EP0391054B1 - Verwendung eines hitzebeständigen Stahls für korrosionsbeständige Bauteile - Google Patents
Verwendung eines hitzebeständigen Stahls für korrosionsbeständige Bauteile Download PDFInfo
- Publication number
- EP0391054B1 EP0391054B1 EP90103396A EP90103396A EP0391054B1 EP 0391054 B1 EP0391054 B1 EP 0391054B1 EP 90103396 A EP90103396 A EP 90103396A EP 90103396 A EP90103396 A EP 90103396A EP 0391054 B1 EP0391054 B1 EP 0391054B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- max
- steel
- corrosion
- resistant
- steels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 49
- 239000010959 steel Substances 0.000 title claims description 49
- 230000007797 corrosion Effects 0.000 title claims description 12
- 238000005260 corrosion Methods 0.000 title claims description 12
- 239000000463 material Substances 0.000 claims description 17
- 229910052758 niobium Inorganic materials 0.000 claims description 13
- 239000010955 niobium Substances 0.000 claims description 13
- 229910052726 zirconium Inorganic materials 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 7
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 claims description 5
- 238000003466 welding Methods 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 238000011109 contamination Methods 0.000 claims 2
- 238000009434 installation Methods 0.000 claims 2
- 238000007493 shaping process Methods 0.000 claims 1
- 239000002912 waste gas Substances 0.000 claims 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 8
- 239000011651 chromium Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000007792 addition Methods 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910000669 Chrome steel Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010011416 Croup infectious Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
Definitions
- the invention relates to the use of a heat-resistant steel for corrosion-resistant components, such as exhaust systems.
- austenitic chromium-nickel steels such as material no. 1.4878 or 1.4828 according to the steel-iron list of the VdEh, Verlag Stahleisen mbH, Düsseldorf, 7th edition 1981, used.
- the main disadvantage of these austenitic steels is their high thermal expansion coefficients.
- DE-PS 27 50 623 a steel with 17 to 18% chromium and a zirconium addition of up to 1.5% is preferred for exhaust systems.
- the ferritic steels mentioned have sufficient heat and scale resistance at chromium contents of 17 to 18%.
- adverse material properties can occur.
- Higher chrome contents have a negative impact on the forming and deep-drawing behavior.
- Problems with welding can also increase.
- a disadvantage of the application for exhaust systems provided here is above all that the so-called "475 ° embrittlement" occurs. At higher temperatures between 600 and 800 degrees Celsius, so-called ⁇ -phase embrittlement also occurs (E. Houdremont, Handbuch der Sonderstahlischen 1969, volume 1, pages 684 ff; DE-Z Tech. Mitt. Krupp works reports volume 33 (1975 ), Volume 2, pages 45 ff).
- Remainder iron and unavoidable impurities in the form of hot and / or cold rolled strip with good forming and welding properties as a material for the production of corrosion-resistant components that can withstand temperatures up to 950 ° C are used, in particular from exhaust systems, such as exhaust systems for internal combustion engines or mantles or from connecting pipes for exhaust gas catalysts.
- the steel to be used according to the invention preferably has the following composition: 0.012 to 0.018% C 0.40 to 0.60% Si 0.40 to 0.60% Mn Max. 0.035% P Max. 0.010% S 15.0 to 16.0% Cr Max. 0.016% N 0.4 to 0.7% Nb 0.4 to 0.7% Ti 0.2 to 0.3% Zr Remainder iron and usual impurities due to melting.
- the steel to be used according to the invention a material has thus been found which is suitable for components which are used at temperatures of up to 950 ° C. and which, at the same time, is suitable for the rear area of an exhaust system because of its good corrosion properties.
- the decisive factor for the good properties of the steel according to the invention is the simultaneous addition of the elements niobium, titanium and zirconium in the claimed alloy ratio.
- the test was carried out in a 120-hour test with cooling in air for 24 hours in accordance with the guidelines of the Association of German Ironworks.
- a steel is considered to be scale-resistant at a certain temperature if the weight of the scaled-down amount of metal does not exceed around 1 g / m2h at this temperature and around 2 g / m2h at a temperature that is 50 ° C higher.
- the steel (A) to be used according to the invention has a scale loss curve comparable to the much more expensive austenitic chromium-nickel steel (D). Both steels can withstand temperatures of around 950 ° C.
