EP0389847B1 - Circuit - Google Patents

Circuit Download PDF

Info

Publication number
EP0389847B1
EP0389847B1 EP90104513A EP90104513A EP0389847B1 EP 0389847 B1 EP0389847 B1 EP 0389847B1 EP 90104513 A EP90104513 A EP 90104513A EP 90104513 A EP90104513 A EP 90104513A EP 0389847 B1 EP0389847 B1 EP 0389847B1
Authority
EP
European Patent Office
Prior art keywords
circuit
voltage
switching
capacitor
switching transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90104513A
Other languages
German (de)
French (fr)
Other versions
EP0389847A3 (en
EP0389847A2 (en
Inventor
Alwin Prof. Dr. Ing. Burgholte
Udo Dipl.-Ing. Schuermann
Warner Dipl.-Ing. Hieronimus
Horst Horneborg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0389847A2 publication Critical patent/EP0389847A2/en
Publication of EP0389847A3 publication Critical patent/EP0389847A3/en
Application granted granted Critical
Publication of EP0389847B1 publication Critical patent/EP0389847B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/16Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/05Starting and operating circuit for fluorescent lamp

Definitions

  • the invention relates to a circuit arrangement for the high-frequency operation of one or more low-pressure discharge lamps connected in parallel to one another according to the preamble of the main claim.
  • Such circuit arrangements are known per se (DE-OS 36 23 749, DE-OS 36 11 611 and DE-OS 37 00 421). Although these circuits can feed a low-pressure discharge lamp at a high frequency and meet the existing regulations regarding the form of the mains current, they still require a considerable amount of components.
  • the desired circuit effects in the known circuits are based on the function of a push-pull output stage in conjunction with at least four diodes and three capacitors.
  • WO 87/04891 relates to a ballast for fluorescent tubes, which comprises a low-pass filter, a bridge rectifier, a smoothing capacitor and circuit devices, the low-frequency mains voltage being filtered and rectified and a high-frequency AC voltage being generated by periodically opening and closing the circuit devices for operating the lamp.
  • the object of the invention is to provide a circuit arrangement for the high-frequency operation of low-pressure discharge lamps, which manages with a minimum of components.
  • the circuit arrangement according to the invention manages with fewer components than the known circuit arrangements, since the high-frequency generator is constructed as a single-ended high-frequency generator which has only one switching transistor, one switching inductance and one oscillating capacitor.
  • the active harmonic filter which has a series inductance, a pump capacitor and two decoupling diodes, an approximately sinusoidal mains current can be achieved, and on the other hand, a lamp current and a lamp voltage result that are suitable for operating the low-pressure discharge lamp.
  • the switching transistor switches the pump capacitor between the series inductance and one of the decoupling diodes against the reference potential.
  • the mains current is modulated sinusoidally with every lamp cycle.
  • an amount of energy proportional to the instantaneous value of the line voltage is drawn from the network and fed to the smoothing capacitor via one of the two decoupling diodes. This ensures a sinusoidally modulated mains current consumption through the harmonic filter.
  • the pump capacitor is connected in parallel with the switching inductance via the two decoupling diodes, so that the amplitude of the negative current half-wave in the lamp is reduced and the crest factor of the lamp current is improved.
  • the pump capacitor is connected from the collector or drain connection of the switching transistor via the one decoupling diode in parallel to the switching inductance and the other decoupling diode, the rise in voltage at the switching transistor due to the resonance behavior, determined by the switching inductance and the pump capacitor. It is also advantageous if the single-ended high-frequency generator is operated in resonance frequency, determined by the switching inductance and the pump capacitor. This switching of the switching transistor creates an advantageous switch-off relief network.
  • the switching transistor is controlled by an electronic control circuit which advantageously has an electronic oscillator and a pulse width modulator.
  • the electronic control circuit forms an electronic interface.
  • the electronic oscillator and the pulse width modulator can be started and stopped electronically and their pulse width or frequency can be set via an electronic control signal. This creates an interface that is desired for various user options.
  • Another improved circuit arrangement enables starting with preheated electrodes and also offers corresponding safety functions and protection against overvoltage and overcurrents, such as those e.g. if a lamp fails.
  • the switching inductance has two additional secondary windings which, depending on the lamp voltage, are switched to the respective heating coil of the lamp via a thyristor and heat the heating coil with their voltages.
  • control electronics are designed such that each time the circuit is started up for the first time, the switching frequency of the single-ended high-frequency converter is first increased, in order then to be reduced continuously to the actual clock frequency in the 1/10 second range, so that an increased heating current is available for each new start-up.
  • both the voltage at the collector of the switching transistor and the electronics intrinsic supply voltage are detected in their respective levels and, if overvoltage occurs, by firing a thyristor used to short-circuit the start-up circuit and the control of the switching transistor. This enables a safe shutdown of the circuit.
  • an electronic supply voltage is derived from the rectified mains voltage via a series resistor, which is switched through with a thyristor when the maximum permissible limit value for the electronic supply voltage is reached, so that the thyristor can hold its own via the electronic supply current.
  • FIG. 1 shows the basic structure of the circuit arrangement for the high-frequency operation of a low-pressure discharge lamp LL1.
  • the circuit arrangement includes a high-frequency filter 1, a mains rectifier 2, a single-ended high-frequency generator with a switching transistor T1 and an electronic control circuit 6 for controlling the single-ended high-frequency generator, as well as a smoothing capacitor 4 and an active harmonic filter 3.
  • the harmonic filter 3 consists of a series inductor L2, a pump capacitor C2, the decoupling diodes D6 and D5 and the switching transistor T1 of the single-ended high-frequency generator.
  • FIG. 2 shows the circuit diagram of a circuit arrangement with the harmonic filter 3 for operating the low-pressure discharge lamp LL1.
  • the high-frequency filter 1 is located at the input of the network, followed by the network rectifier 2 in a 2-pulse, uncontrolled bridge circuit.
  • the single-ended high-frequency generator operated via an electronic control circuit 6 consists of the switching transistor T1, a switching inductance L1 and a resonant capacitor C1.
  • the electrodes of the lamp LL1 are connected on one side E1, H1 to the switching inductance L1, and the smoothing capacitor CO and on the other side E2, H2 to the oscillating capacitor C1.
  • the electrodes of the heating circuits H1 and H2 can, as shown in FIG. 2, be connected via a heating capacitor C3; or a heating winding can be connected separately with E1-H1 and E2-H2 as part winding of the switching inductance L1, as shown in FIG. 4.
  • the high-frequency single-ended converter supplies a portion of the positive current half-wave of the lamp via the oscillating capacitor C1 from the positive pole of the smoothing capacitor C0 when the switching transistor is conductive.
  • the switching inductance L1 charges an energy part proportional to the switch-on time of the switching transistor T1.
  • an oscillating circuit is formed via the lamp, the resonance capacitor C1 and the switching inductance L1, which initially produces the negative current half-wave of the lamp with the same current direction in the switching inductance L1 and then when the current direction is reversed in the switching inductance L1 by discharging the oscillation capacitor C1 the positive current half-wave generated in the lamp.
  • the smoothing capacitor CO is decoupled from the mains voltage via the decoupling diode D6.
  • the circuit arrangement also has an active harmonic filter, which consists of the series inductor L2 located in the positive line, the pump capacitor C2 and the decoupling diodes D5 and D6.
  • the pump capacitor C2 When the switching transistor T1 is switched “on”, the pump capacitor C2 is charged via the series inductor L2 up to the voltage level at the smoothing capacitor C0.
