EP0390033B1 - Process and apparatus for roughening a support for photosensitive layers - Google Patents

Process and apparatus for roughening a support for photosensitive layers Download PDF

Info

Publication number
EP0390033B1
EP0390033B1 EP90105701A EP90105701A EP0390033B1 EP 0390033 B1 EP0390033 B1 EP 0390033B1 EP 90105701 A EP90105701 A EP 90105701A EP 90105701 A EP90105701 A EP 90105701A EP 0390033 B1 EP0390033 B1 EP 0390033B1
Authority
EP
European Patent Office
Prior art keywords
phase
current
electrodes
frequency
alternating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90105701A
Other languages
German (de)
French (fr)
Other versions
EP0390033A1 (en
Inventor
Joachim Dipl.-Ing Stroszynski
Peter Dr. Dipl.-Chem. Lehmann
Heinz Dipl.-Ing. Börgerding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0390033A1 publication Critical patent/EP0390033A1/en
Application granted granted Critical
Publication of EP0390033B1 publication Critical patent/EP0390033B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/04Etching of light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/034Chemical or electrical pretreatment characterised by the electrochemical treatment of the aluminum support, e.g. anodisation, electro-graining; Sealing of the anodised layer; Treatment of the anodic layer with inorganic compounds; Colouring of the anodic layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S204/00Chemistry: electrical and wave energy
    • Y10S204/09Wave forms

Definitions

  • the invention relates to a method for roughening a support for light-sensitive layers, the surface of which is roughened mechanically and subsequently electrochemically in an aqueous electrolyte bath by applying a three-phase or alternating current to the electrodes opposite the support.
  • Such supports are used for the production of presensitized printing plates, the material of the supports which are processed in plate or tape form being a metal, in particular aluminum.
  • aluminum strips for the production of printing plates are roughened mechanically, electrochemically or in a combination of a mechanical and electrochemical roughening process.
  • the aim is that the aluminum surface used for the water flow and the adhesion of the light-sensitive layer has a certain structure and uniformity.
  • the surface structures have pyramid-like shapes
  • electrochemically roughened aluminum surfaces have a sponge-like structure with many cups and depressions.
  • Mechanical roughening has the advantage of a smaller specific energy consumption per square meter surface compared to purely electrochemical roughening of the support, but the disadvantage of a surface that is too coarse, on which crystalline structures are also present in addition to the pyramidal structures.
  • Mechanical roughening processes are generally grain processes, such as wire or brush grain, or emery grinding, while the electrochemical roughening is generally carried out by electrolytic etching in an aqueous electrolyte solution.
  • German patent 19 62 728 describes a process for the continuous production of a lithographic surface on a metal strip by wet grinding and electrochemical treatment in an electrolyte, in which the electrolyte is used to wet the metal surface during the grinding and the electrochemical treatment is carried out immediately afterwards the grinding is carried out.
  • a fine-grained abrasive is suspended in the electrolyte, and the abrasive suspension is blasted onto the moving belt in a wide jet that extends over the entire width of the metal belt.
  • the electrolyte is, for example, an aqueous acidic or aqueous alkaline bath.
  • the aluminum plate is first roughened by grinding with a moist emery compound, and after rinsing and optionally cleaning the plate, the grained surface of the aluminum plate anodized in a sulfuric acid solution with direct current at a voltage in the range of approximately 10 to 20 V and a current density in the range of approximately 1 to 2.2 A / dm 2. Finally, the grained and anodized surface of the aluminum plate is treated with a primer to improve the bonding of the light-sensitive layer to be applied to the surface with the carrier material.
  • DE-AS 26 50 762 discloses a method for the electrolytic graining of aluminum substrates for lithography by means of alternating current in an electrolyte essentially containing hydrochloric acid or nitric acid, an alternating voltage being applied in this method, the anode voltage of which is greater than the cathode voltage and that Ratio of the cathodic coulombic input to the anodic coulombic input is less than 1.
  • the anodic half period of the alternating current is set equal to or less than the cathodic half period.
  • the diameter and the depth of the pores or holes in the surface of the aluminum substrate can be adjusted as desired by selecting a suitable ratio of the cathodic to the anodic coulombic input, determined by the voltage setting.
  • the frequency of the regulated alternating current is not limited to the usual alternating current frequency range, ie 50 to 60 Hz. With higher frequencies, finer pores are obtained on the grained surface.
  • German patent 30 12 135 describes a method for producing a support for lithographic printing plates, in which the surface of an aluminum plate is mechanically roughened by wet grinding, aluminum is chemically etched from the surface of the plate and then an electric current with a waveform that by alternating polarity is applied to the plate in an acidic aqueous solution so that the ratio of the amount of charge formed with the plate as the anode to the amount of charge formed with the plate as the cathode is 0.5 / 1 to 1.0 / 1 lies.
  • the electrolysis is carried out so that the current density, if the plate is the anode, is not less than 20 A / dm2 and the amount of charge formed with the plate as the anode is 200 coulombs / dm2 or less, and the anode and cathode voltages at 1 up to 50 V. Finally, the plate is subjected to anodic surface oxidation.
  • the aim is to combine the advantages of both processes. It is expected that the mechanically roughened surface of the metal carrier will be finely overlaid by wells and depressions which are caused by the electrochemical roughening. However, it is shown in an undesirable manner that, in addition to the pyramidal structures of the mechanical roughening, relatively large holes occur which are caused by the electrochemical roughening. Around To achieve reasonably usable results, the mechanical roughening must be followed by a disproportionately high level of electrochemical roughening, as a result of which the power consumption increases very sharply, due to the holes that arise in the electrochemical roughening. The cause of the holes are too high and too long a current, which on the other hand is necessary to make the distribution of the holes very even.
  • the object of the invention is to improve a method of the type described above in such a way that the surface of a carrier moving at high working speed for photosensitive layers is roughened mechanically and electrochemically in such a way that the electrochemical roughening superimposed on the mechanical pyramidal roughened surface of the carrier consists of uniformly and finely distributed wells and depressions, and has no holes or visible cross-cuts.
  • This object is achieved by a method according to the preamble of claim 1 in such a way that the frequency of the three-phase or alternating current is chosen to be greater than or equal to 50 Hz to 300 Hz and that the frequency is set higher with increasing transport speed of the carrier through the electrolytic bath.
  • the carrier is moved through the electrolytic bath at a constant speed between 50 and 150 m / min, and the three-phase or alternating current frequency is chosen such that a distance t of the electrical cross-shocks on the carrier surface, which in time with the polarity changes of the rotational or Alternating current are formed, less than or equal to 15 mm.
  • the distance t of the electrical cross-shocks on the carrier surface is in the range from 3 to 15 mm chosen.
  • the distance t between the cross-passages is reduced to such an extent that there is a uniform appearance on the surface of the carrier.
  • the frequency of the current can be raised to 300 Hz, for example.
  • the distance is t the electrical cross-cuts then on the carrier surface at a three-phase or alternating current frequency of 300 Hz less than or equal to 6 mm.
  • the current density of the electrodes which are immersed in the aqueous electrolyte bath is 5 to 50% of the current density of the electrodes which are operated at a three-phase or alternating current frequency of 50 Hz for the purely electrochemical roughening.
  • the current density of the electrodes is 10 to 20% of the current density of the electrodes which are operated at a three-phase or alternating current frequency of 50 Hz for purely electrochemical roughening, and this first-mentioned current density is in the range from 250 to 1400 A / m 2.
  • the device for carrying out the method comprises electrodes in the electrolyte bath, with the secondary side are connected to a first three-phase transformer, the primary side of which is connected to a regulating and a power transformer for three-phase current via a three-phase frequency converter.
  • the three-phase frequency converter converts the mains frequency of the three-phase current in a range of greater than or equal to 50 to 300 Hz, at a voltage between 1 to 380 V for the individual phases of the three-phase current, which are fed in via lines.
  • the three-phase transformer is connected in a star or delta connection.
  • further electrodes in an electrolyte bath are connected to the secondary side of a second three-phase transformer, the primary side of which is connected to three-phase current via a three-phase control and a power transformer.
  • the second three-phase transformer is also connected in a star or delta connection.
  • the further electrodes are arranged at the beginning and / or at the end of the electrolyte bath, and the three-phase control transformer is fed with three-phase current at mains frequency via lines.
  • alternating current is used instead of three-phase current, and one pair of electrodes in an electrolyte bath is connected to the secondary side of an alternating current transformer, and the primary side of each alternating current transformer is connected to alternating current via an alternating current frequency converter.
  • Each of the AC frequency converters works in a frequency range greater than or equal to 50 Hz to 300 Hz, at a voltage of 1 to 380 V of the AC current.
  • the device shown schematically in FIG. 1 consists of an electrolyte bath 1, the electrolyte of which, for example dilute aqueous sulfuric, nitric or hydrochloric acid.
  • a carrier 2 in the form of a tape moves in the running direction A through the electrolyte bath 1.
  • Only the device for electrochemical roughening of the surface of the carrier 2 is shown in FIG. 1, but not the parts of the device or system in which the mechanical roughening of the carrier surface is carried out becomes.
  • Such system or device parts are shown and described in detail in German Offenlegungsschrift 19 62 729 and German Patent 19 62 728.
  • electrodes 3, 4 and 5 are arranged in the electrolyte bath 1, which electrodes are connected to three windings of the secondary side of a first three-phase transformer 6, which are not described in more detail.
  • the corresponding three windings on the primary side of the three-phase transformer 6 are connected to a three-phase frequency converter 7, which is connected via lines L1, L2 and L3 to regulating transformers, not shown, which are fed by a common power transformer for three-phase current.
  • the three-phase frequency converter 7 makes it possible to convert the three-phase current fed in at the mains frequency of 50 Hz into a three-phase current in the frequency range greater than / equal to 50 Hz to 300 Hz.
  • the frequency of the three-phase current is chosen to be greater than the mains frequency of 50 Hz, and with increasing transport speed of the carrier 2 through the electrolyte bath 1, the frequency converted is also set higher.
  • the carrier 2 passes through the electrolyte bath 1 generally at a constant speed, which can be chosen between 50 to 150 m / min.
  • the device according to the invention is operated to equalize these cross-cuts so that the freely selectable parameters, namely the transport speed of the carrier 2 and the frequency of the current applied to the electrodes 3, 4 and 5, are chosen so that the distance t of the cross-cuts is less than or equal to 15 mm, in particular 6 mm.
  • the current density of the electrodes 3, 4 and 5 is 5 to 50%, in particular 10 to 20% of the current density of the electrodes which are operated at a three-phase or alternating current frequency of 50 Hz for the purely electrochemical roughening.
  • the current density of electrodes 3, 4 and 5 is in the range of 250 to 1400 A / m2.
  • the carrier 2 is rinsed, for example, without intermediate pickling and is electrochemically anodized.
  • the currents fed to the three-phase frequency converter 7 have voltages which are in the range from 1 to 380 V, and are transformed in terms of voltage such that the voltages applied to the electrodes 3, 4 and 5 are between 20 and 50 V, in particular 35 V.
  • the embodiment of the device according to FIG. 2 comprises an electrolyte bath 11 through which the carrier 2 is transported.
  • the electrodes 3, 4 and 5 there are further electrodes 8, 9 and 10 in the electrolyte bath 11, which may contain an electrolyte of the same consistency as the electrolyte bath 1 of the embodiment according to FIG. 1.
  • the running direction of the carrier 2 is not shown in FIG. 2, since it can move either from left to right or from right to left.
  • the electrodes 8, 9 and 10 are arranged at the end of the electrolyte bath in the direction of movement from left to right and the electrodes 8, 9, 10 are located at the beginning of the electrolyte bath 11 in the opposite direction of movement of the support 2.
  • the electrodes 8, 9 and 10 are connected to the corresponding windings of the secondary side of a second three-phase transformer 13, which are not described in more detail.
  • the corresponding windings on the primary side of the second Three-phase transformers 13 are connected to three-phase current via a three-phase control transformer 12 and a power transformer, not shown.
  • the second three-phase transformer 13 is connected in a star or delta connection.
  • the three-phase control transformer 12 is connected to the power transformer (not shown) via lines L1, L2 and L3.
  • the three-phase control transformer 12 is fed with three-phase current at mains frequency, ie at 50 Hz, via lines L1, L2 and L3; frequency conversion, as in the case of electrodes 3, 4 and 5, does not take place.
  • a further three electrodes can be arranged in a correspondingly larger electrolyte bath 11 to the left of electrodes 3, 4 and 5.
  • Such a construction boils down to the fact that both at the beginning and at the end of an extended electrolyte bath 11 there is a set of three electrodes which are supplied with three-phase current at the mains frequency, while the middle set of electrodes 3, 4 and 5 with three-phase current is higher Frequency is operated as the network frequency.
  • the electrodes 3, 4 and 5 it is preferably possible for the electrodes 3, 4 and 5 to be arranged at the beginning or at the end of the electrolyte bath and with the electrodes 8, 9 and 10, which then lie behind or in front of the electrodes 3, 4 and 5 are working together.
  • the third embodiment of the device according to the invention differs from the first embodiment according to FIG. 1 in that instead of the individual electrodes, which are charged with three-phase current higher than the mains frequency, electrode pairs 14, 15; 16, 17 and 18, 19 are present in an electrolytic bath 20, through which the carrier 2 runs in the running direction A.
  • the electrolyte in the electrolyte bath 20 has the same composition as was described with reference to FIG. 1.
  • One of the electrode pairs 14, 15; 16, 17 and 18, 19 is connected to the secondary side of an associated AC transformer 21, 22 and 23, respectively. On the primary side, each alternating current transformer is connected to alternating current via an alternating current frequency converter 24, 25 and 26.
  • the alternating current is fed in via lines L1, L2 of the frequency converter 24, lines L2, L1 of the frequency converter 25 and lines L1, L2 of the frequency converter 26.
  • the symbols L1 and L2 stand for the two phase lines for alternating current.
  • the electrochemical roughening takes place in accordance with the so-called center conductor method, ie the alternating current circuit of the one pair of electrodes 14, 15 is closed via the electrolyte of the electrolyte bath 20, the section of the carrier 2 located below the two electrodes 14, 15 and the secondary winding of the alternating current transformer 21.
  • Each of the AC frequency converters 24, 25, 26 is operated in a frequency range greater than / equal to 50 Hz to 300 Hz, at a voltage of 1 to 380 V of the AC current.
  • the fourth embodiment of the device shown in FIG. 4 comprises an electrolyte bath 31 through which the carrier 2 is transported. Similar to the embodiment according to FIG. 2, the running direction of the carrier 2 is not shown in FIG. 4, since the carrier 2 can move through the electrolyte bath 31 either from left to right or from right to left.
  • further electrode pairs 27, 28 and 29, 30 are present in the electrolyte bath 31.
  • These pairs of electrodes are connected to the windings on the secondary sides of alternating current transformers 32 and 33, which are fed on the primary side via alternating current regulating transformers 34 and 35 with mains frequency alternating current.
  • the electrode pairs 14, 15; 16, 17; 18, 19 are arranged either at the beginning or at the end of the electrolyte bath 31.
  • the fed AC currents regardless of whether they are frequency-converted or have a mains frequency, have a voltage level in the range from 1 to 380 V.
  • the frequency conversion of the mains frequency of the AC currents fed in is in the range from / greater than or equal to 50 Hz to 300 Hz
  • Alternating current applied electrodes is 5 to 50%, in particular 10 to 20% of the current density at the electrodes for the purely electrochemical roughening.
  • a superimposition of the mechanically roughened surface of the carrier 2 is achieved, for example by wet brushing with a suspension of pumice and / or quartz powder, by means of electrochemical roughening, the current frequencies of the three-phase or alternating currents applied to the electrodes being im are generally much higher than 50 Hz.
  • a roughening pattern that is optically free of transversal impact, a fine superimposition of the mechanically roughened surface of the carrier by the electrochemically generated roughening, lower specific power consumption and a very high working speed for the carrier, up to 150 m / min, are achieved.
  • the roughness of the mechanically roughened surface of the carrier is considerably greater than the roughness that is obtained by the electrochemical roughening.
  • the surface of the support is comparatively light, and the printing plate produced with such a support shows no color fog after development.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Aufrauhen eines Trägers für lichtempfindliche Schichten, dessen Oberfläche mechanisch und anschließend elektrochemisch in einem wäßrigen Elektrolytbad durch Anlegen eines Dreh- oder Wechselstroms an die dem Träger gegenüberliegenden Elektroden aufgerauht wird.The invention relates to a method for roughening a support for light-sensitive layers, the surface of which is roughened mechanically and subsequently electrochemically in an aqueous electrolyte bath by applying a three-phase or alternating current to the electrodes opposite the support.