- the 11% chromium steel (B) is in no way up to the temperatures of up to 950 ° C.
- the 17% chrome steel (C) is also inferior to the steel (A) in terms of scale resistance.
- Table 1 shows the coefficients of thermal expansion of the investigated steels A (according to the invention), B, C, and D (comparative steels). It can be seen that the steel A to be used according to the invention is within the scope of the known ferritic steels B and C, but has a significantly lower coefficient of expansion than the austenitic steel D.
- the rest of the iron and melting-related impurities were melted in the AOD process.
- the ratio of niobium: titanium: zirconium was 2: 2.04: 1, the sum of the elements niobium, titanium and zirconium was 1.31%.
- the steel was cast into slabs, which were then rolled into hot strip. A strip was descaled, cold rolled and annealed in an open pull-through furnace at around 980 ° C, pickled and then lightly rolled (dressed). Exhaust systems with catalytic converters were produced from this cold strip, version IIIc according to DIN 17 441. There were no peculiarities in the manufacture of pipes, the deep-drawing of the catalyst parts and the subsequent welding of the system.
- This exhaust system made of the stressed steel was compared to a conventional exhaust system, the front area including catalyst made of austenitic steel material no. 1.4878 had been produced and contained compensators to compensate for the strong thermal expansion, while the rear area, as usual, made of ferritic steel, material no. 1.4512 passed, tested in laboratory and practical tests.
- the behavior in the front high temperature range was flawless for both materials.
- In the rear, colder area of the exhaust system there was no significant corrosion attack on the steel to be used according to the invention, while the material 1.4512 showed significant damage, particularly as a result of a hole-like corrosion attack.
- a second strip was annealed and descaled in the open pull-through furnace at around 980 ° C. After cold rolling, recrystallization annealing was carried out in a continuous furnace at around 980 ° C under a bright annealing atmosphere to further improve the forming properties of the cold-rolled strip. In this case too, the test results confirmed the good high-temperature and corrosion properties of the steel to be used according to the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Exhaust Silencers (AREA)
- Catalysts (AREA)
- Heat Treatment Of Steel (AREA)
- Arc Welding In General (AREA)
Description
- Die Erfindung betrifft die Verwendung eines hitzebeständigen Stahls für korrosionsbeständige Bauteile, wie Abgasanlagen.
- Sofern nichts anderes angegeben ist, stehen im folgenden %-Angaben für Gew.-%.
- Bei Auspuffanlagen von Automobilen ist das Anforderungsprofil an die Werkstoffeigenschaften durch den zunehmenden Einsatz von Abgas-Katalysatoren in letzter Zeit deutlich gestiegen. Im motornahen Bereich zwischen Verbrennungsmotor und Katalysator können Temperaturen bis zu 950°C auftreten; gleichzeitig kommt es in diesem Bereich wegen des elastisch gelagerten Motors zu starken Biege- und Schwingungsbeanspruchungen.
- Wegen dieser hohen mechanisch-thermischen Beanspruchung werden für diesen Bereich heute vielfach austenitische Chrom-Nickel-Stähle, z.B. die Werkstoff-Nr. 1.4878 oder 1.4828 nach der Stahl-Eisen-Liste des VdEh, Verlag Stahleisen mbH, Düsseldorf, 7. Auflage 1981, eingesetzt. Der Nachteil dieser austenitischen Stähle liegt vor allem in ihren hohen Wärmeausdehnungsbeiwerten.
- Deshalb ist ein besonderer konstruktiver Aufwand, z. B. durch Einbau von Kompensationselementen, erforderlich. Außerdem sind solche Stähle teuer.
- Im hinteren Teil der Abgasanlage tritt durch Taupunktunterschreitungen Naßkorrosion auf, die durch beim Verbrennungsprozeß anfallende Substanzen (vor allem Sulfat-Bildung) zu einer starken Korrosionsbeaufschlagung der Abgasanlage führt. Bisher werden für diesen Bereich überwiegend aluminierte Stähle sowie 12 %-ige Chromstähle, z. B. die Werkstoff-Nr. 1.4512 nach Stahl-Eisen-Liste eingesetzt. Wegen der genannten Korrosionsbeanspruchung werden diese ferritischen Stähle oft überfordert, und es kommt zu vorzeitigen Ausfällen. Außerdem ist es für die Hersteller der Abgasanlagen von Nachteil, daß zwei Stahltypen mit unterschiedlichen Eigenschaften eingesetzt werden müssen.