  • the charging current is taken from the network.
  • An energy part is thus stored in the longitudinal inductance L2 and is emitted to the single-ended high-frequency generator, the lamp and the smoothing capacitor CO after charging of the pump capacitor C2 has ended.
  • the amount of energy per cycle is proportional to the voltage time area at the series inductor L2 and is determined by the difference between the instantaneous mains voltage values and the voltage at the pump capacitor C2, which is present in negative polarity due to the preceding "switch-off" cycle. certainly.
  • the line current is modulated sinusoidally with each lamp cycle.
  • the energy output of the longitudinal inductor L2 takes place by demagnetizing the longitudinal inductor L2.
  • the voltage at the series inductor L2 reverses and reaches a voltage value equal to the difference between the voltage at the smoothing capacitor C0 and the respective instantaneous value of the mains voltage.
  • a second phase begins in the action of the pump capacitor C2.
  • the current flowing in the switching inductance L1 commutates from the switching transistor T1 partly to the pump capacitor C2 as a discharge and reversing current and partly to the oscillating capacitor C1 and the low-pressure discharge lamp, which thus receives its negative current half-wave.
  • the pump capacitor C2 thus acts as a switch-off relief network for the switching transistor T1.
  • the voltage at the collector or drain connection of the switching transistor T1 can therefore only change as quickly as the pump capacitor C2 with its resonance frequency, determined by the capacitance of the pump capacitor C2 and the inductance value of the switching inductance L1, is recharged. This limitation of the rise in voltage at the switching transistor T1 considerably reduces its turn-off losses.
  • the negative current half-wave in the oscillating capacitor C1 and the low-pressure discharge lamp LL1 is reduced by the current part which commutates from the switching inductance L1 as the charge-reversal current to the pump capacitor C2. This improves the crest factor of the lamp current and thus the service life of the low-pressure discharge lamp.
  • the electronic control circuit 6 of the switching transistor consists of an electronic oscillator and a pulse width modulator, which can be started and stopped electronically, and its pulse width or frequency via an electronic one Control signal is adjustable. This enables an electronic interface to be implemented, as is required for various user options.
  • the circuit part assigned to the low-pressure discharge lamp LL1 consists of the decoupling diodes D5.1 and D6.1, the switching inductance L1.1, the oscillating capacitor C1.1. and the heating capacitor C3.1.
  • the circuit part assigned to the low-pressure discharge lamp LL2 consists of the decoupling diodes D5.2 and D6.2, the switching inductance L1.2, the oscillating capacitor C1.2 and the heating capacitor C3.2.
  • FIG. 4 shows a modified exemplary embodiment of the circuit from FIG. 2.
  • two heating winding sections L3, L4 are provided, each of which lies between the connections E1 and H1 or E2 and H2 of the low-pressure discharge lamp LL1.
  • the current path leads, when the low-pressure discharge lamp LL1 is inserted, from the diode D6 via the connections H1 and E1 of the low-pressure discharge lamp LL1, the switching inductance L1 and the diode D5 to the switching transistor T1.
  • the path E1-H1 is bridged by the heating winding, while on the other hand the energy present at the switching inductance L1 can no longer be discharged.
  • a further diode D7 is therefore provided as no-load protection, which lies between the switching inductance L1 and the smoothing capacitor C0 and interrupts the inrush current path.
  • FIG. 5 to 7 show current and voltage diagrams of an actually implemented circuit arrangement according to FIG. 2.
  • FIG. 5 is an ozillogram for mains voltage and mains current of the circuit according to FIG. 2.
  • Current curve I shows an approximately sinusoidal curve of the mains current. Without that Harmonic filter in the circuit of Fig. 2 results in a current during 1/10 to 1/15 of the half wave. Such a current spike would lead to grid repercussions, which have to be limited due to legal regulations. Due to the harmonic filter, the maximum of the current is reduced and the current is distributed over the entire half-wave, so that the desired approximation to a sinusoidal current curve results.
  • FIG. 6 shows the harmonic analysis of the mains current shown in FIG. 5.
  • the harmonic component of the mains current is far below the limit values permitted by VDE / IEC.
  • FIG. 7 shows lamp current and lamp voltage of a circuit arrangement according to FIG. 2.
  • the curves of lamp current I and lamp voltage U each show a peak superimposed on a sine curve on the positive half-wave. This peak corresponds to the turn-on time of transistor T1.
  • the low-pressure discharge lamp can be operated with such a current or such a voltage without there being any disadvantageous side effects or a shorter service life.
  • FIG. 8 shows the basic structure of a further circuit arrangement for the high-frequency operation of a low-pressure discharge lamp LL1.
  • Reference numerals a - j in FIG. 8 are also used in FIGS. 9-11 to show the connection points of the various circuit blocks in FIG. 8.
  • the circuit arrangement includes a high-frequency filter 10, a mains rectifier 12, an active harmonic filter 13, a smoothing capacitor 14, a single-ended high-frequency lamp generator 15, control electronics 16, a driver circuit 17, an overvoltage monitor 18, a starting circuit 19 and an electronics supply 20.
  • Fig. 9 shows the circuit diagram of the circuit arrangement of the two additional secondary heating windings L3 and L4, which are connected to the heating coils E2, H2 and E1, H1 with the thyristors Q4 and Q5.
  • the connection depends on the operating state of the lamp.
  • a lamp which has not yet been ignited or is in the starting process shows an increased operating and ignition voltage, which is also available as a secondary voltage and is also available in the form of a winding on the windings L3 and L4 and is used as a trigger voltage.
  • the ignition point for the thyristors Q4 and Q5 is derived via the voltage divider R1 / R2 and R3 / R4.
  • the trigger voltage is no longer reached, so that the heating remains switched off. If the operating voltage of the lamp increases, e.g. B. at low operating temperatures or with a dimmed lamp, the trigger voltage is reached, whereby the heating of the filaments automatically switches on. If the heating coils fail due to an interruption, the diodes D12 and D13 prevent an impermissibly high current load on the voltage divider resistors.
  • the starting behavior can be further improved by increasing the switching frequency of the single-cycle high-frequency lamp generator, because each switching cycle delivers a heating current pulse.
  • the frequency is increased depending on the first time the electronics supply voltage is applied to the control electronics.
  • FIG. 9 also shows the overcurrent detection of the emitter current from T1 via the voltage drop across the resistor RO, which is connected in series with the emitter. If a certain current limit value is reached, the corresponding voltage drop acts on the control electronics 16 in such a way that the driver circuit 17 is switched off and thus the switching transistor T1 is switched off. This circuit arrangement thus acts as an electronic overcurrent protection.
  • the collector voltage of the switching transistor is switched to the trigger diode Q1 via the voltage divider R5 / R6 and the diode D15.
  • the trigger diode Q1 can also be switched via the diode D16 depending on the level of the electronics supply voltage.
  • the capacitor C13 prevents the trigger circuit from responding to voltage spikes that only occur for a short time and, when the trigger diode is switched through, provides the required ignition current for the thyristor Q2. If the thyristor Q2 is ignited by means of a trigger pulse, it drops into a latched state via the resistor R7.
  • FIG. 11 shows the circuit section of the circuit arrangement for the starting circuit 19 and for the electronic self-supply 20.
  • the capacitor C14 is charged via the resistor R10 and the diode D10.
  • a maximum permissible voltage value at C14 is specified via the voltage divider R8 / R9, at which the thyristor Q3 connects this voltage to the electronics supply.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Dc-Dc Converters (AREA)
  • Burglar Alarm Systems (AREA)
  • Slot Machines And Peripheral Devices (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Power Conversion In General (AREA)

