spacing) is approximately 30-70 W/mm.
  7. High-pressure discharge lamp according to Claim 1, characterized in that the electrode spacing is approximately 28-32 mm.
  8. High-pressure discharge lamp according to Claim 1, characterized in that the wall loading is approximately 30-60 W/cm².
  9. High-pressure discharge lamp according to Claim 8, characterized in that the wall thickness of the discharge vessel is approximately 2-3 mm.
  10. High-pressure discharge lamp according to Claim 1, characterized in that the discharge vessel is formed as a barrel-like body.
  11. High-pressure discharge lamp according to Claim 9, characterized in that the wall thickness increases by a factor of 1.2 to 1.4 towards the central region of the discharge vessel.
  12. High-pressure discharge lamp according to Claim 1, characterized in that, to achieve a colour temperature similar to daylight, two halides of the rare earths are used in combination with halides of caesium and thallium as filling.
  13. High-pressure discharge lamp according to Claim 12, characterized in that halides of thorium and/or hafnium are also used.
  14. High-pressure discharge lamp according to Claim 13, characterized in that the discharge vessel contains, per cm³ of its volume, 1 µmol of DyBr₃, 0.5 µmol of TmBr₃, 1 µmol of TlBr, 2 µmol of CsBr, and 0.5 µmol of ThI₄ or HfI₃.
  15. High-pressure discharge lamp according to Claim 1, characterized in that the length of that section (6') of the electrode which is embedded in the pinch is very short and is preferably less than 4 mm.
EP90106195A 1989-04-04 1990-03-30 Double-based high-pressure discharge lamp Expired - Lifetime EP0391283B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3910878A DE3910878A1 (en) 1989-04-04 1989-04-04 HIGH-PRESSURE DISCHARGE LAMP, DOUBLE-SIDED
DE3910878 1989-04-04

Publications (3)

Publication Number Publication Date
EP0391283A2 EP0391283A2 (en) 1990-10-10
EP0391283A3 EP0391283A3 (en) 1991-05-02
EP0391283B1 true EP0391283B1 (en) 1994-10-12

Family

ID=6377829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90106195A Expired - Lifetime EP0391283B1 (en) 1989-04-04 1990-03-30 Double-based high-pressure discharge lamp

Country Status (6)