- Als Ersatz für teure hitzebeständige austenitische Stähle, deren Einsatz wegen zu großer Wärmeausdehnung Schwierigkeiten bereitet, bieten sich Stähle mit geringerer Wärmeausdehnung an, wie ferritische Chrom-Stähle, die die notwendige Hitze- und Zunderbeständigkeit durch Chrom-Gehalte von 17 bis 20 % sowie durch Zusätze weiterer, die Zunderbeständigkeit erhöhender Elemente erreichen.
- So ist ein Stahl der französischen Firma UGINE-GUEUGNON mit max. 0,03 % Kohlenstoff, 16,5 bis 17,5 % Chrom und Zusätzen von 0,4 % Niob und/oder Zirkonium für den Hochtemperaturbetrieb, wie er bei Automobil-Abgasanlagen herrscht, bekannt. Ein weiterer bekannter Stahl der THYSSEN EDELSTAHL WERKE AG, Werkstoff-Nr. 1.4509, enthält 17,5 bis 19,0 % Chrom, 0,6 bis 0,9 % Niob und 0,10 bis 0,5 % Titan.
Nach der DE-PS 27 50 623 wird für Auspuffsysteme ein Stahl mit 17 bis 18 % Chrom und einem Zirkoniumzusatz bis 1,5 % bevorzugt. - Da aber gleichzeitig niedrige Stickstoffgehalte kleiner 0,015 % zwingend vorgeschrieben sind, wird durch die besonderen schmelzmetallurgischen Verfahrensschritte zur Erreichung dieser niedrigen Stickstoffgehalte (Vakuumbehandlung) dieser Stahl unwirtschaftlich teuer.
- Die erwähnten ferritischen Stähle haben zwar bei Chrom-Gehalten von 17 bis 18 % eine ausreichende Hitze- und Zunderbeständigkeit. Mit steigendem Chrom-Gehalt können jedoch nachteilige Werkstoff-Eigenschaften auftreten. Höhere Chrom-Gehalte wirken sich nachteilig auf das Umform- und Tiefziehverhalten aus. Außerdem kann es verstärkt zu Problemen beim Schweißen kommen. Nachteilig für die hier vorgesehene Anwendung für Abgasanlagen ist vor allem, daß es zur sogenannten "475°-Versprödung" kommt. Bei höheren Temperaturen zwischen 600 bis 800 Grad Celsius tritt außerdem die sogenannte σ-Phasen-Versprödung auf (E. Houdremont, Handbuch der Sonderstahlkunde 1956, Band 1, Seiten 684 ff; DE-Z Tech. Mitt. Krupp-Werksberichte Band 33 (1975), Heft 2, Seiten 45 ff).
- Solche unangenehmen Versprödungserscheinungen können zwar durch besondere Wärmebehandlungen wieder beseitigt werden, doch gibt es beim Abgassystem Bereiche, wo sich diese Versprödung im Langzeitgebrauch bei kritischen Temperaturen aufbaut, ohne daß die Möglichkeit besteht, diesen Vorgang wieder rückgängig zu machen. Dadurch kommt es als Folge der teilweise kritischen mechanischen Beanspruchung zu Materialschädigungen und zu Zerstörungen der Abgasanlage.
In Anbetracht der Nachteile, die mit den zur Zeit für Abgasanlagen verwendeten Stählen verbunden sind, wird daher von der Automobilindustrie ein Werkstoff mit folgenden Eigenschaften gefordert: - Gute Verarbeitbarkeit (Umformen, Schweißen usw.)
- Hohe Hitze- und Zunderbeständigkeit
- Geringer Wärmeausdehnungskoeffizient
- Gute Korrosions-Eigenschaften, auch im geschweißten Zustand
- Geringe Versprödungsneigung bis 950°C.
- Gute Schwingungs- und Dauerfestigkeits-Eigenschaften
- Niedriger Preis
- Ausgehend von dieser Forderung ist es Aufgabe der vorliegenden Erfindung, einen Stahl zu schaffen, der das Anforderungsprofil erfüllt und die aufgeführten Nachteile vermeidet.