Derartige Träger werden für die Herstellung vorsensibilisierter Druckplatten verwendet, wobei das Material der Träger, die in Platten- oder Bandform verarbeitet werden, ein Metall ist, insbesondere Aluminium. Die Aufrauhung von beispielsweise Aluminiumbändern für die Herstellung von Druckplatten erfolgt mechanisch, elektrochemisch oder in Kombination eines mechanischen und elektrochemischen Aufrauhverfahrens. Dabei wird angestrebt, daß die für die Wasserführung und die Haftung der lichtempfindlichen Schicht benutzte Aluminiumoberfläche eine bestimmte Struktur und Gleichmäßigkeit aufweist. Beim mechanischen Aufrauhen besitzen die Oberflächenstrukturen pyramidenähnliche Formen, während elektrochemisch aufgerauhte Aluminiumoberflächen eine schwammartige Struktur mit vielen Näpfchen und Vertiefungen haben.Such supports are used for the production of presensitized printing plates, the material of the supports which are processed in plate or tape form being a metal, in particular aluminum. For example, aluminum strips for the production of printing plates are roughened mechanically, electrochemically or in a combination of a mechanical and electrochemical roughening process. The aim is that the aluminum surface used for the water flow and the adhesion of the light-sensitive layer has a certain structure and uniformity. When mechanically roughened, the surface structures have pyramid-like shapes, while electrochemically roughened aluminum surfaces have a sponge-like structure with many cups and depressions.