Abstract

A circuit arrangement is specified for the high-frequency operation of one or more low-pressure discharge lamps connected in parallel with one another. The circuit arrangement has a mains rectifier with a downstream active harmonic filter, a downstream smoothing capacitor and a high-frequency generator allocated to each low-pressure discharge lamp. The high-frequency generator is a single-ended high- frequency generator which has one switching transistor (T1), one switching inductor (L1) and an oscillator capacitor (C1) and which is operated on the smoothing capacitor (C0), decoupled from the mains via two diodes (D5, D6). <IMAGE>

Description

Die Erfindung betrifft eine Schaltungsanordnung zum hochfrequenten Betrieb einer oder mehrerer parallel zueinander geschalteter Niederdruckentladungslampen nach dem Oberbegriff des Hauptanspruches.The invention relates to a circuit arrangement for the high-frequency operation of one or more low-pressure discharge lamps connected in parallel to one another according to the preamble of the main claim.

Derartige Schaltungsanordnungen sind an sich bekannt (DE-OS 36 23 749, DE-OS 36 11 611 und DE-OS 37 00 421). Diese Schaltungen können zwar eine Niederdruckentladungslampe hochfrequent speisen und die bestehenden Vorschriften bezüglich der Netzstromform erfüllen, erfordern dafür aber noch einen erheblichen Bauteileaufwand. Die gewünschten Schaltungseffekte in den bekannten Schaltungen beruhen auf der Funktion einer Gegentaktendstufe in Verbindung mit mindestens vier Dioden und drei Kondensatoren.Such circuit arrangements are known per se (DE-OS 36 23 749, DE-OS 36 11 611 and DE-OS 37 00 421). Although these circuits can feed a low-pressure discharge lamp at a high frequency and meet the existing regulations regarding the form of the mains current, they still require a considerable amount of components. The desired circuit effects in the known circuits are based on the function of a push-pull output stage in conjunction with at least four diodes and three capacitors.

WO 87/04891 betrifft ein Vorschaltgerät für Fluoreszensröhren, das einen Tiefpaßfilter, einen Brückengleichrichter, einen Glättungskondensator und Schaltungseinrichtungen umfaßt, wobei die niederfrequente Netzspannung gefiltert und gleichgerichtet wird und eine hochfrequente Wechselspannung durch periodisches Öffnen und Schließen der Schaltungseinrichtungen zum Betrieb der Lampe erzeugt wird.WO 87/04891 relates to a ballast for fluorescent tubes, which comprises a low-pass filter, a bridge rectifier, a smoothing capacitor and circuit devices, the low-frequency mains voltage being filtered and rectified and a high-frequency AC voltage being generated by periodically opening and closing the circuit devices for operating the lamp.

Aufgabe der Erfindung ist es, eine Schaltungsanordnung zum hochfrequenten Betrieb von Niederdruckentladungslampen zu schaffen, die mit einem minimalen Bauteileaufwand auskommt.The object of the invention is to provide a circuit arrangement for the high-frequency operation of low-pressure discharge lamps, which manages with a minimum of components.

Diese Aufgabe ist durch die in dem Kennzeichen des Hauptanspruches angegebenen Merkmale gelöst.This object is achieved by the features specified in the characterizing part of the main claim.

Die erfindungsgemäße Schaltungsanordnung kommt mit weniger Bauteilen als die bekannten Schaltungsanordnungen aus, da der Hochfrequenzgenerator als Eintakt-Hochfrequenzgenerator aufgebaut ist, der nur einen Schalttransistor, eine Schaltinduktivität und einen Schwingkondensator aufweist. Durch die Kombination dieses Eintakt-Hochfrequenzgenerators mit dem aktiven Oberschwingungsfilter, das eine Längsinduktivität, einen Pumpkondesator und zwei Entkopplungsdioden aufweist, kann ein annäherungsweise sinusförmiger Netzstrom erreicht werden, und andererseits ergeben sich ein Lampenstrom und eine Lampenspannung, die zum Betreiben der Niederdruckentladungslampe geeignet sind.The circuit arrangement according to the invention manages with fewer components than the known circuit arrangements, since the high-frequency generator is constructed as a single-ended high-frequency generator which has only one switching transistor, one switching inductance and one oscillating capacitor. By combining this single-ended high-frequency generator with the active harmonic filter, which has a series inductance, a pump capacitor and two decoupling diodes, an approximately sinusoidal mains current can be achieved, and on the other hand, a lamp current and a lamp voltage result that are suitable for operating the low-pressure discharge lamp.

Der Schalttransistor schaltet den Pumpkondensator zwischen der Längsinduktivität und einer der Entkopplungsdioden gegen Bezugspotential. Mit diesem aktiven Oberschwingungsfilter wird der Netzstrom mit jedem Lampentakt sinusförmig moduliert. Mit jedem Lampentakt wird während der Einschaltphase dem Netz eine zu dem jeweiligen Momentanwert der Netzspannung proportionale Energiemenge entnommen und dem Glättungskondensator über die eine der beiden Entkopplungsdioden zugeführt. Damit wird durch das Oberschwingungsfilter eine sinusförmig modulierte Netzstromaufnahme gewährleistet.The switching transistor switches the pump capacitor between the series inductance and one of the decoupling diodes against the reference potential. With this active harmonic filter, the mains current is modulated sinusoidally with every lamp cycle. Each time the lamp is switched on, an amount of energy proportional to the instantaneous value of the line voltage is drawn from the network and fed to the smoothing capacitor via one of the two decoupling diodes. This ensures a sinusoidally modulated mains current consumption through the harmonic filter.