Country Link
US (1) US5138227A (en)
EP (1) EP0391283B1 (en)
JP (1) JP2831430B2 (en)
DD (1) DD293449A5 (en)
DE (2) DE3910878A1 (en)
HU (1) HU210889B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4040858A1 (en) * 1990-12-20 1992-06-25 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh METAL HALOGENIDE HIGH PRESSURE DISCHARGE LAMP
DE4124055A1 (en) * 1991-07-19 1993-01-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh High pressure metal halogen discharge lamp - has glass envelope with wall thickness defined by regulation in terms of lamp power
US5382873A (en) * 1991-12-04 1995-01-17 U.S. Philips Corporation High-pressure discharge lamp with incandescing metal droplets
US5486737A (en) * 1994-04-12 1996-01-23 Osram Sylvania Inc. Heavily loaded double-ended arc lamp
DE4432611A1 (en) 1994-09-14 1996-03-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metal halide high pressure discharge lamp
US5825129A (en) * 1996-05-31 1998-10-20 U.S. Philips Corporation High pressure discharge lamp having pirch seals
JPH1074489A (en) * 1996-08-30 1998-03-17 Matsushita Electron Corp Metal halide lamp
BE1010356A6 (en) * 1997-01-10 1998-06-02 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp high pressure base.
JPH10283993A (en) * 1997-04-03 1998-10-23 Matsushita Electron Corp Metal halide lamp
JP3085303B1 (en) * 1999-07-05 2000-09-04 ウシオ電機株式会社 Discharge lamp
JP3657465B2 (en) * 1999-07-07 2005-06-08 株式会社小糸製作所 Arc tube manufacturing method
US6857926B1 (en) * 2000-06-19 2005-02-22 Advanced Lighting Technologies, Inc. Method of making arc tubes
JP3687582B2 (en) * 2001-09-12 2005-08-24 ウシオ電機株式会社 Discharge lamp
US6669521B2 (en) * 2001-09-26 2003-12-30 Osram Sylvania Inc. Method of removing contaminants from a double-ended arc discharge tube
US6661172B2 (en) * 2002-01-11 2003-12-09 General Electric Company Electrode assembly and lamp with conductor foil
DE202004006087U1 (en) * 2004-04-16 2004-07-15 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH High pressure discharge lamp and associated lamp
DE102004019185A1 (en) 2004-04-16 2005-11-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH High pressure discharge lamp
JP2006253048A (en) * 2005-03-14 2006-09-21 Osram-Melco Ltd Discharge lamp with reflector
DE102005013004A1 (en) 2005-03-21 2006-09-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Deflection component for a luminaire and associated luminaire
DE102007008696B3 (en) * 2007-02-20 2008-10-02 Heraeus Noblelight Gmbh Infrared radiator with opaque reflector and its manufacture
US20100117533A1 (en) * 2007-04-13 2010-05-13 Koninklijke Philips Electronics N.V. Discharge lamp comprising a monoxide radiation emitting material
WO2008126021A2 (en) * 2007-04-13 2008-10-23 Koninklijke Philips Electronics N.V. Discharge lamp comprising electrodes and a monoxide radiation emitting material
CN101399152B (en) * 2007-09-26 2010-05-26 上海亚明灯泡厂有限公司 Metal halogenate lamp of ultra-high colour development and ultra-high color temperature
US7893619B2 (en) * 2008-07-25 2011-02-22 General Electric Company High intensity discharge lamp
US9875886B1 (en) * 2016-12-04 2018-01-23 Robert Su Double-ended ceramic metal halide lamp
US10211042B2 (en) * 2016-12-04 2019-02-19 Allstate Garden Supply Double-ended high intensity discharge lamp and manufacturing method thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2924731A (en) * 1957-04-08 1960-02-09 Gen Electric Double ended high pressure discharge lamp
BE754499A (en) * 1969-08-08 1971-01-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh HIGH PRESSURE DISCHARGE LAMP, MERCURY VAPOR WITH METAL HALOGENIDE ADDITIVE
US3842307A (en) * 1971-02-11 1974-10-15 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh High pressure mercury vapor discharge lamp with metal halide additives
DE2106447C2 (en) * 1971-02-11 1983-02-17 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Mercury vapor high pressure discharge lamp with an addition of metal halides
FR2310630A1 (en) * 1975-05-07 1976-12-03 Central Eclairage Lab Short arc lamp with quartz envelope - has tungsten-thorium electrodes welded to molybdenum leads
SU694919A1 (en) * 1978-05-31 1979-10-30 Предприятие П/Я 5907 Metal halide lamp
JPS5519732A (en) * 1978-07-27 1980-02-12 Matsushita Electronics Corp Electron gun
JPS5519733A (en) * 1978-07-28 1980-02-12 Mitsubishi Electric Corp High voltage mercury gas discharge lamp
US4389201A (en) * 1979-03-12 1983-06-21 General Electric Company Method of manufacturing a lamp
US4254356A (en) * 1979-04-23 1981-03-03 General Electric Company Inlead and method of making a discharge lamp
US4396857A (en) * 1980-07-01 1983-08-02 General Electric Company Arc tube construction
SU963119A1 (en) * 1980-12-26 1982-09-30 За внтел.ь - ti Ki3lA« 1 - : 1Л1Ш«ТНО - хтцЕсмп «НКЛИвТЕКА Current lead-in wire into lamp quartz bulb
JPS5851457A (en) * 1981-09-22 1983-03-26 Toshiba Corp Miniture metal halide lamp
GB2122024B (en) * 1982-05-28 1986-01-29 Gen Electric Co Plc Lamp stems
EP0159620B1 (en) * 1984-04-19 1990-06-20 General Electric Company Improved metal halide lamp and lighting systems particularly suitable for architectural lighting
DE3427280C2 (en) * 1984-07-24 1986-06-12 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Metal halide high pressure discharge lamp
DE3506295A1 (en) * 1985-02-22 1986-08-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München COMPACT HIGH PRESSURE DISCHARGE LAMP
DE3544825A1 (en) * 1985-12-18 1987-06-19 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh LAMP WITH A PISTON MADE OF GLASS, HIGH SILICA
JPH0418200Y2 (en) * 1986-06-05 1992-04-23
JPS6433151U (en) * 1987-08-25 1989-03-01
NL191812C (en) * 1987-09-04 1996-08-02 Philips Electronics Nv High-pressure gas discharge lamp and luminaire fitted with that lamp.
DE8805183U1 (en) * 1988-04-19 1988-07-14 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh, 8000 Muenchen, De
US4983889A (en) * 1989-05-15 1991-01-08 General Electric Company Discharge lamp using acoustic resonant oscillations to ensure high efficiency