Die mechanische Aufrauhung hat gegenüber der rein elektrochemischen Aufrauhung den Vorteil des kleineren spezifischen Energieverbrauchs je Quadratmeter Oberfläche des Trägers, jedoch den Nachteil einer zu groben Oberfläche, auf der neben den pyramidalen Strukturen noch kristalline Strukturen vorhanden sind.Mechanical roughening has the advantage of a smaller specific energy consumption per square meter surface compared to purely electrochemical roughening of the support, but the disadvantage of a surface that is too coarse, on which crystalline structures are also present in addition to the pyramidal structures.

Mechanische Aufrauhverfahren sind im allgemeinen Körnungsverfahren, wie Draht- oder Bürstenkörnung, oder Schmirgelschleifen, während die elektrochemische Aufrauhung im allgemeinen durch eine elektrolytische Ätzung in einer wäßrigen Elektrolytlösung erfolgt.Mechanical roughening processes are generally grain processes, such as wire or brush grain, or emery grinding, while the electrochemical roughening is generally carried out by electrolytic etching in an aqueous electrolyte solution.

In dem deutschen Patent 19 62 728 ist ein Verfahren zum kontinuierlichen Erzeugen einer lithographischen Oberfläche auf einem Metallband durch Naßschleifen und elektrochemische Behandlung in einem Elektrolyten beschrieben, bei dem man zum Nässen der Metalloberfläche während des Schleifens den Elektrolyten verwendet und die elektrochemische Behandlung im unmittelbaren Anschluß an das Schleifen durchgeführt wird. Dazu ist in dem Elektrolyten ein feinkörniges Schleifmittel suspendiert, und die Schleifmittelsuspension wird in einem über die gesamte Breite des Metallbandes sich erstreckenden Breitstrahl auf das bewegte Band aufgestrahlt. Der Elektrolyt ist beispielsweise ein wäßriges saures oder wäßriges alkalisches Bad.German patent 19 62 728 describes a process for the continuous production of a lithographic surface on a metal strip by wet grinding and electrochemical treatment in an electrolyte, in which the electrolyte is used to wet the metal surface during the grinding and the electrochemical treatment is carried out immediately afterwards the grinding is carried out. For this purpose, a fine-grained abrasive is suspended in the electrolyte, and the abrasive suspension is blasted onto the moving belt in a wide jet that extends over the entire width of the metal belt. The electrolyte is, for example, an aqueous acidic or aqueous alkaline bath.

Bei dem in der DE-OS 21 30 391 beschriebenen Körnungsverfahren wird die Aluminiumplatte zunächst durch Schleifen mit einer feuchten Schmirgelmasse aufgerauht, und nach dem Spülen und gegebenenfalls Reinigen der Platte wird die gekörnte Oberfläche der Aluminiumplatte in einer Schwefelsäurelösung mit Gleichstrom bei einer Spannung im Bereich von etwa 10 bis 20 V und einer Stromdichte im Bereich von etwa 1 bis 2,2 A/dm² gekörnter Oberfläche anodisiert. Zuletzt wird die gekörnte und anodisierte Oberfläche der Aluminiumplatte mit einer Grundiersubstanz zur Verbesserung der Bindung der auf die Oberfläche aufzubringenden lichtempfindlichen Schicht mit dem Trägermaterial behandelt.In the graining process described in DE-OS 21 30 391, the aluminum plate is first roughened by grinding with a moist emery compound, and after rinsing and optionally cleaning the plate, the grained surface of the aluminum plate anodized in a sulfuric acid solution with direct current at a voltage in the range of approximately 10 to 20 V and a current density in the range of approximately 1 to 2.2 A / dm 2. Finally, the grained and anodized surface of the aluminum plate is treated with a primer to improve the bonding of the light-sensitive layer to be applied to the surface with the carrier material.

Aus der DE-AS 26 50 762 ist ein Verfahren zur elektrolytischen Körnung von Aluminiumsubstraten für die Lithographie mittels Wechselstrom in einem im wesentlichen Chlorwasserstoffsäure oder Salpetersäure enthaltenden Elektrolyten bekannt, wobei bei diesem Verfahren eine Wechselspannung angelegt wird, deren Anodenspannung größer ist als die Kathodenspannung und das Verhältnis des kathodischen coulombischen Eingangs zu dem anodischen coulombischen Eingang kleiner als 1 ist. Die anodische Halbperiodenzeit des Wechselstroms wird gleich oder geringer als die kathodische Halbperiodenzeit eingestellt. Der Durchmesser und die Tiefe der Poren bzw. Löcher in der Oberfläche des Aluminiumsubstrats können beliebig eingestellt werden, indem ein geeignetes Verhältnis des kathodischen zu anodischen coulombischen Eingang, bestimmt durch die Spannungseinstellung, ausgewählt wird. Die Frequenz des regulierten Wechselstroms ist nicht auf den üblichen Wechselstromfrequenzbereich, d.h. 50 bis 60 Hz, beschränkt. Mit höheren Frequenzen werden feinere Poren auf der gekörnten Oberfläche erhalten.DE-AS 26 50 762 discloses a method for the electrolytic graining of aluminum substrates for lithography by means of alternating current in an electrolyte essentially containing hydrochloric acid or nitric acid, an alternating voltage being applied in this method, the anode voltage of which is greater than the cathode voltage and that Ratio of the cathodic coulombic input to the anodic coulombic input is less than 1. The anodic half period of the alternating current is set equal to or less than the cathodic half period. The diameter and the depth of the pores or holes in the surface of the aluminum substrate can be adjusted as desired by selecting a suitable ratio of the cathodic to the anodic coulombic input, determined by the voltage setting. The frequency of the regulated alternating current is not limited to the usual alternating current frequency range, ie 50 to 60 Hz. With higher frequencies, finer pores are obtained on the grained surface.

In der deutschen Patentschrift 30 12 135 ist ein Verfahren zur Herstellung eines Trägers für lithographische Druckplatten beschrieben, bei dem die Oberfläche einer Aluminiumplatte durch Naßschleifen mechanisch aufgerauht wird, Aluminium von der Oberfläche der Platte chemisch geätzt wird und anschließend ein elektrischer Strom mit einer Wellenform, die durch alternierende Änderung der Polarität erhalten wird, an die Platte in einer sauren wäßrigen Lösung so angelegt wird, daß das Verhältnis der mit der Platte als Anode gebildeten Ladungsmenge zu der mit der Platte als Kathode gebildeten Ladungsmenge bei 0,5/1 bis 1,0/1 liegt. Die Elektrolyse wird so durchgeführt, daß die Stromdichte, falls die Platte die Anode ist, nicht weniger als 20 A/dm² beträgt und die mit der Platte als Anode gebildete Ladungsmenge 200 Coulomb/dm² oder weniger beträgt, und die Anoden- und Kathodenspannungen bei 1 bis 50 V liegen. Zuletzt wird die Platte einer anodischen Oberflächenoxidation unterzogen.German patent 30 12 135 describes a method for producing a support for lithographic printing plates, in which the surface of an aluminum plate is mechanically roughened by wet grinding, aluminum is chemically etched from the surface of the plate and then an electric current with a waveform that by alternating polarity is applied to the plate in an acidic aqueous solution so that the ratio of the amount of charge formed with the plate as the anode to the amount of charge formed with the plate as the cathode is 0.5 / 1 to 1.0 / 1 lies. The electrolysis is carried out so that the current density, if the plate is the anode, is not less than 20 A / dm2 and the amount of charge formed with the plate as the anode is 200 coulombs / dm2 or less, and the anode and cathode voltages at 1 up to 50 V. Finally, the plate is subjected to anodic surface oxidation.

Bei der Kombination der mechanischen und der elektrochemischen Aufrauhung wird angestrebt, die Vorteile beider Verfahren miteinander zu verknüpfen. Dabei wird erwartet, daß die mechanisch aufgerauhte Oberfläche des Metallträgers durch Näpfchen und Vertiefungen, die durch die elektrochemische Aufrauhung entstehen, fein überlagert wird. Dabei zeigt sich jedoch in unerwünschter Weise, daß neben den pyramidalen Strukturen der mechanischen Aufrauhung relativ große Löcher auftreten, die durch die elektrochemische Aufrauhung entstehen. Um halbwegs brauchbare Ergebnisse zu erzielen, muß an die mechanische Aufrauhung eine unverhältnismäßig starke elektrochemische Aufrauhung anschließen, wodurch der Stromverbrauch sehr stark ansteigt, bedingt durch die entstehenden Löcher der elektrochemischen Aufrauhung. Die Ursache für die Löcher sind eine zu hohe und zu lange Stromeinwirkung, die andererseits wieder erforderlich ist, um die Verteilung der Löcher sehr gleichmäßig zu gestalten. Ebenso problematisch ist bei der Überlagerung der mechanisch aufgerauhten Oberfläche eines Metallträgers mit elektrochemischer Aufrauhung mittels Wechselstrom bei sehr hoher Arbeitsgeschwindigkeit des Metallträgers die Entstehung sogenannter elektrischer Querschläge im Takt der Wechselstromspannung, wobei diese Querschläge in Streifenform auf der Oberfläche des Metallträgers sichtbar sind. Die Ursache dieser störenden Querschläge ist aller Wahrscheinlichkeit nach der ständige Polaritätswechsel des an die Elektroden anliegenden Wechselstroms.When combining mechanical and electrochemical roughening, the aim is to combine the advantages of both processes. It is expected that the mechanically roughened surface of the metal carrier will be finely overlaid by wells and depressions which are caused by the electrochemical roughening. However, it is shown in an undesirable manner that, in addition to the pyramidal structures of the mechanical roughening, relatively large holes occur which are caused by the electrochemical roughening. Around To achieve reasonably usable results, the mechanical roughening must be followed by a disproportionately high level of electrochemical roughening, as a result of which the power consumption increases very sharply, due to the holes that arise in the electrochemical roughening. The cause of the holes are too high and too long a current, which on the other hand is necessary to make the distribution of the holes very even. Equally problematic when superimposing the mechanically roughened surface of a metal carrier with electrochemical roughening by means of alternating current at a very high working speed of the metal carrier is the formation of so-called electrical cross-shocks in time with the alternating current voltage, these cross-shocks being visible in strip form on the surface of the metal carrier. In all likelihood, the cause of these disturbing cross-strikes is the constant change in polarity of the alternating current applied to the electrodes.