Nach einer vorteilhaften Ausgestaltung der erfindungsgemäßen Schaltungsanordnung ist der Pumpkondensator über die beiden Entkopplungsdioden parallel zu der Schaltinduktivität geschaltet, so daß die Amplitude der negativen Stromhalbwelle in der Lampe reduziert wird und der Scheitelfaktor des Lampenstroms verbessert wird.According to an advantageous embodiment of the circuit arrangement according to the invention, the pump capacitor is connected in parallel with the switching inductance via the two decoupling diodes, so that the amplitude of the negative current half-wave in the lamp is reduced and the crest factor of the lamp current is improved.

Nach einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Schaltungsanordnung ist der Pumpkondensator vom Kollektor- bzw. Drainanschluß des Schalttransistors über die eine Entkopplungsdiode parallel zur Schaltinduktivität und der anderen Entkopplungsdiode geschaltet, wobei der Wiederanstieg der Spannung an dem Schalttransistor durch das Resonanzverhalten, bestimmt durch die Schaltinduktivität und den Pumpkondensator, vorgegeben ist. Dabei ist weiterhin vorteilhaft, wenn der Eintakt-Hochfrequenzgenerator in Resonanzfrequenz, bestimmt durch die Schaltinduktivität und den Pumpkondensator, betrieben ist. Durch diese Schaltung des Schalttransistors wird ein vorteilhaftes Ausschaltentlastungsnetzwerk geschaffen.According to a further advantageous embodiment of the circuit arrangement according to the invention, the pump capacitor is connected from the collector or drain connection of the switching transistor via the one decoupling diode in parallel to the switching inductance and the other decoupling diode, the rise in voltage at the switching transistor due to the resonance behavior, determined by the switching inductance and the pump capacitor. It is also advantageous if the single-ended high-frequency generator is operated in resonance frequency, determined by the switching inductance and the pump capacitor. This switching of the switching transistor creates an advantageous switch-off relief network.

Nach einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Schaltungsanordnung ist der Schalttransistor durch eine elektronische Steuerschaltung angesteuert, die in vorteilhafter Weise einen elektronischen Oszillator und einen Pulsbreitenmodulator aufweist. Dabei bildet die elektronische Steuerschaltung eine elektronische Schnittstelle. Der elektronische Oszillator und der Pulsbreitenmodulator können elektronisch gestartet und gestoppt werden und ihre Impulsbreite bzw. Frequenz ist über ein elektronisches Steuersignal einstellbar. Damit ergibt sich eine Schnittstelle, die für verschiedene Anwenderoptionen erwünscht ist.According to a further advantageous embodiment of the circuit arrangement according to the invention, the switching transistor is controlled by an electronic control circuit which advantageously has an electronic oscillator and a pulse width modulator. The electronic control circuit forms an electronic interface. The electronic oscillator and the pulse width modulator can be started and stopped electronically and their pulse width or frequency can be set via an electronic control signal. This creates an interface that is desired for various user options.

Wenn die Kapazität des Pumpkondensators den nach der Formel

Figure imgb0001

wobei :
   P (ges) = Lampenleistung
   T (Netz) = Netzfrequenz (Periodenzeit)
   T (Lampe) = Lampenfrequenz (Periodenzeit)
   û = Spitzenwert der Netzspannung (Amplitude)
   ω = Kreisfrequenz
   UO = Gleichspannung am Glättungskondensator
berechneten Maximalwert nicht überschreitet, wird gewährleistet, daß die aus dem Netz aufgenommene Leistung in dem Lampengenerator durch Lampenleistung und Schaltverluste abgenommen wird. Eine überschüssige Energiespeicherung und damit eine unzulässige Überhöhung der Spannung am Glättungskondensator werden somit vermieden.If the capacitance of the pump capacitor is according to the formula
Figure imgb0001

in which :
P (tot) = lamp power
T (grid) = grid frequency (period time)
T (lamp) = lamp frequency (period time)
û = peak value of the mains voltage (amplitude)
ω = angular frequency
U O = DC voltage at the smoothing capacitor
does not exceed the calculated maximum value, it is ensured that the power drawn from the network in the lamp generator is reduced by lamp power and switching losses. Excess energy storage and thus an impermissible increase in the voltage across the smoothing capacitor are thus avoided.

Eine weitere verbesserte Schaltungsanordnung ermöglicht den Start mit vorgeheizten Elektroden und bietet zudem entsprechende Sicherheitsfunktionen und den Schutz vor Überspannung und Überströmen, wie sie z.B. bei Ausfall einer Lampe auftreten können. Dazu weist die Schaltinduktivität zwei zusätzliche Sekundärwicklungen auf, die in Abhängigkeit von der Lampenspannung über je einen Thyristor auf die jeweilige Heizwendel der Lampe geschaltet werden und mit ihren Spannungen die Heizwendel heizen.Another improved circuit arrangement enables starting with preheated electrodes and also offers corresponding safety functions and protection against overvoltage and overcurrents, such as those e.g. if a lamp fails. For this purpose, the switching inductance has two additional secondary windings which, depending on the lamp voltage, are switched to the respective heating coil of the lamp via a thyristor and heat the heating coil with their voltages.

Nach einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Schaltungsanordnung ist die Steuerelektronik so ausgeführt, daß bei jedem erstmaligen Inbetriebsetzen der Schaltung die Schaltfrequenz des Eintakt-Hochfrequenzwandlers zunächst erhöht wird, um dann im 1/10-Sekundenbereich stetig auf die eigentliche Taktfrequenz reduziert zu werden, so daß bei jeder Neu-Inbetriebnahme ein erhöhter Heizstrom zur Verfügung steht.According to a further advantageous embodiment of the circuit arrangement according to the invention, the control electronics are designed such that each time the circuit is started up for the first time, the switching frequency of the single-ended high-frequency converter is first increased, in order then to be reduced continuously to the actual clock frequency in the 1/10 second range, so that an increased heating current is available for each new start-up.

Nach einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Schaltungsanordnung wird sowohl die Spannung am Kollektor des Schalttransistors als auch die Elektronik-Eigenversorgungsspannung in ihrer jeweiligen Höhe erfaßt und bei eventueller Überspannung durch Zünden eines Thyristors zum Kurzschließen der Anlaufschaltung und der Ansteuerung des Schalttransistors benutzt. Damit ist ein gefahrloses Außerbetriebsetzen der Schaltung möglich.According to a further advantageous embodiment of the circuit arrangement according to the invention, both the voltage at the collector of the switching transistor and the electronics intrinsic supply voltage are detected in their respective levels and, if overvoltage occurs, by firing a thyristor used to short-circuit the start-up circuit and the control of the switching transistor. This enables a safe shutdown of the circuit.