- Diese Aufgabe wird gelöst durch die Verwendung eines Stahls bestehend aus :
max. 0,02 % C
max. 1,0 % Si
max. 1,0 % Mn
max. 0,045 % P
max. 0,030 % S
14,5 bis 16,0 % Cr
max. 0,5 % Ni
max. 0,5 % Mo
max. 0,020 % N
0,4 bis 1,0 % Nb
0,2 bis 1,0 % Ti
0,10 bis 0,50 % Zr - Rest Eisen und unvermeidbare Verunreinigungen in Form von warm- und/oder kaltgewalztem Band mit guten Umform- und Schweißeigenschaften als Werkstoff zur Herstellung von korrosionsbeständigen Bauteilen, die bei Temperaturen bis 950 °C eingesetzt werden, insbesondere von Abgasanlagen, wie Auspuffanlagen für Verbrennungsmotoren oder von Mänteln oder von Anschlußrohren für Abgaskatalysatoren.
- Bevorzugt weist der erfindungsgemäß zu verwendende Stahl die folgende Zusammensetzung auf:
0,012 bis 0,018 % C
0,40 bis 0,60 % Si
0,40 bis 0,60 % Mn
max. 0,035 % P
max. 0,010 % S
15,0 bis 16,0 % Cr
max. 0,016 % N
0,4 bis 0,7 % Nb
0,4 bis 0,7 % Ti
0,2 bis 0,3 % Zr
Rest Eisen und übliche erschmelzungsbedingte Verunreinigungen. - Bevorzugt wird der Stahl als Werkstoff für die Herstellung von Abgasanlagen, insbesondere von Auspuffanlagen für Verbrennungsmotoren genutzt. Er kann bevorzugt auch zur Herstellung der Mantel- und Anschlußrohre verwendet werden, die zum Abgaskatalysator gehören. Der erfindungsgemäß zu verwendende Stahl bietet aufgrund seiner Zusammensetzung und seines ferritischen Gefüges folgende Vorteile:
- Er ist im Strang vergießbar (stranggußfähig).
- Er zeigt ein gutes, problemloses Verhalten bei der Warm-Breitbandwalzung und bei der Herstellung geringer Warmbanddicken.
- Er zeigt ein gutes Kaltverarbeitungsverhalten auf allen für nichtrostende Stähle üblichen Anlagen. Für besonders kritische Unformoperationen kann es sinnvoll sein, vor der üblichen Warmbandentzunderung eine Glühung bei rund 980 ° C durchzuführen, doch ist es eine weitere vorteilhafte Eigenschaft des erfindungsgemäßen Stahles, daß für den überwiegenden Teil der Anwendungsfälle auf diese Glühung verzichtet werden kann.
- Der Stahl verfügt über gute Rekristallisations-Eigenschaften, die Entstehung von Grobkorngefüge beim Einsatz der Auspuffanlage wird jedoch gleichzeitig in Grenzen gehalten.
- Mit dem erfindungsgemäß zu verwendenden Stahl ist somit ein Werkstoff gefunden, der für Bauteile geeignet ist, die bei Temperaturen bis 950 °C eingesetzt werden, und der sich gleichzeitig wegen seiner guten Korrosions-Eigenschaften für den hinteren Bereich einer Abgasanlage eignet. Entscheidend für die guten Eigenschaften des erfindungsgemäßen Stahls ist die gleichzeitige Zugabe der Elemente Niob, Titan und Zirkonium in dem beanspruchten Legierungsverhältnis.
- Im folgenden wird die Erfindung näher erläutert:
In Figur 1 ist für Stähle der erfindungsgemäß zu verwendenden Zusammensetzung (Kurve A) im Vergleich zu bekannten Stählen
anhand von Zunderverlustkurven (Metallverlust durch Verzunderung in g/m²h in Abhängigkeit der jeweiligen Temperatur in °C) das Verzunderungsverhalten dargestellt (Vergleiche dazu DE-Fachbuch, Werkstoffkunde Stahl, Band 2, 1985, Springer Verlag, Seite 436). - Die Prüfung erfolgte im 120 h-Versuch mit Abkühlung an Luft je 24 h gemäß den Richlinien des Vereins Deutscher Eisenhüttenwerke.
Ein Stahl gilt vereinbarungsgemäß bei einer bestimmten Temperatur als zunderbeständig, wenn das Gewicht der abgezunderten Metallmenge bei dieser Temperatur rund 1 g/m²h und bei einer um 50°C höheren Temperatur rund 2 g/m²h nicht überschreitet.