Aufgabe der Erfindung ist es, ein Verfahren der eingangs beschriebenen Art so zu verbessern, daß die Oberfläche eines mit hoher Arbeitsgeschwindigkeit bewegten Trägers für lichtempfindliche Schichten mechanisch und elektrochemisch so aufgerauht wird, daß die der mechanischen pyramidalen aufgerauhten Oberfläche des Trägers überlagerte elektrochemische Aufrauhung aus gleichmäßig und fein verteilten Näpfchen und Vertiefungen besteht, und weder Löcher noch sichtbare Querschläge aufweist.The object of the invention is to improve a method of the type described above in such a way that the surface of a carrier moving at high working speed for photosensitive layers is roughened mechanically and electrochemically in such a way that the electrochemical roughening superimposed on the mechanical pyramidal roughened surface of the carrier consists of uniformly and finely distributed wells and depressions, and has no holes or visible cross-cuts.

Diese Aufgabe wird nach einem Verfahren gemäß des Oberbegriffs des Anspruchs 1 in der Weise gelöst, daß die Frequenz des Dreh- oder Wechselstroms größer gleich 50 Hz bis 300 Hz gewählt wird und daß mit wachsender Transportgeschwindigkeit des Trägers durch das Elektrolytbad die Frequenz höher eingestellt wird.This object is achieved by a method according to the preamble of claim 1 in such a way that the frequency of the three-phase or alternating current is chosen to be greater than or equal to 50 Hz to 300 Hz and that the frequency is set higher with increasing transport speed of the carrier through the electrolytic bath.

Der Träger wird verfahrensgemäß mit einer konstanten Geschwindigkeit zwischen 50 und 150 m/min durch das Elektrolytbad bewegt, und die Dreh- oder Wechselstromfrequenz wird so gewählt, daß ein Abstand t der elektrischen Querschläge auf der Trägeroberfläche, die im Takt der Polaritätsänderungen des Dreh- oder Wechselstrom gebildet werden, kleiner/gleich 15 mm ist.According to the method, the carrier is moved through the electrolytic bath at a constant speed between 50 and 150 m / min, and the three-phase or alternating current frequency is chosen such that a distance t of the electrical cross-shocks on the carrier surface, which in time with the polarity changes of the rotational or Alternating current are formed, less than or equal to 15 mm.

Insbesondere wird der Abstand t der elektrischen Querschläge auf der Trägeroberfläche gemäß der Beziehung t = v/f, mit der Trägertransportgeschwindigkeit v in mm/sec und der Dreh- oder Wechselstromfrequenz f in Hz (1/sec), im Bereich von 3 bis 15 mm gewählt.In particular, the distance t of the electrical cross-shocks on the carrier surface according to the relationship t = v / f, with the carrier transport speed v in mm / sec and the three-phase or alternating current frequency f in Hz (1 / sec), is in the range from 3 to 15 mm chosen.

Durch den Einsatz von Wechsel- oder Drehstrom mit wesentlich höherer Frequenz als 50 Hz wird der Abstand t der Querschläge so weit verringert, daß es zu einem gleichmäßigen Erscheinungsbild auf der Oberfläche des Trägers kommt. Hierzu kann die Frequenz des Stroms beispielsweise bis auf 300 Hz angehoben werden. Bei einer Geschwindikgeit von 100 m/min ist der Abstand t der elektrischen Querschläge dann auf der Trägeroberfläche bei einer Dreh- oder Wechselstromfrequenz von 300 Hz kleiner/gleich 6 mm.By using alternating or three-phase current with a frequency substantially higher than 50 Hz, the distance t between the cross-passages is reduced to such an extent that there is a uniform appearance on the surface of the carrier. For this purpose, the frequency of the current can be raised to 300 Hz, for example. At a speed of 100 m / min, the distance is t the electrical cross-cuts then on the carrier surface at a three-phase or alternating current frequency of 300 Hz less than or equal to 6 mm.

Die Stromdichte der Elektroden, die in das wäßrige Elektrolytbad eintauchen, betragt 5 bis 50 % der Stromdichte der Elektroden, die mit einer Dreh- oder Wechselstromfrequenz von 50 Hz für die rein elektrochemische Aufrauhung betrieben werden. Insbesondere beträgt die Stromdichte der Elektroden 10 bis 20 % der Stromdichte der Elektroden, die mit einer Dreh- oder Wechselstromfrequenz von 50 Hz für die rein elektrochemische Aufrauhung betrieben werden, und liegt diese erstgenannte Stromdichte im Bereich von 250 bis 1400 A/m².The current density of the electrodes which are immersed in the aqueous electrolyte bath is 5 to 50% of the current density of the electrodes which are operated at a three-phase or alternating current frequency of 50 Hz for the purely electrochemical roughening. In particular, the current density of the electrodes is 10 to 20% of the current density of the electrodes which are operated at a three-phase or alternating current frequency of 50 Hz for purely electrochemical roughening, and this first-mentioned current density is in the range from 250 to 1400 A / m 2.

Durch die hohe Arbeitsgeschwindigkeit erfolgt eine Reduzierung der Einwirkdauer des elektrischen Stromes für die elektrochemische Aufrauhung auf die Metalloberfläche, und da darüber hinaus auch der spezifische Stromverbrauch gegenüber der rein elektrochemischen Aufrauhung entsprechend verringert wird, unterbleibt die unerwünschte Lochbildung. Es wird ein sehr gleichmäßiges Aufrauhbild der Oberfläche des Metallträgers auch bei sehr hohen Arbeitsgeschwindigkeiten erreicht, und mit der Erhöhung der Stromfrequenz wird gleichzeitig die Einwirkdauer je Zeiteinheit verringert, was gleichfalls der Lochbildung entgegenwirkt.Due to the high working speed, the duration of action of the electrical current for the electrochemical roughening on the metal surface is reduced, and since the specific power consumption is also reduced correspondingly compared to the purely electrochemical roughening, the undesirable hole formation does not occur. A very uniform roughening of the surface of the metal carrier is achieved even at very high working speeds, and with the increase in the current frequency, the duration of action per unit of time is simultaneously reduced, which also counteracts the formation of holes.

Die Vorrichtung zur Durchführung des Verfahrens umfaßt Elektroden in dem Elektrolytbad, die mit der Sekundärseite eines ersten Drehstromtransformators verbunden sind, dessen Primärseite über einen Drehstromfrequenzumsetzer an Regel- und einen Leistungstransformator für Drehstrom angeschlossen ist.The device for carrying out the method comprises electrodes in the electrolyte bath, with the secondary side are connected to a first three-phase transformer, the primary side of which is connected to a regulating and a power transformer for three-phase current via a three-phase frequency converter.

In Ausgestaltung der Erfindung setzt der Drehstromfrequenzumsetzer die Netzfrequenz des Drehstroms in einem Bereich von größer/gleich 50 bis 300 Hz, bei einer Spannung zwischen 1 bis 380 V für die einzelnen Phasen des Drehstromes, um, die über Leitungen eingespeist werden. Dabei ist der Drehstromtransformator in Stern- oder Dreieckschaltung geschaltet. Ferner sind weitere Elektroden in einem Elektrolytbad mit der Sekundärseite eines zweiten Drehstromtransformators verbunden, dessen Primärseite über einen Drehstrom-Regel- und einen Leistungstransformator an Drehstrom angeschlossen ist. Der zweite Drehstromtransformator ist gleichfalls in Stern- oder Dreieckschaltung geschaltet. Die weiteren Elektroden sind am Anfang und/oder am Ende des Elektrolytbades angeordnet, und dem Drehstrom-Regeltransformator wird Drehstrom mit Netzfrequenz über Leitungen eingespeist. Bei einer anderen Ausführungsform der Erfindung wird anstelle von Drehstrom Wechselstrom verwendet, und es ist je ein Elektrodenpaar in einem Elektrolytbad mit der Sekundärseite eines Wechselstromtransformators verbunden, und ferner die Primärseite jedes Wechselstromtransformators über einen Wechselstromfrequenzumsetzer an Wechselstrom angeschlossen. Jeder der Wechselstromfrequenzumsetzer arbeitet dabei in einem Frequenzbereich größer/gleich 50 Hz bis 300 Hz, bei einer Spannung von 1 bis 380 V des Wechselstroms.In an embodiment of the invention, the three-phase frequency converter converts the mains frequency of the three-phase current in a range of greater than or equal to 50 to 300 Hz, at a voltage between 1 to 380 V for the individual phases of the three-phase current, which are fed in via lines. The three-phase transformer is connected in a star or delta connection. Furthermore, further electrodes in an electrolyte bath are connected to the secondary side of a second three-phase transformer, the primary side of which is connected to three-phase current via a three-phase control and a power transformer. The second three-phase transformer is also connected in a star or delta connection. The further electrodes are arranged at the beginning and / or at the end of the electrolyte bath, and the three-phase control transformer is fed with three-phase current at mains frequency via lines. In another embodiment of the invention, alternating current is used instead of three-phase current, and one pair of electrodes in an electrolyte bath is connected to the secondary side of an alternating current transformer, and the primary side of each alternating current transformer is connected to alternating current via an alternating current frequency converter. Each of the AC frequency converters works in a frequency range greater than or equal to 50 Hz to 300 Hz, at a voltage of 1 to 380 V of the AC current.