Nach einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Schaltungsanordung befindet sich in Reihe zum Emitter des Schalttransistors ein Widerstand, dessen Spannungsabfall bei Überströmen zum Ausschalten des Schalttransistors führt und somit eine Stromüberbeanspruchung verhindert.According to a further advantageous embodiment of the circuit arrangement according to the invention, there is a resistor in series with the emitter of the switching transistor, the voltage drop of which in the event of overcurrents leads to the switching transistor being switched off and thus preventing current overload.

Nach einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Schaltungsanordnung wird über einen Vorwiderstand aus der gleichgerichteten Netzspannung eine Elektronikvorsorgungsspannung abgeleitet, die bei Erreichen eines höchstzulässigen Grenzwertes zur Elektronikversorgungsspannung mit einem Thyristor durchgeschaltet wird, so daß dieser über den Elektronikversorgungsstrom in Selbsthaltung gehen kann. Durch diese Schaltung kann die erstmalige Elektronikversorgung mit mimimalem Aufwand solange realisiert werden, bis die taktabhänge Eigenversorgung die Spannungsversorgung übernehmen kann.According to a further advantageous embodiment of the circuit arrangement according to the invention, an electronic supply voltage is derived from the rectified mains voltage via a series resistor, which is switched through with a thyristor when the maximum permissible limit value for the electronic supply voltage is reached, so that the thyristor can hold its own via the electronic supply current. With this circuit, the first electronics supply can be implemented with minimal effort until the clock-dependent self-supply can take over the power supply.

Nach einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Schaltungsanordnung befindet sich eine weitere Sekundärwicklung entweder auf der Schaltinduktivität oder auf der Schutzinduktivität, über die eine Wechselspannung abgegriffen wird. Diese Wechselspannung - mit einer Einweggleichrichterschaltung gleichgerichtet - stellt dann die Eigen-Elektronikversorgungsspannung zur Verfügung.According to a further advantageous embodiment of the circuit arrangement according to the invention, there is a further secondary winding either on the switching inductance or on the protective inductance, via which an AC voltage is tapped. This AC voltage - rectified with a one-way rectifier circuit - then provides the electronics supply voltage.

Ausführungsbeispiele der Erfindung werden nun anhand der beiliegenden Zeichnungen beschrieben. Für gleiche Teile wurden gleiche Bezugszeichen gewählt. Es zeigen:

Fig. 1
ein Blockschaltbild der Schaltungsanordnung mit Oberschwingungsfilter für eine Niederdruckentladungslampe;
Fig. 2
ein Schaltbild einer Schaltungsanordnung mit Heizkondensator und mit Oberschwingungsfilter zum Betrieb einer Niederdruckentladungslampe;
Fig. 3
ein Schaltbild einer Schaltungsanordnung mit Heizkondensator und mit Oberschwingungsfilter zum Betrieb mit zwei parallel geschalteten Niederdruckentladungslampen;
Fig. 4
ein Schaltbild einer Schaltungsanordnung mit Heizwicklung und mit Oberschwingungsfilter zum Betrieb einer Niederdruckentladungslampe;
Fig. 5
Liniendiagramme für Netzstrom und -spannung in der Schaltungsanordnung nach Fig. 2;
Fig. 6
die harmonische Analyse des Netzstromes;
Fig. 7
Lampenstrom und -spannung in der Schaltungsanordnung nach Fig. 2;
Fig. 8
ein Blockschaltbild eines weiteren Ausführungsbeispiels der Schaltungsanordnung mit den einzelnen Schaltungsabschnitten;
Fig. 9
ein Schaltbild der Schaltungsanordnung der zwei zusätzlichen Sekundär-Heizwicklungen mit Thyristoraufschaltung auf die Heizwendeln und die Überstromerfassung;
Fig. 10
ein Schaltbild der Schaltungsanordnung zur Erfassung der Überspannung am Kollektor des Schalttransistors und an der Elektronikversorgung; und
Fig. 11
ein Schaltbild der Schaltungsanordnung zur Erzeugung der Elektronik-Eigenversorgungsspannung.
Embodiments of the invention will now be described with reference to the accompanying drawings. The same reference numerals have been chosen for the same parts. Show it:
Fig. 1
a block diagram of the circuit arrangement with harmonic filter for a low-pressure discharge lamp;
Fig. 2
a circuit diagram of a circuit arrangement with a heating capacitor and with harmonic filter for operating a low-pressure discharge lamp;
Fig. 3
a circuit diagram of a circuit arrangement with heating capacitor and with harmonic filter for operation with two low-pressure discharge lamps connected in parallel;
Fig. 4
a circuit diagram of a circuit arrangement with heating winding and with harmonic filter for operating a low-pressure discharge lamp;
Fig. 5
Line diagrams for mains current and voltage in the circuit arrangement according to FIG. 2;
Fig. 6
the harmonic analysis of the mains current;
Fig. 7
Lamp current and voltage in the circuit arrangement according to Fig. 2;
Fig. 8
a block diagram of another embodiment of the circuit arrangement with the individual circuit sections;
Fig. 9
a circuit diagram of the circuit arrangement of the two additional secondary heating windings with thyristor connection to the heating coils and the overcurrent detection;
Fig. 10
a circuit diagram of the circuit arrangement for detecting the overvoltage on the collector of the switching transistor and on the electronics supply; and
Fig. 11
a circuit diagram of the circuit arrangement for generating the electronics self-supply voltage.

Das Blockschaltbild in Fig. 1 gibt den Prinzipaufbau der Schaltungsanordnung für den hochfrequenten Betrieb einer Niederdruckentladungslampe LL1 wieder.The block diagram in FIG. 1 shows the basic structure of the circuit arrangement for the high-frequency operation of a low-pressure discharge lamp LL1.

Die Schaltungsanordnung beinhaltet ein Hochfrequenzfilter 1, einen Netzgleichrichter 2, einen Eintakt-Hochfrequenzgenerator mit einem Schalttransistor T1 und einer elektronischen Steuerschaltung 6 zur Ansteuerung des Eintakt-Hochfrequenzgenerators sowie einen Glättungskondensator 4 und ein aktives Oberschwingungsfilter 3.The circuit arrangement includes a high-frequency filter 1, a mains rectifier 2, a single-ended high-frequency generator with a switching transistor T1 and an electronic control circuit 6 for controlling the single-ended high-frequency generator, as well as a smoothing capacitor 4 and an active harmonic filter 3.