Man erkennt, daß der erfindungsgemäß zu verwendende Stahl(A) eine dem wesentlich teureren austenititischen Chrom-Nickel-Stahl (D) vergleichbare Zunderverlustkurve aufweist. Beide Stähle ertragen eine Temperaturbeanspruchung um 950 °C Der 11 %-Chrom-Stahl (B) ist der Temperaturbeanspruchung bis 950 °C keineswegs gewachsen.
Auch der 17 %-Chrom-Stahl (C) ist dem Stahl (A) im Hinblick auf die Zunderbeständigkeit unterlegen. - In Tafel 1 sind die Wärmeausdehnungskoeffizienten der untersuchten Stähle A (erfindungsgemäß), B, C, und D (Vergleichsstähle) wiedergegeben.
Man erkennt, daß der erfindungsgemäß zu verwendende Stahl A im Rahmen der bekannten ferritischen Stähle B und C liegt, jedoch einen wesentlich geringeren Ausdehnungskoeffizienten aufweist als der austenitische Stahl D. - Herstellung und Weiterverarbeitung des Stahls sind im folgenden Beispiel beschrieben:
- Ein Stahl der Zusammensetzung
- 0,015 %
- C
- 0,51 %
- Si
- 0,48 %
- Mn
- 0,034 %
- P
- 0,004 %
- S
- 15,38 %
- Cr
- 0,19 %
- Ni
- 0,13 %
- Mo
- 0,016 %
- N
- 0,52 %
- Nb
- 0,53 %
- Ti
- 0,26 %
- Zr
- Rest Eisen und erschmelzungsbedingte Verunreinigungen wurde im AOD-Verfahren erschmolzen.
Das Verhältnis Niob : Titan : Zirkonium betrug 2 : 2,04 : 1 die Summe der Elemente Niob, Titan und Zirkonium betrug 1,31 %.
Der Stahl wurde im Strang zu Brammen vergossen, die anschließend zu Warmband ausgewalzt wurden. Ein Band wurde entzundert, kaltgewalzt und in einem offenen Durchziehofen bei rund 980 °C geglüht, gebeizt und anschließend leicht nachgewalzt (dressiert). Aus diesem Kaltband, Ausführung IIIc gemäß DIN 17 441, wurden bei einem Weiterverarbeiter Auspuffanlagen mit Abgaskatalysator hergestellt. Bei der Herstellung von Rohren sowie beim Tiefziehen der Katalysatorteile und beim anschließenden Zusammenschweißen der Anlage traten keine Besonderheiten auf. - Diese Auspuffanlage aus dem beanspruchten Stahl wurde im Vergleich zu einer konventionellen Auspuffanlage, deren vorderer Bereich einschließlich Katalysator aus austenitischem Stahl Werkstoff-Nr. 1.4878 hergestellt worden war und zur Kompensation der starken Wärmeausdehnung entsprechende Kompensatoren enthielt, während der hintere Bereich, wie bisher üblich, aus ferritischem Stahl, Werkstoff-Nr. 1.4512 bestand, im Labor- und Praxisversuch getestet. Das Verhalten im vorderen Hochtemperatur-Bereich war bei beiden Werkstoffen einwandfrei. Im hinteren kälteren Bereich der Abgasanlage zeigten sich beim erfindungsgemäß zu verwendenden Stahl keine nennenswerten Korrosionsangriffe, während der Werkstoff 1.4512 deutliche Schäden, vor allem durch lochartigen Korrosionsangriff, aufwies.
- Ein zweites Band wurde im offenen Durchziehofen bei rund 980 °C geglüht und entzundert. Nach der Kaltwalzung erfolgte zur weiteren Verbesserung der Umformeigenschaften des kaltgewalzten Bandes eine Rekristallisationsglühung in einem Durchlaufofen bei rund 980 °C unter Blankglühatmosphäre Dieses Band, Zustand IIId, gemäß DIN 17 441, wurde bei einem anderen Auspuffhersteller zu einer Auspuffanlage mit Katalysator verarbeitet und getestet. Die Testergebnisse bestätigten auch in diesem Fall die guten Hochtemperatur- und Korrosions-Eigenschaften des erfindungsgemäß zu verwendenden Stahls.