Die Erfindung wird im folgenden anhand der Zeichnungen einiger Ausführungsbeispiele näher erläutert. Es zeigen:

Fig. 1
schematisch eine erste Ausführungsform der erfindungsgemäßen Vorrichtung, deren Elektroden mit frequenzumgesetztem Drehstrom beaufschlagt sind,
Fig. 2
schematisch eine zweite Ausführungsform der Vorrichtung, bei der zusätzlich zu den Elektroden der ersten Ausführungsform weitere Elektroden vorhanden sind, die mit netzfrequentem Drehstrom arbeiten,
Fig. 3
schematisch eine dritte Ausführungsform der Vorrichtung, deren Elektrodenpaare mit frequenzumgesetztem Wechselstrom beaufschlagt sind
und
Fig. 4
schematisch eine vierte Ausführungsform der Vorrichtung, bei der zusätzlich zu den Elektrodenpaaren der dritten Ausführungsform weitere Elektrodenpaare vorhanden sind, an denen netzfrequenter Wechselstrom anliegt.
The invention is explained below with reference to the drawings of some embodiments. Show it:
Fig. 1
schematically a first embodiment of the device according to the invention, the electrodes of which are subjected to frequency-converted three-phase current,
Fig. 2
schematically a second embodiment of the device in which, in addition to the electrodes of the first embodiment, there are further electrodes which work with line-frequency three-phase current,
Fig. 3
schematically a third embodiment of the device, the electrode pairs are acted upon by frequency-converted alternating current
and
Fig. 4
schematically shows a fourth embodiment of the device in which, in addition to the electrode pairs of the third embodiment, further electrode pairs are present, to which mains-frequency alternating current is present.

Die in Figur 1 schematisch gezeigte Vorrichtung besteht aus einem Elektrolytbad 1, dessen Elektrolyt beispielsweise verdünnte wäßrige Schwefel-, Salpeter- oder Chlorwasserstoffsäure sein kann. Ein Träger 2 in Bandform bewegt sich in Laufrichtung A durch das Elektrolytbad 1. In Figur 1 ist nur die Vorrichtung zur elektrochemischen Aufrauhung der Oberfläche des Trägers 2 dargestellt, nicht jedoch die Teile der Vorrichtung bzw. Anlage, in welcher die mechanische Aufrauhung der Trägeroberfläche vorgenommen wird. Derartige Anlagen- bzw. Vorrichtungsteile sind ausführlich in der deutschen Offenlegungsschrift 19 62 729 und der deutschen Patentschrift 19 62 728 dargestellt und beschrieben.The device shown schematically in FIG. 1 consists of an electrolyte bath 1, the electrolyte of which, for example dilute aqueous sulfuric, nitric or hydrochloric acid. A carrier 2 in the form of a tape moves in the running direction A through the electrolyte bath 1. Only the device for electrochemical roughening of the surface of the carrier 2 is shown in FIG. 1, but not the parts of the device or system in which the mechanical roughening of the carrier surface is carried out becomes. Such system or device parts are shown and described in detail in German Offenlegungsschrift 19 62 729 and German Patent 19 62 728.

Im Abstand zu dem Träger 2 sind in dem Elektrolytbad 1 Elektroden 3, 4 und 5 angeordnet, die an drei nicht näher bezeichneten Wicklungen der Sekundärseite eines ersten Drehstromtransformators 6 angeschlossen sind. Die entsprechenden drei Wicklungen auf der Primärseite des Drehstromtransformators 6 sind mit einem Drehstromfrequenzumsetzer 7 verbunden, der über Leitungen L1, L2 und L3 an nicht gezeigten Regeltransformatoren, die von einem gemeinsamen Leistungstransformator für Drehstrom gespeist werden, angeschlossen ist. Der Drehstromfrequenzumsetzer 7 ermöglicht es, den mit der Netzfrequenz von 50 Hz eingespeisten Drehstrom in einen Drehstrom im Frequenzbereich größer/gleich 50 Hz bis 300 Hz umzusetzen. Dabei wird die Frequenz des Drehstroms größer als die Netzfrequenz von 50 Hz gewählt, und mit wachsender Transportgeschwindigkeit des Trägers 2 durch das Elektrolytbad 1 wird auch die umgesetzte Frequenz höher eingestellt. Der Träger 2 durchläuft das Elektrolytbad 1 im allgemeinen mit einer konstanten Geschwindigkeit, die zwischen 50 bis 150 m/min gewählt werden kann.At a distance from the carrier 2, electrodes 3, 4 and 5 are arranged in the electrolyte bath 1, which electrodes are connected to three windings of the secondary side of a first three-phase transformer 6, which are not described in more detail. The corresponding three windings on the primary side of the three-phase transformer 6 are connected to a three-phase frequency converter 7, which is connected via lines L1, L2 and L3 to regulating transformers, not shown, which are fed by a common power transformer for three-phase current. The three-phase frequency converter 7 makes it possible to convert the three-phase current fed in at the mains frequency of 50 Hz into a three-phase current in the frequency range greater than / equal to 50 Hz to 300 Hz. The frequency of the three-phase current is chosen to be greater than the mains frequency of 50 Hz, and with increasing transport speed of the carrier 2 through the electrolyte bath 1, the frequency converted is also set higher. The carrier 2 passes through the electrolyte bath 1 generally at a constant speed, which can be chosen between 50 to 150 m / min.

Bei einer sehr hohen Transportgeschwindigkeit v von beispielsweise 100 m/min treten bei einer Frequenz f = 50 Hz des an die Elektroden 3, 4 und 5 angelegten Drehstroms, entsprechend der Beziehung t = v/f, mit der Transportgeschwindigkeit v in mm /sec, der Stromfrequenz in Hz bzw. 1/sec und dem Abstand t in mm der sogenannten Querschläge auf der Oberfläche des Trägers 2, Abstände t von 33,3 mm auf. Diese elektrischen Querschläge werden entsprechend den Polaritätsänderungen der Elektroden 3, 4 und 5 durch den angelegten Dreh- bzw. Wechselstrom verursacht.At a very high transport speed v of, for example, 100 m / min, at a frequency f = 50 Hz of the three-phase current applied to the electrodes 3, 4 and 5, corresponding to the relationship t = v / f, with the transport speed v in mm / sec, the current frequency in Hz or 1 / sec and the distance t in mm of the so-called cross-cuts on the surface of the carrier 2, distances t of 33.3 mm. These electrical cross-shocks are caused in accordance with the changes in polarity of the electrodes 3, 4 and 5 by the applied three-phase or alternating current.

Die Vorrichtung nach der Erfindung wird zur Vergleichmäßigung dieser Querschläge so betrieben, daß die frei wählbaren Parameter, nämlich die Transportgeschwindigkeit des Trägers 2 und die Frequenz des an die Elektroden 3, 4 und 5 angelegten Stromes, so gewählt werden, daß der Abstand t der Querschläge kleiner/gleich 15 mm ist, insbesondere 6 mm beträgt.The device according to the invention is operated to equalize these cross-cuts so that the freely selectable parameters, namely the transport speed of the carrier 2 and the frequency of the current applied to the electrodes 3, 4 and 5, are chosen so that the distance t of the cross-cuts is less than or equal to 15 mm, in particular 6 mm.

Die Stromdichte der Elektroden 3, 4 und 5 beträgt 5 bis 50 %, insbesondere 10 bis 20 % der Stromdichte der Elektroden, die mit einer Dreh- oder Wechselstromfrequenz von 50 Hz für die rein elektrochemische Aufrauhung betrieben werden. Größenordnungsmäßig liegt die Stromdichte der Elektroden 3, 4 und 5 im Bereich von 250 bis 1400 A/m².The current density of the electrodes 3, 4 and 5 is 5 to 50%, in particular 10 to 20% of the current density of the electrodes which are operated at a three-phase or alternating current frequency of 50 Hz for the purely electrochemical roughening. The current density of electrodes 3, 4 and 5 is in the range of 250 to 1400 A / m².