Das Oberschwingungsfilter 3 besteht aus einer Längsinduktivität L2, einem Pumpenkondensator C2, den Entkopplungsdioden D6 und D5 und dem Schalttransistor T1 des Eintakt-Hochfrequenzgenerators.The harmonic filter 3 consists of a series inductor L2, a pump capacitor C2, the decoupling diodes D6 and D5 and the switching transistor T1 of the single-ended high-frequency generator.

Fig. 2 zeigt das Schaltbild einer Schaltungsanordnung mit dem Oberschwingungsfilter 3 zum Betrieb der Niederdruckentladungslampe LL1. Am Eingang des Netzes befindet sich das Hochfrequenzfilter 1, dem der Netzgleichrichter 2 in 2-pulsiger, ungesteuerter Brückenschaltung folgt. Der über eine elektronische Steuerschaltung 6 betriebene Eintakt-Hochfrequenzgenerator besteht aus dem Schalttransistor T1, einer Schaltinduktivität L1 und einem Schwingkondensator C1.FIG. 2 shows the circuit diagram of a circuit arrangement with the harmonic filter 3 for operating the low-pressure discharge lamp LL1. The high-frequency filter 1 is located at the input of the network, followed by the network rectifier 2 in a 2-pulse, uncontrolled bridge circuit. The single-ended high-frequency generator operated via an electronic control circuit 6 consists of the switching transistor T1, a switching inductance L1 and a resonant capacitor C1.

Die Elektroden der Lampe LL1 sind mit einer Seite E1, H1 an die Schaltinduktivität L1 ,und den Glättungskondensator CO und mit der anderen Seite E2, H2 an den Schwingkondensator C1 angeschlossen. Die Elektroden der Heizkreise H1 und H2 können, wie in Fig. 2 gezeigt ist, über einen Heizkondensator C3 verbunden werden; oder es kann getrennt mit E1-H1 und E2-H2 jeweils eine Heizwicklung als Teilwicklung der Schaltinduktivität L1 angeschlossen sein, wie in Fig. 4 gezeigt ist.The electrodes of the lamp LL1 are connected on one side E1, H1 to the switching inductance L1, and the smoothing capacitor CO and on the other side E2, H2 to the oscillating capacitor C1. The electrodes of the heating circuits H1 and H2 can, as shown in FIG. 2, be connected via a heating capacitor C3; or a heating winding can be connected separately with E1-H1 and E2-H2 as part winding of the switching inductance L1, as shown in FIG. 4.

Der hochfrequent betriebene Eintaktwandler liefert bei leitendem Schalttransistor über den Schwingungskondensator C1 aus dem Pluspol des Glättungskondensators C0 einen Anteil der positiven Stromhalbwelle der Lampe. Gleichzeitig lädt die Schaltinduktivität L1 einen Energieteil proportional der Einschaltzeit des Schalttransistors T1. Im ausgeschalteten Zustand des Schalttransistors T1 bildet sich über Lampe, Schwingkondensator C1 und Schaltinduktivität L1 ein Schwingkreis aus, der zunächst bei gleicher Stromrichtung in der Schaltinduktivität L1 die negative Stromhalbwelle der Lampe und danach bei Stromrichtungsumkehr in der Schaltinduktivität L1 durch Entladen des Schwingungskondensators C1 den restlichen Anteil der positiven Stromhalbwelle in der Lampe erzeugt. Der Glättungskondensator CO ist dabei über die Entkopplungsdiode D6 von der Netzspannung entkoppelt.The high-frequency single-ended converter supplies a portion of the positive current half-wave of the lamp via the oscillating capacitor C1 from the positive pole of the smoothing capacitor C0 when the switching transistor is conductive. At the same time, the switching inductance L1 charges an energy part proportional to the switch-on time of the switching transistor T1. In the switched-off state of the switching transistor T1, an oscillating circuit is formed via the lamp, the resonance capacitor C1 and the switching inductance L1, which initially produces the negative current half-wave of the lamp with the same current direction in the switching inductance L1 and then when the current direction is reversed in the switching inductance L1 by discharging the oscillation capacitor C1 the positive current half-wave generated in the lamp. The smoothing capacitor CO is decoupled from the mains voltage via the decoupling diode D6.

Die Schaltungsanordnung weist weiterhin ein aktives Oberschwingungsfilter auf, das aus der in der Plusleitung befindlichen Längsinduktivität L2, dem Pumpkondensator C2 und den Entkopplungsdioden D5 und D6 besteht.The circuit arrangement also has an active harmonic filter, which consists of the series inductor L2 located in the positive line, the pump capacitor C2 and the decoupling diodes D5 and D6.

Die Funktionsweise des aktiven Oberschwingungsfilters in Verbindung mit dem hochfrequent betriebenen Eintakt-Lampengenerator ist im folgenden näher erläutert.The mode of operation of the active harmonic filter in conjunction with the high-frequency single-ended lamp generator is explained in more detail below.

Beim "Ein"-schalten des Schalttransistors T1 wird der Pumpkondensator C2 über die Längsinduktivität L2 bis zur Spannungshöhe an dem Glättungskondensator C0 aufgeladen. Der Ladestrom wird dem Netz entnommen. Damit ist in der Längsinduktivität L2 ein Energieteil gespeichert, der nach beendeter Aufladung des Pumpkondensators C2 an den Eintakt-Hochfrequenzgenerator, die Lampe und den Glättungskondensator CO abgegeben wird. Die Energiemenge je Takt ist dabei proportional zu der Spannungszeitfläche an der Längsinduktivität L2 und wird durch die Differenz der Netzspannungsmomentanwerte und der Spannung an dem Pumpkondensator C2, die durch den vorweggehenden "Ausschalt"-takt in negativer Polarität ansteht, bestimmt. Durch den Einfluß der Netzspannungsmomentanwerte wird der Netzstrom mit jedem Lampentakt sinusförmig moduliert. Die Energieabgabe der Längsinduktivität L2 erfolgt durch Entmagnetisieren der Längsinduktivität L2. Dazu polt sich die Spannung an der Längsinduktivität L2 um und erreicht einen Spannungswert gleich der Differenz aus der Spannung am Glättungskondensator C0 und dem jeweiligen Momentanwert der Netzspannung.When the switching transistor T1 is switched "on", the pump capacitor C2 is charged via the series inductor L2 up to the voltage level at the smoothing capacitor C0. The charging current is taken from the network. An energy part is thus stored in the longitudinal inductance L2 and is emitted to the single-ended high-frequency generator, the lamp and the smoothing capacitor CO after charging of the pump capacitor C2 has ended. The amount of energy per cycle is proportional to the voltage time area at the series inductor L2 and is determined by the difference between the instantaneous mains voltage values and the voltage at the pump capacitor C2, which is present in negative polarity due to the preceding "switch-off" cycle. certainly. Due to the influence of the line voltage instantaneous values, the line current is modulated sinusoidally with each lamp cycle. The energy output of the longitudinal inductor L2 takes place by demagnetizing the longitudinal inductor L2. For this purpose, the voltage at the series inductor L2 reverses and reaches a voltage value equal to the difference between the voltage at the smoothing capacitor C0 and the respective instantaneous value of the mains voltage.