Also Published As

Publication number Publication date
DE3910878A1 (en) 1990-10-11
DD293449A5 (en) 1991-08-29
DE59007417D1 (en) 1994-11-17
JPH02288150A (en) 1990-11-28
EP0391283A3 (en) 1991-05-02
HU210889B (en) 1995-09-28
JP2831430B2 (en) 1998-12-02
US5138227A (en) 1992-08-11
HUT53734A (en) 1990-11-28
EP0391283A2 (en) 1990-10-10
HU902063D0 (en) 1990-07-28

Similar Documents

Publication Publication Date Title
EP0391283B1 (en) Double-based high-pressure discharge lamp
EP0451647B1 (en) High-pressure discharge lamp and method for its manufacture
EP0839381B1 (en) Reflector lamp
DE202009018836U1 (en) Sodium vapor high-pressure discharge lamp
DE3205401A1 (en) HIGH PRESSURE DISCHARGE LAMP
DE3005052A1 (en) ELECTRIC DISCHARGE LAMPS
WO2007036493A2 (en) Lamp and method for producing such a lamp
EP2499651B1 (en) High-pressure discharge lamp having a single socket
DE19947242A1 (en) High pressure discharge lamp
DE102007046559A1 (en) High-pressure discharge lamp with partial coating and vehicle headlights with such a lamp
DE112008001624T5 (en) High intensity discharge lamp with improved dimming properties
WO2008119606A1 (en) Component for an electric lamp with outer bulb
EP1659617A1 (en) Light source
EP1709668B1 (en) Low-pressure discharge lamp
DE102010001209A1 (en) High pressure discharge lamp
DE961123C (en) Electric high pressure discharge lamp
DE3227380A1 (en) Electrical discharge lamp
EP4113579A2 (en) High-pressure discharge lamp, in particular sodium vapor high pressure lamp with improved ignition capability
DE102004011555B3 (en) Gas discharge lamp has conductors which are bound to envelope by glass with higher linear coefficient of expansion than envelope in surrounding area
DE4110365A1 (en) High pressure gas discharge lamp
DE3321479A1 (en) HIGH PRESSURE DISCHARGE LAMP
AT217566B (en) Electric light bulb
DD245080A1 (en) GAS DISCHARGE LAMP FOR MOTOR VEHICLE HEADLIGHTS
AT331918B (en) MERCURY VAPOR LAMP
DE2219927C3 (en) Arrangement with lamp and reflector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19901220

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT

17Q First examination report despatched

Effective date: 19931111

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

REF Corresponds to:

Ref document number: 59007417

Country of ref document: DE

Date of ref document: 19941117

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950106

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050303

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050311

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050331

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060331

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060330

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061130

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20060331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090518

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100330