Sobald die elektrochemische Aufrauhung im Elektrolytbad 1 beendet ist, wird der Träger 2 beispielsweise ohne Zwischenbeizung gespült und elektrochemisch anodisiert.As soon as the electrochemical roughening in the electrolyte bath 1 has ended, the carrier 2 is rinsed, for example, without intermediate pickling and is electrochemically anodized.

Die dem Drehstromfrequenzumsetzer 7 eingespeisten Ströme haben Spannungen, die im Bereich von 1 bis 380 V liegen, und werden spannungsmäßig so transformiert, daß die an den Elektroden 3, 4 und 5 anliegenden Spannungen zwischen 20 und 50 V, insbesondere 35 V, liegen.The currents fed to the three-phase frequency converter 7 have voltages which are in the range from 1 to 380 V, and are transformed in terms of voltage such that the voltages applied to the electrodes 3, 4 and 5 are between 20 and 50 V, in particular 35 V.

Die Ausführungsform der Vorrichtung nach Figur 2 umfaßt ein Elektrolytbad 11, durch das der Träger 2 hindurchtransportiert wird. Zusätzlich zu den Elektroden 3, 4 und 5 befinden sich weitere Elektroden 8, 9 und 10 in dem Elektrolytbad 11, das einen Elektrolyten der gleichen Konsistenz wie das Elektrolytbad 1 der Ausführungsform nach Figur 1 enthalten kann. Die Laufrichtung des Trägers 2 ist in Figur 2 nicht dargestellt, da sich dieser entweder von links nach rechts oder von rechts nach links bewegen kann. Dies bedeutet, daß bei der Bewegungsrichtung von links nach rechts die Elektroden 8, 9 und 10 am Ende des Elektrolytbades angeordnet sind und bei der dazu entgegengesetzten Bewegungsrichtung des Trägers 2 die Elektroden 8, 9, 10 am Anfang des Elektrolytbades 11 sich befinden.The embodiment of the device according to FIG. 2 comprises an electrolyte bath 11 through which the carrier 2 is transported. In addition to the electrodes 3, 4 and 5 there are further electrodes 8, 9 and 10 in the electrolyte bath 11, which may contain an electrolyte of the same consistency as the electrolyte bath 1 of the embodiment according to FIG. 1. The running direction of the carrier 2 is not shown in FIG. 2, since it can move either from left to right or from right to left. This means that the electrodes 8, 9 and 10 are arranged at the end of the electrolyte bath in the direction of movement from left to right and the electrodes 8, 9, 10 are located at the beginning of the electrolyte bath 11 in the opposite direction of movement of the support 2.

Die Elektroden 8, 9 und 10 sind mit den entsprechenden, nicht näher bezeichneten Wicklungen der Sekundärseite eines zweiten Drehstromtransformators 13 verbunden. Die entsprechenden Wicklungen auf der Primärseite des zweiten Drehstromtransformators 13 sind über einen Drehstrom-Regeltransformator 12 und einen nicht gezeigten Leistungstransformator an Drehstrom angeschlossen. Der zweite Drehstromtransformator 13 ist in Stern- oder Dreieckschaltung geschaltet. Der Anschluß des Drehstrom-Regeltransformators 12 an den nicht gezeigten Leistungstransformator erfolgt über Leitungen L1, L2 und L3. Dem Drehstrom-Regeltransformator 12 wird Drehstrom mit Netzfrequenz, d.h. mit 50 Hz, über die Leitungen L1, L2 und L3 eingespeist, eine Frequenzumsetzung, wie im Falle der Elektroden 3, 4 und 5, findet nicht statt.The electrodes 8, 9 and 10 are connected to the corresponding windings of the secondary side of a second three-phase transformer 13, which are not described in more detail. The corresponding windings on the primary side of the second Three-phase transformers 13 are connected to three-phase current via a three-phase control transformer 12 and a power transformer, not shown. The second three-phase transformer 13 is connected in a star or delta connection. The three-phase control transformer 12 is connected to the power transformer (not shown) via lines L1, L2 and L3. The three-phase control transformer 12 is fed with three-phase current at mains frequency, ie at 50 Hz, via lines L1, L2 and L3; frequency conversion, as in the case of electrodes 3, 4 and 5, does not take place.

Obgleich dies in Figur 2 nicht dargestellt ist, können, analog zu den Elektroden 8, 9 und 10, weitere drei Elektroden in einem entsprechend größeren Elektrolytbad 11 links von den Elektroden 3, 4 und 5 angeordnet werden. Ein derartiger Aufbau läuft darauf hinaus, daß sowohl am Anfang als auch am Ende eines erweiterten Elektrolytbades 11 jeweils ein Satz von drei Elektroden vorhanden ist, die mit Drehstrom mit Netzfrequenz beaufschlagt werden, während der mittlere Satz der Elektroden 3, 4 und 5 mit Drehstrom höherer Frequenz als Netzfrequenz betrieben wird. Ebenso ist es, wie schon erwähnt, in bevorzugter Weise möglich, daß die Elektroden 3, 4 und 5 am Anfang oder am Ende des Elektrolytbades angeordnet sind und mit den Elektroden 8, 9 und 10, die dann hinter bzw. vor den Elektroden 3, 4 und 5 sich befinden, zusammenarbeiten.Although this is not shown in FIG. 2, analogously to electrodes 8, 9 and 10, a further three electrodes can be arranged in a correspondingly larger electrolyte bath 11 to the left of electrodes 3, 4 and 5. Such a construction boils down to the fact that both at the beginning and at the end of an extended electrolyte bath 11 there is a set of three electrodes which are supplied with three-phase current at the mains frequency, while the middle set of electrodes 3, 4 and 5 with three-phase current is higher Frequency is operated as the network frequency. Likewise, as already mentioned, it is preferably possible for the electrodes 3, 4 and 5 to be arranged at the beginning or at the end of the electrolyte bath and with the electrodes 8, 9 and 10, which then lie behind or in front of the electrodes 3, 4 and 5 are working together.

Die dritte Ausführungsform der Vorrichtung nach der Erfindung, wie sie in Figur 3 schematisch dargestellt ist, unterscheidet sich gegenüber der ersten Ausführungsform nach Figur 1 dadurch, daß anstelle der einzelnen, mit Drehstrom höherer Frequenz als Netzfrequenz beaufschlagten Elektroden Elektrodenpaare 14, 15; 16, 17 und 18, 19 in einem Elektrolytbad 20 vorhanden sind, durch das der Träger 2 in Laufrichtung A hindurchläuft. Der Elektrolyt im Elektrolytbad 20 hat die gleiche Zusammensetzung, wie sie anhand von Figur 1 beschrieben wurde. Je eines der Elektrodenpaare 14, 15; 16, 17 und 18, 19 ist mit der Sekundärseite eines zugehörigen Wechselstromtransformators 21, 22 bzw. 23 verbunden. Primärseitig ist jeder Wechselstromtransformator über einen Wechselstromfrequenzumsetzer 24, 25 und 26 an Wechselstrom angeschlossen. Der Wechselstrom wird über Leitungen L1, L2 des Frequenzumsetzers 24, Leitungen L2, L1 des Frequenzumsetzers 25 und Leitungen L1, L2 des Frequenzumsetzers 26 eingespeist. Die Symbole L1 und L2 stehen für die beiden Phasenleitungen für Wechselstrom. Die elektrochemische Aufrauhung erfolgt hierbei gemäß dem sogenannten Mittelleiterverfahren, d.h. der Wechselstromkreis des einen Elektrodenpaares 14, 15 ist über den Elektrolyten des Elektrolytbades 20, den unterhalb der beiden Elektroden 14, 15 befindlichen Abschnitt des Trägers 2 und die Sekundärwicklung des Wechselstromtransformators 21 geschlossen. Jeder der Wechselstromfrequenzumsetzer 24, 25, 26 wird in einem Frequenzbereich größer/gleich 50 Hz bis 300 Hz, bei einer Spannung von 1 bis 380 V des Wechselstroms betrieben.The third embodiment of the device according to the invention, as shown schematically in FIG. 3, differs from the first embodiment according to FIG. 1 in that instead of the individual electrodes, which are charged with three-phase current higher than the mains frequency, electrode pairs 14, 15; 16, 17 and 18, 19 are present in an electrolytic bath 20, through which the carrier 2 runs in the running direction A. The electrolyte in the electrolyte bath 20 has the same composition as was described with reference to FIG. 1. One of the electrode pairs 14, 15; 16, 17 and 18, 19 is connected to the secondary side of an associated AC transformer 21, 22 and 23, respectively. On the primary side, each alternating current transformer is connected to alternating current via an alternating current frequency converter 24, 25 and 26. The alternating current is fed in via lines L1, L2 of the frequency converter 24, lines L2, L1 of the frequency converter 25 and lines L1, L2 of the frequency converter 26. The symbols L1 and L2 stand for the two phase lines for alternating current. The electrochemical roughening takes place in accordance with the so-called center conductor method, ie the alternating current circuit of the one pair of electrodes 14, 15 is closed via the electrolyte of the electrolyte bath 20, the section of the carrier 2 located below the two electrodes 14, 15 and the secondary winding of the alternating current transformer 21. Each of the AC frequency converters 24, 25, 26 is operated in a frequency range greater than / equal to 50 Hz to 300 Hz, at a voltage of 1 to 380 V of the AC current.