Mit dem "Aus"-schalten des Schalttransistors T1 beginnt eine zweite Phase in der Wirkung des Pumpkondensators C2. Der in der Schaltinduktivität L1 fließende Strom kommutiert vom Schalttransistor T1 zum Teil auf den Pumpkondensator C2 als Entlade- und Umschwingstrom und zum anderen Teil auf den Schwingkondensator C1 und die Niederdruckentladungslampe, die damit ihre negative Stromhalbwelle erhält. Der Pumpkondensator C2 wirkt somit als Ausschaltentlastungsnetzwerk für den Schalttransistor T1. Die Spannung am Kollektor- bzw. Drainanschluß des Schalttransistors T1 kann sich damit nur so schnell ändern, wie der Pumpkondensator C2 mit seiner Resonanzfrequenz, bestimmt durch die Kapazität des Pumpkondensators C2 und den Induktivitätswert der Schaltinduktivität L1, umgeladen wird. Durch diese Begrenzung des Wiederanstiegs der Spannung am Schalttransistor T1 werden dessen Ausschaltverluste erheblich reduziert.With the "switching off" of the switching transistor T1, a second phase begins in the action of the pump capacitor C2. The current flowing in the switching inductance L1 commutates from the switching transistor T1 partly to the pump capacitor C2 as a discharge and reversing current and partly to the oscillating capacitor C1 and the low-pressure discharge lamp, which thus receives its negative current half-wave. The pump capacitor C2 thus acts as a switch-off relief network for the switching transistor T1. The voltage at the collector or drain connection of the switching transistor T1 can therefore only change as quickly as the pump capacitor C2 with its resonance frequency, determined by the capacitance of the pump capacitor C2 and the inductance value of the switching inductance L1, is recharged. This limitation of the rise in voltage at the switching transistor T1 considerably reduces its turn-off losses.

Die negative Stromhalbwelle im Schwingkondensator C1 und der Niederdruckentladungslampe LL1 wird um den Stromteil reduziert, der von der Schaltinduktivität L1 als Umladestrom auf den Pumpkondesator C2 kommutiert. Damit verbessert sich der Scheitelfaktor des Lampenstroms und somit die Lebensdauer der Niederdruckentladungslampe.The negative current half-wave in the oscillating capacitor C1 and the low-pressure discharge lamp LL1 is reduced by the current part which commutates from the switching inductance L1 as the charge-reversal current to the pump capacitor C2. This improves the crest factor of the lamp current and thus the service life of the low-pressure discharge lamp.

Die elektronische Steuerschaltung 6 des Schalttransistors besteht aus einem elektronischen Oszillator und einem Pulsbreitenmodulator, der elektronisch gestartet und gestoppt werden kann und dessen Pulsbreite bzw. Frequenz über ein elektronisches Steuersignal einstellbar ist. Dadurch läßt sich eine elektronische Schnittstelle realisieren, wie sie für verschiedene Anwenderoptionen erforderlich ist.The electronic control circuit 6 of the switching transistor consists of an electronic oscillator and a pulse width modulator, which can be started and stopped electronically, and its pulse width or frequency via an electronic one Control signal is adjustable. This enables an electronic interface to be implemented, as is required for various user options.

Fig. 3 zeigt eine Schaltungsanordnung zum hochfrequenten Betreiben von zwei parallel geschalteten Niederdruckentladungslampen LL1 und LL2. Der der Niederdruckentladungslampe LL1 zugeordnete Schaltungsteil besteht aus den Entkopplungsdioden D5.1 und D6.1, der Schaltinduktivität L1.1, dem Schwingkondensator C1.1. und dem Heizkondensator C3.1. Der der Niederdruckentladungslampe LL2 zugeordnete Schaltungsteil besteht aus den Entkopplungsdioden D5.2 und D6.2, der Schaltinduktivität L1.2, dem Schwingkondensator C1.2 und dem Heizkondensator C3.2.3 shows a circuit arrangement for the high-frequency operation of two low-pressure discharge lamps LL1 and LL2 connected in parallel. The circuit part assigned to the low-pressure discharge lamp LL1 consists of the decoupling diodes D5.1 and D6.1, the switching inductance L1.1, the oscillating capacitor C1.1. and the heating capacitor C3.1. The circuit part assigned to the low-pressure discharge lamp LL2 consists of the decoupling diodes D5.2 and D6.2, the switching inductance L1.2, the oscillating capacitor C1.2 and the heating capacitor C3.2.

Fig. 4 zeigt ein abgewandeltes Ausführungsbeispiel der Schaltung von Fig. 2. Zur Beheizung der Niederdruckentladungslampe LL1 sind zwei Heizwicklungsabschnitte L3, L4 vorgesehen, die jeweils zwischen den Anschlüssen E1 und H1 bzw. E2 und H2 der Niederdruckentladungslampe LL1 liegen. Bei dieser Schaltungsanordnung führt der Stromweg bei eingesetzter Niederdruckentladungslampe LL1 von der Diode D6 über die Anschlüsse H1 und E1 der Niederdruckentladungslampe LL1, die Schaltinduktivität L1 und die Diode D5 zu dem Schalttransistor T1. Wenn die Niederdruckentladungslampe LL1 aus der Schaltung herausgenommen wird, wird die Strecke E1 - H1 durch die Heizwicklung überbrückt, während andererseits die an der Schaltinduktivität L1 anstehende Energie nicht mehr entladen werden kann. Daher ist als Leerlaufschutz eine weitere Diode D7 vorgesehen, die zwischen der Schaltinduktivität L1 und dem Glättungskondensator C0 liegt und den Einschaltstromweg unterbricht.FIG. 4 shows a modified exemplary embodiment of the circuit from FIG. 2. For heating the low-pressure discharge lamp LL1, two heating winding sections L3, L4 are provided, each of which lies between the connections E1 and H1 or E2 and H2 of the low-pressure discharge lamp LL1. In this circuit arrangement, the current path leads, when the low-pressure discharge lamp LL1 is inserted, from the diode D6 via the connections H1 and E1 of the low-pressure discharge lamp LL1, the switching inductance L1 and the diode D5 to the switching transistor T1. When the low-pressure discharge lamp LL1 is removed from the circuit, the path E1-H1 is bridged by the heating winding, while on the other hand the energy present at the switching inductance L1 can no longer be discharged. A further diode D7 is therefore provided as no-load protection, which lies between the switching inductance L1 and the smoothing capacitor C0 and interrupts the inrush current path.