Claims (4)
- Verwendung eines Stahls, bestehend aus (in Gew.-%):
max. 0,02 % C
max. 1,0 % Si
max. 1,0 % Mn
max. 0,045 % P
max. 0,030 % S
14,5 bis 16,0 % Cr
max. 0,5 % Ni
max. 0,5 % Mo
max. 0,020 % N
0,4 bis 1,0 % Nb
0,2 bis 1,0 % Ti
0,10 bis 0,50 % Zr
Rest Eisen und übliche erschmelzungsbedingte Verunreinigungen, wobei das Verhältnis Niob : Titan : Zirkonium = 2,0 bis 3,5 : 2,0 bis 3,5 : 1,0 bis 1,5 ist und die Summe der Elemente Niob, Titan und Zirkonium höchstens 1,8 % beträgt,
in Form von warm- und/oder kaltgewalztem Band mit guten Umform- und Schweißeigenschaften als Werkstoff zur Herstellung von korrosionsbeständigen Bauteilen, die bei Temperaturen bis 950 °C eingesetzt werden. - Verwendung eines Stahls bestehend aus (in Gew.-%):
0,012 bis 0,018 % C
0,40 bis 0,60 % Si
0,40 bis 0,60 % Mn
max. 0,035 % P
max. 0,010 % S
15,0 bis 16,0 % Cr
max. 0,016 % N
0,4 bis 0,7 % Nb
0,4 bis 0,7 % Ti
0,2 bis 0,3 % Zr
Rest Eisen und übliche erschmelzungsbedingte Verunreinigungen
für den Zweck nach Anspruch 1. - Verwendung eines Stahls nach Anspruch 1 oder 2 als Werkstoff zur Herstellung von Abgasanlagen, insbesondere von Auspuffanlagen für Verbrennungsmotoren.
- Verwendung eines Stahls nach Anspruch 1 oder 2 als Werkstoff zur Herstellung von Mänteln oder von Anschlußrohren für Abgaskatalysatoren.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3911104 | 1989-04-06 | ||
DE3911104A DE3911104C1 (de) | 1989-04-06 | 1989-04-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0391054A1 EP0391054A1 (de) | 1990-10-10 |
EP0391054B1 true EP0391054B1 (de) | 1993-05-05 |
Family
ID=6377972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90103396A Revoked EP0391054B1 (de) | 1989-04-06 | 1990-02-22 | Verwendung eines hitzebeständigen Stahls für korrosionsbeständige Bauteile |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0391054B1 (de) |
DE (2) | DE3911104C1 (de) |
ES (1) | ES2041454T3 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993021356A1 (en) * | 1992-04-09 | 1993-10-28 | Nippon Steel Corporation | Ferritic stainless steel with excellent high-temperature salt injury resistance and high-temperature strength |
DE4421874C1 (de) * | 1994-06-23 | 1995-05-24 | Daimler Benz Ag | Stahlblechgehäuse für eine Abgasanlage einer Brennkraftmaschine |
FR2744137B1 (fr) * | 1996-01-25 | 1998-04-24 | Ecia Equip Composants Ind Auto | Utilisation d'un acier inoxydable ferritique pour la fabrication par hydroformage d'un soufflet deformable elastiquement et soufflet obtenu |
FR2798394B1 (fr) | 1999-09-09 | 2001-10-26 | Ugine Sa | Acier ferritique a 14% de chrome stabilise au niobium et son utilisation dans le domaine de l'automobile |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3139358A (en) * | 1961-06-14 | 1964-06-30 | Allegheny Ludlum Steel | Method of preventing ribbing and roping |
DE2334462A1 (de) * | 1972-07-07 | 1974-01-24 | Nippon Steel Corp | Waermebestaendige fe-cr-al-legierungsstaehle mit oxidationswiderstandsfaehigkeit |
JPS5360814A (en) * | 1976-11-12 | 1978-05-31 | Sumitomo Metal Ind Ltd | Heat resisting ferritic stainless steel with excellent weldability |
US4261739A (en) * | 1979-08-06 | 1981-04-14 | Armco Inc. | Ferritic steel alloy with improved high temperature properties |
FR2589482B1 (fr) * | 1985-11-05 | 1987-11-27 | Ugine Gueugnon Sa | Tole ou bande en acier ferritique inoxydable, en particulier pour systemes d'echappement |
US4834808A (en) * | 1987-09-08 | 1989-05-30 | Allegheny Ludlum Corporation | Producing a weldable, ferritic stainless steel strip |
-
1989
- 1989-04-06 DE DE3911104A patent/DE3911104C1/de not_active Expired - Fee Related
-
1990
- 1990-02-22 EP EP90103396A patent/EP0391054B1/de not_active Revoked
- 1990-02-22 ES ES199090103396T patent/ES2041454T3/es not_active Expired - Lifetime