Die vierte, in Figur 4 gezeigte Ausführungsform der Vorrichtung umfaßt ein Elektrolytbad 31, durch das der Träger 2 hindurchtransportiert wird. Ähnlich wie bei der Ausführungsform nach Figur 2, ist in Figur 4 die Laufrichtung des Trägers 2 nicht eingezeichnet, da sich dieser entweder von links nach rechts oder von rechts nach links durch das Elektrolytbad 31 bewegen kann. Bei dieser Ausführungsform sind zusätzlich zu den in Figur 3 vorhandenen Elektrodenpaaren weitere Elektrodenpaare 27, 28 und 29, 30 im Elektrolytbad 31 vorhanden. Diese Elektrodenpaare sind mit den Wicklungen auf den Sekundärseiten von Wechselstromtransformatoren 32 und 33 verbunden, die primärseitig über Wechselstrom-Regeltransformatoren 34 und 35 mit netzfrequentem Wechselstrom gespeist werden. Die Elektrodenpaare 14, 15; 16, 17; 18, 19 sind entweder am Anfang oder am Ende des Elektrolytbades 31 angeordnet. In diesem Zusammenhang ist darauf hinzuweisen, daß in Figur 4 aus Vereinfachungsgründen nur das eine Elektrodenpaar 18, 19 gemäß der dritten Ausführungsform nach Figur 3 dargestellt ist und die links davon liegenden Elektrodenpaare 16, 17 und 14, 15 der Figur 3 weggelassen wurden. Obgleich dies zeichnerisch nicht gezeigt ist, ist desweiteren eine Anordnung möglich, bei der sowohl am Anfang als auch am Ende eines erweiterten Elektrolytbades 31 jeweils zwei Elektrodenpaare angeordnet sind, die mit netzfrequentem Wechselstrom betrieben werden, der über Wechselstrom-Regeltransformatoren und Wechselstrom-Transformatoren mit konstantem Übersetzungsverhältnis, wie dies der Fall bei den Transformatoren 32 und 33 ist, an die Elektrodenpaare angelegt wird. Die eingespeisten Wechselströme, unabhängig davon, ob sie frequenzumgesetzt werden oder Netzfrequenz aufweisen, besitzen eine Spannungshöhe im Bereich von 1 bis 380 V. Die Frequenzumsetzung der Netzfrequenz der eingespeisten Wechselströme bewegt sich im Bereich von größer/gleich 50 Hz bis 300 Hz. Die Stromdichte an den mit Wechselstrom beaufschlagten Elektroden beträgt 5 bis 50 %, insbesondere 10 bis 20 % der Stromdichte an den Elektroden für die rein elektrochemische Aufrauhung.The fourth embodiment of the device shown in FIG. 4 comprises an electrolyte bath 31 through which the carrier 2 is transported. Similar to the embodiment according to FIG. 2, the running direction of the carrier 2 is not shown in FIG. 4, since the carrier 2 can move through the electrolyte bath 31 either from left to right or from right to left. In this embodiment, in addition to the electrode pairs present in FIG. 3, further electrode pairs 27, 28 and 29, 30 are present in the electrolyte bath 31. These pairs of electrodes are connected to the windings on the secondary sides of alternating current transformers 32 and 33, which are fed on the primary side via alternating current regulating transformers 34 and 35 with mains frequency alternating current. The electrode pairs 14, 15; 16, 17; 18, 19 are arranged either at the beginning or at the end of the electrolyte bath 31. In this context, it should be pointed out that, for reasons of simplification, only one pair of electrodes 18, 19 according to the third embodiment according to FIG. 3 is shown in FIG. 4 and the electrode pairs 16, 17 and 14, 15 from FIG. 3 to the left of it have been omitted. Furthermore, although this is not shown in the drawing, an arrangement is possible in which two pairs of electrodes are arranged both at the beginning and at the end of an expanded electrolyte bath 31, which are operated with mains-frequency alternating current, which is controlled via alternating current regulating transformers and alternating current transformers with constant Gear ratio, as is the case with transformers 32 and 33, is applied to the electrode pairs. The fed AC currents, regardless of whether they are frequency-converted or have a mains frequency, have a voltage level in the range from 1 to 380 V. The frequency conversion of the mains frequency of the AC currents fed in is in the range from / greater than or equal to 50 Hz to 300 Hz Alternating current applied electrodes is 5 to 50%, in particular 10 to 20% of the current density at the electrodes for the purely electrochemical roughening.

Mit den Vorrichtungen nach der Erfindung wird eine Überlagerung der mechanisch aufgerauhten Oberfläche des Trägers 2, beispielsweise durch Naßbürsten mit einer Suspension aus Bims- und/oder Quarzmehl, durch eine elektrochemische Aufrauhung erreicht, wobei die Stromfrequenzen der an den Elektroden anliegenden Dreh- oder Wechselströmen im allgemeinen wesentlich höher als 50 Hz sind. Es wird dabei ein optisch querschlagfreies Aufrauhbild, eine feine Überlagerung der mechanisch aufgerauhten Oberfläche des Trägers durch die elektrochemisch erzeugte Aufrauhung, geringerer spezifischer Stromverbrauch und eine sehr hohe Arbeitsgeschwindigkeit für den Träger, bis zu 150 m/min, erzielt. Die Rauhtiefe der mechanisch aufgerauhten Oberfläche des Trägers ist dabei wesentlich größer als die Rauhtiefe, die durch die elektrochemische Aufrauhung erhalten wird. Die Oberfläche des Trägers ist vergleichsweise hell, und die mit einem derartigen Träger hergestellte Druckplatte zeigt nach der Entwicklung keinerlei Farbschleier.With the devices according to the invention, a superimposition of the mechanically roughened surface of the carrier 2 is achieved, for example by wet brushing with a suspension of pumice and / or quartz powder, by means of electrochemical roughening, the current frequencies of the three-phase or alternating currents applied to the electrodes being im are generally much higher than 50 Hz. A roughening pattern that is optically free of transversal impact, a fine superimposition of the mechanically roughened surface of the carrier by the electrochemically generated roughening, lower specific power consumption and a very high working speed for the carrier, up to 150 m / min, are achieved. The roughness of the mechanically roughened surface of the carrier is considerably greater than the roughness that is obtained by the electrochemical roughening. The surface of the support is comparatively light, and the printing plate produced with such a support shows no color fog after development.

Claims (18)

  1. A process for roughening a substrate for photosensitive layers, the surface of which substrate is roughened mechanically and subsequently electrochemically in an aqueous electrolyte bath by applying a three-phase or alternating current to the electrodes opposite the substrate, wherein the frequency of the three-phase or alternating current is chosen in the range of greater than/equal to 50 Hz up to 300 Hz and the frequency is adjusted higher with increasing rate of conveyance of the substrate through the electrolytic bath.
  2. The process as claimed in claim 1, wherein the substrate is moved through the electrolytic bath at a constant rate of between 50 and 150 m/min, and the three-phase or alternating current frequency is chosen such that a spacing t of the electrical cross-strokes on the substrate surface, which are formed in step with the changes in polarity of the three-phase or alternating current, is less than/equal to 15 mm.
  3. The process as claimed in claim 2, wherein the spacing t of the electrical cross-strokes on the substrate surface is chosen in the range from 3 to 15 mm in accordance with the relationship t = v/f, the rate of conveyance of the substrate v being in mm/sec and the three-phase or alternating current frequency f being in Hz (1/sec).
  4. The process as claimed in claim 3, wherein the spacing t of the electrical cross-strokes on the substrate surface is chosen as less than/equal to 6 mm in the case of a three-phase or alternating current frequency of 300 Hz.
  5. The process as claimed in claims 1 to 4, wherein the current density of the electrodes, which dip into the aqueous electrolytic bath, amounts to 5 to 50 % of the current density of the electrodes which are operated with a three-phase or alternating current frequency of 50 Hz for the purely electrochemical roughening.
  6. The process as claimed in claim 5, wherein the current density of the electrodes, which dip into the aqueous electrolytic bath, amounts to 10 to 20 % of the current density of the electrodes which are operated with a three-phase or alternating current frequency of 50 Hz for the purely electrochemical roughening, and the first-mentioned current density amounts to 250 to 1400 A/m².
  7. The process as claimed in claims 1 to 6, wherein after the electrochemical roughening without intermediate pickling the substrate is rinsed and electrochemically anodized.
  8. The process as claimed in claims 1 to 7, wherein the voltages to be transformed in terms of frequency lie in the range from 1 to 380 volt in the case of frequencies in the range of greater than/equal to 50 and up to 300 Hz, and the voltages applied to the electrodes amount to 20 to 50 V, especially 35 V.
  9. The process as claimed in claims 1 to 8, wherein at the start and/or at the end of the electrochemical roughening of the substrate an electrolytic treatment of the substrate is done with direct current.
  10. An apparatus for carrying out the process as claimed in claims 1 to 9, wherein electrodes (3, 4, 5) in the electrolytic bath (1) are connected to the secondary side of a first three-phase transformer (6), whose primary side is connected via a three-phase frequency converter (7) via regulating transformers to a power transformer for three-phase current.
  11. The apparatus as claimed in claim 10, wherein the three-phase frequency converter (7) transforms the line frequency of the three-phase current in a range from greater than/equal to 50 to 300 Hz, at a voltage between 1 to 380 V for the individual phases of the three-phase current, which are supplied via leads (L1, L2, L3).
  12. The apparatus as claimed in claims 10 and 11, wherein the three-phase transformer (6) is wired up in a star or delta connection.
  13. The apparatus as claimed in claims 10 to 12, wherein further electrodes (8, 9, 10) are connected in an electrolytic bath (11) to the secondary side of a second three-phase transformer (13), whose primary side is connected to three-phase current via a three-phase regulating transformer (12) and a power transformer, and the second three-phase transformer (13) is wired up in a star or delta connection.
  14. The apparatus as claimed in claim 13, wherein the further electrodes (8, 9, 10) are arranged at the beginning and/or at the end of the electrolytic bath (11), and the three-phase regulating transformer (12) is supplied with three-phase current at line frequency via leads (L1, L2, L3).
  15. An apparatus for carrying out the process as claimed in claims 1 to 9, wherein one pair each of electrodes (14, 15; 16, 17; 18, 19) is connected in an electrolytic bath (20) to the secondary side of an alternating-current transformer (21; 22; 23), and the primary side of each alternating-current transformer is connected to alternating current via an alternating-current frequency converter (24; 25; 26).
  16. An apparatus as claimed in claim 15, wherein each of the alternating-current frequency converters (24; 25; 26) operates in a frequency range of greater than/euqal to 50 Hz up to 300 Hz at a voltage of from 1 to 380 volt of the alternating current.
  17. The apparatus as claimed in claim 16, wherein further pairs of electrodes (27, 28; 29, 30) are connected in an electrolytic bath (31) to the secondary sides of alternating-current transformers (32, 33) whose primary sides are connected to alternating current via alternating-current regulating transformers (34; 35).
  18. The apparatus as claimed in claim 17, wherein the further pairs of electrodes (27, 28; 29, 30) are arranged at the beginning and/or at the end of the electrolytic bath (31) and alternating current at line frequency is fed to the alternating-current regulating transformers (34; 35).
EP90105701A 1989-03-30 1990-03-26 Process and apparatus for roughening a support for photosensitive layers Expired - Lifetime EP0390033B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3910213 1989-03-30
DE3910213A DE3910213A1 (en) 1989-03-30 1989-03-30 METHOD AND DEVICE FOR Roughening A SUPPORT FOR LIGHT-SENSITIVE LAYERS

Publications (2)

Publication Number Publication Date
EP0390033A1 EP0390033A1 (en) 1990-10-03
EP0390033B1 true EP0390033B1 (en) 1993-06-16

Family

ID=6377415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90105701A Expired - Lifetime EP0390033B1 (en) 1989-03-30 1990-03-26 Process and apparatus for roughening a support for photosensitive layers

Country Status (7)

Country Link
US (1) US5082537A (en)
EP (1) EP0390033B1 (en)
JP (1) JPH02298300A (en)
KR (1) KR900014155A (en)
BR (1) BR9001389A (en)
CA (1) CA2013299A1 (en)
DE (2) DE3910213A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221442A (en) * 1991-03-07 1993-06-22 Fuji Photo Film Co., Ltd. Method and apparatus for electrolytic treatment
JP2707381B2 (en) * 1991-11-05 1998-01-28 富士写真フイルム株式会社 Electrolytic treatment of aluminum support for printing plate
US5358610A (en) * 1992-07-20 1994-10-25 Fuji Photo Film Co., Ltd. Method for electrolytic treatment
GB9326150D0 (en) * 1993-12-22 1994-02-23 Alcan Int Ltd Electrochemical roughening method
DE69818204T2 (en) * 1997-12-16 2004-07-01 Fuji Photo Film Co., Ltd., Minami-Ashigara Method for producing an aluminum support for a planographic printing plate
JP2000017500A (en) * 1998-06-26 2000-01-18 Fuji Photo Film Co Ltd Electrolyzer and electrolytic method
DE19859216A1 (en) 1998-12-21 2000-06-29 Agfa Gevaert Ag Method and device for roughening a support for photosensitive layers
DE19908884C1 (en) * 1999-03-02 2000-10-05 Agfa Gevaert Ag Method and device for electrochemically roughening a support for photosensitive layers
GB2418628B (en) 2004-10-01 2006-12-13 Acktar Ltd Improved laminates and the manufacture thereof
CN101374675A (en) * 2006-02-21 2009-02-25 柯尼卡美能达医疗印刷器材株式会社 Method for manufacturing aluminum support for lithographic printing plate material, aluminum support for lithographic printing plate material, lithographic printing plate material, and method for imag
CN102165106B (en) * 2008-09-30 2014-09-17 富士胶片株式会社 Electrolytic treatment method and electrolytic treatment device
US8741392B2 (en) 2009-06-02 2014-06-03 Integran Technologies, Inc. Anodically assisted chemical etching of conductive polymers and polymer composites

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7017765A (en) * 1969-12-15 1971-06-17
JPS5146003B1 (en) * 1970-08-03 1976-12-07
GB1548689A (en) * 1975-11-06 1979-07-18 Nippon Light Metal Res Labor Process for electrograining aluminum substrates for lithographic printing
GB2047274B (en) * 1979-03-29 1983-05-25 Fuji Photo Film Co Ltd Support for lithographic printing plates and process for their production
JPS5629699A (en) * 1979-08-15 1981-03-25 Fuji Photo Film Co Ltd Surface roughening method by electrolysis
US4336113A (en) * 1981-06-26 1982-06-22 American Hoechst Corporation Electrolytic graining of aluminum with hydrogen peroxide and nitric or hydrochloric acid
US4396468A (en) * 1981-12-21 1983-08-02 American Hoechst Corporation Three phase graining of aluminum substrates
US4548683A (en) * 1984-09-28 1985-10-22 Polychrome Corp. Method of electrolytically graining a lithographic plate
DE3715791A1 (en) * 1987-05-12 1988-11-24 Hoechst Ag PRINT PLATE CARRIERS AND METHOD AND DEVICE FOR THE PRODUCTION THEREOF

Also Published As

Publication number Publication date
DE3910213A1 (en) 1990-10-11
BR9001389A (en) 1991-04-09
EP0390033A1 (en) 1990-10-03
JPH02298300A (en) 1990-12-10
CA2013299A1 (en) 1990-09-30
US5082537A (en) 1992-01-21
DE59001749D1 (en) 1993-07-22
KR900014155A (en) 1990-10-23

Similar Documents

Publication Publication Date Title
DE69421789T2 (en) Electrochemical roughening process
DE3030815C2 (en) Electrolytic graining process
EP0390033B1 (en) Process and apparatus for roughening a support for photosensitive layers
DE2218471C3 (en)
EP0292801B1 (en) Process for the electrochemical graining of aluminium for supports for printing plates
EP0437761B1 (en) Process for the electrochemical graining of aluminum for printing plate supports
DE947657C (en) Process for the production of smooth, shiny deposits of metals on a base body by electrolysis
EP0003125B1 (en) Process for the electrolytic etching of a recrystallised aluminium foil and its application
DE69017312T2 (en) Process for the production of a support for planographic printing plates.
DE2532769A1 (en) METHOD OF MANUFACTURING PRESENSITIZED LITHOGRAPHIC PLATES
EP0291760A2 (en) Printing plate supports and process and apparatus for their manufacture
DE2650762B2 (en) Process for the electrolytic graining of aluminum substrates for lithography
DE3222170A1 (en) METHOD FOR THE ELECTROCHEMICAL Roughening of ALUMINUM AND THE USE THEREOF AS A CARRIER MATERIAL FOR OFFSET PRINTING PLATES
DE2462449A1 (en) PROCESS FOR CONTINUOUS ELECTROLYTIC ANODISING AND GALVANIZING OF ALUMINUM AND DEVICE FOR CARRYING OUT THIS PROCESS
DE3031764A1 (en) ALUMINUM SUBSTRATES FOR OFFSET PRINTING PLATES AND METHOD FOR THE PRODUCTION THEREOF
DE69521754T2 (en) Aluminum support for a planographic printing plate, process for its production and roughening
DE69016735T2 (en) Process for the production of a support for a printing plate.
DE69231134T2 (en) Device for the continuous treatment of aluminum objects
DE69818204T2 (en) Method for producing an aluminum support for a planographic printing plate
EP0082452B1 (en) Process for the electrochemical graining of aluminium with three-phase alternating current and its use in the manufacture of printing platens
EP0097301A1 (en) Process for the removing modification of electrochemical roughened aluminium carrier materials, and their use in the production of offset printing plates
DE3910450C2 (en) Process for producing an aluminum printing plate support
DE2905633C2 (en)
EP0423555B1 (en) Process and apparatus for the electrochemical graining of a metal surface
DE69210184T2 (en) Method and device for monitoring an electrolytic treatment of a substrate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19901130

17Q First examination report despatched

Effective date: 19920320

RBV Designated contracting states (corrected)

Designated state(s): DE GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 59001749

Country of ref document: DE

Date of ref document: 19930722

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930816

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940518

Year of fee payment: 5

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950214

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960326

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050326