- 1990-02-22 DE DE9090103396T patent/DE59001337D1/de not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE3911104C1 (de) | 1990-11-29 |
EP0391054A1 (de) | 1990-10-10 |
DE59001337D1 (de) | 1993-06-09 |
ES2041454T3 (es) | 1993-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2265686C2 (de) | Verwendung einer Nickel-Chrom-Legierung | |
DE60204323T2 (de) | Ferritischer nichtrostender stahl für ein element einer abgasstrompassage | |
DE3029658C2 (de) | ||
WO1991014796A1 (en) | Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance | |
DE102007062417A1 (de) | Austenitische warmfeste Nickel-Basis-Legierung | |
DE69015140T2 (de) | Hitzebeständiger austenitischer rostfreier Stahl. | |
DE69108821T2 (de) | Rasch erstarrte Eisen-Chrom-Aluminium-Legierungsfolien mit hoher Oxydationsbeständigkeit. | |
DE69317070T2 (de) | Feinbleche und Folie aus ferritisches rostfreies Stahl und Verfahren zu ihrer Herstellung | |
DE69230688T2 (de) | Sehr hitzebeständiger träger für autokatalysator | |
DE69837055T2 (de) | Ferritischer,wärmebeständiger Stahl und Verfahren zur Herstellung | |
DE69221096T2 (de) | Auspuffkrümmer | |
DE69525730T2 (de) | Chromstahlplatte mit hervorragender pressbarkeit | |
DE69110372T2 (de) | Hitzebeständiger austenitischer Gussstahl und daraus hergestellte Bauteile eines Auspuffsystems. | |
DE60303472T2 (de) | Ferritischer rostfreier Stahl für Auspuffteile mit einer guten Verformbarkeit, einer guten Festigkeit bei hohen Temperaturen, einer guten Oxidationsbeständigkeit und mit einer guten Zähigkeit bei niedrigeren Temperaturen | |
EP0752481B1 (de) | Knetbare Nickellegierung | |
AT399165B (de) | Legierung auf chrombasis | |
DE19748149B4 (de) | Verwendung einer Nickelbasis-Legierung | |
EP0391054B1 (de) | Verwendung eines hitzebeständigen Stahls für korrosionsbeständige Bauteile | |
DE69500714T2 (de) | Heissgewalzter ferritischer Stahl für eine Kraftfahrzeug-Abgasanlage | |
DE68923816T2 (de) | Wärmebehandlung korrosionsbeständiger Stähle. | |
DE69332505T2 (de) | Rostfreier ferritischer stahl mit hervorragenden hochtemperaturkorrosionseigenschaften und zunderadhesion | |
EP2703508B1 (de) | Gegen interkristalline Korrosion beständige Aluminiumlegierung | |
DE69213533T2 (de) | Hitzebeständiger Gussstahl, Verfahren zu seiner Herstellung und daraus hergestellte Abgasanlageteile | |
DE69021692T2 (de) | Hitzestabile Edelstahlfolie für Katalysatorträger in Verbrennungsabgasreinigern. | |
DE69216176T2 (de) | Hitzebeständiger ferritischer Gussstahl und daraus hergestellte Bauteile einer Abgasanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19900906 |
|
17Q | First examination report despatched |
Effective date: 19920918 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT SE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930512 |
|
REF | Corresponds to: |
Ref document number: 59001337 Country of ref document: DE Date of ref document: 19930609 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19940202 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19940209 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940210 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19940216 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19940225 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26N | No opposition filed | ||
26 | Opposition filed |
Opponent name: UGINE S.A. Effective date: 19940203 |
|
ITPR | It: changes in ownership of a european patent |
Owner name: CESSIONE;KRUPP HOESCH STAHL AG |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
EUG | Se: european patent has lapsed |
Ref document number: 90103396.9 Effective date: 19950322 |
|
27W | Patent revoked |
Effective date: 19941015 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 941015 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: KRUPP HOESCH STAHL AG. |