Die Fig. 5 bis 7 zeigen Strom- und Spannungsdiagramme einer tatsächlich ausgeführten Schaltungsanordnung nach Fig. 2. Fig. 5 ist ein Ozillogramm für Netzspannung und Netzstrom der Schaltung nach Fig. 2. Die Stromkurve I zeigt einen annäherungsweise sinusförmigen Verlauf des Netzstroms. Ohne das Oberschwingungsfilter in der Schaltung von Fig. 2 ergibt sich ein Strom während 1/10 bis 1/15 der Halbwelle. Eine solche Stromspitze würde zu Netzrückwirkungen führen, die aufgrund von gesetzlichen Regelungen eingegrenzt werden müssen. Aufgrund des Oberschwingungsfilters wird das Maximum des Stromes verkleinert und der Strom wird auf die ganze Halbwelle verteilt, so daß sich die gewünschte Annäherung an eine sinusförmige Stromkurve ergibt.5 to 7 show current and voltage diagrams of an actually implemented circuit arrangement according to FIG. 2. FIG. 5 is an ozillogram for mains voltage and mains current of the circuit according to FIG. 2. Current curve I shows an approximately sinusoidal curve of the mains current. Without that Harmonic filter in the circuit of Fig. 2 results in a current during 1/10 to 1/15 of the half wave. Such a current spike would lead to grid repercussions, which have to be limited due to legal regulations. Due to the harmonic filter, the maximum of the current is reduced and the current is distributed over the entire half-wave, so that the desired approximation to a sinusoidal current curve results.

Fig. 6 zeigt die harmonische Analyse des Netzstromes, der in Fig. 5 gezeigt ist. Der Oberschwingungsanteil des Netzstromes liegt dabei weit unter den nach VDE/IEC zulässigen Grenzwerten.FIG. 6 shows the harmonic analysis of the mains current shown in FIG. 5. The harmonic component of the mains current is far below the limit values permitted by VDE / IEC.

Fig. 7 zeigt Lampenstrom und Lampenspannung einer Schaltungsanordnung nach Fig. 2. Die Kurven des Lampenstroms I und der Lampenspannung U zeigen jeweils auf der positiven Halbwelle eine einer Sinuskurve überlagerte Spitze. Diese Spitze entspricht der Einschaltzeit des Transistors T1. In der Praxis hat sich gezeigt, daß die Niederdruckentladungslampe mit einem derartigen Strom bzw. einer derartigen Spannung betrieben werden kann, ohne daß sich nachteilige Nebenwirkungen oder eine kürzere Lebensdauer ergeben würde.FIG. 7 shows lamp current and lamp voltage of a circuit arrangement according to FIG. 2. The curves of lamp current I and lamp voltage U each show a peak superimposed on a sine curve on the positive half-wave. This peak corresponds to the turn-on time of transistor T1. In practice, it has been shown that the low-pressure discharge lamp can be operated with such a current or such a voltage without there being any disadvantageous side effects or a shorter service life.

Das Blockschaltbild in Fig. 8 gibt den Prinzipaufbau einer weiteren Schaltungsanordnung für den hochfrequenten Betrieb einer Niederdruckentladungslampe LL1 wieder. Die Bezugszeichen a - j in Fig. 8 sind auch in Fig. 9 - 11 verwendet, um die Verbindungspunkte der verschiedenen Schaltungsblöcke in Fig. 8 zu zeigen. Die Schaltungsanordnung beinhaltet ein Hochfrequenzfilter 10, einen Netzgleichrichter 12, ein aktives Oberschwingungsfilter 13, einen Glättungskondensator 14, einen Eintakt-Hochfrequenz-Lampengenerator 15, eine Steuerelektronik 16, eine Treiberschaltung 17, eine Überspannungsüberwachung 18, eine Anlaufschaltung 19 und eine Elektronikversorgung 20.The block diagram in FIG. 8 shows the basic structure of a further circuit arrangement for the high-frequency operation of a low-pressure discharge lamp LL1. Reference numerals a - j in FIG. 8 are also used in FIGS. 9-11 to show the connection points of the various circuit blocks in FIG. 8. The circuit arrangement includes a high-frequency filter 10, a mains rectifier 12, an active harmonic filter 13, a smoothing capacitor 14, a single-ended high-frequency lamp generator 15, control electronics 16, a driver circuit 17, an overvoltage monitor 18, a starting circuit 19 and an electronics supply 20.

Fig. 9 zeigt das Schaltbild der Schaltungsanordnung der zwei zusätzlichen Sekundär-Heizwicklungen L3 und L4, die mit den Thyristoren Q4 und Q5 auf die Heizwendeln E2, H2 und E1, H1 geschaltet werden. Die Aufschaltung ist abhängig von dem Betriebszustand der Lampe. Eine noch nicht gezündete oder im Startvorgang befindliche Lampe zeigt eine erhöhte Betriebs- und Zündspannung, die als Sekundär-Spannung auch an den Wicklungen L3 und L4 transformiert zur Verfügung steht und als Triggerspannung benutzt wird. Über den Spannungsteiler R1/R2 und R3/R4 wird der Zündpunkt für die Thyristoren Q4 und Q5 abgeleitet.Fig. 9 shows the circuit diagram of the circuit arrangement of the two additional secondary heating windings L3 and L4, which are connected to the heating coils E2, H2 and E1, H1 with the thyristors Q4 and Q5. The connection depends on the operating state of the lamp. A lamp which has not yet been ignited or is in the starting process shows an increased operating and ignition voltage, which is also available as a secondary voltage and is also available in the form of a winding on the windings L3 and L4 and is used as a trigger voltage. The ignition point for the thyristors Q4 and Q5 is derived via the voltage divider R1 / R2 and R3 / R4.

Bei Nennbetriebsspannung der Lampe wird die Triggerspannung nicht mehr erreicht, so daß die Heizung dafür ständig ausgeschaltet bleibt. Steigt die Betriebsspannung der Lampe, z. B. bei tiefen Betriebstemperaturen oder bei gedimmter Lampe, wird die Triggerspannung erreicht, wodurch sich die Heizung der Wendeln automatisch zuschaltet. Bei Ausfall der Heizwendeln auf Unterbrechung verhindern die Dioden D12 und D13 eine unzulässig hohe Strombeanspruchung der Spannungsteilerwiderstände.At the nominal operating voltage of the lamp, the trigger voltage is no longer reached, so that the heating remains switched off. If the operating voltage of the lamp increases, e.g. B. at low operating temperatures or with a dimmed lamp, the trigger voltage is reached, whereby the heating of the filaments automatically switches on. If the heating coils fail due to an interruption, the diodes D12 and D13 prevent an impermissibly high current load on the voltage divider resistors.

Das Startverhalten kann durch Erhöhung der Schaltfrequenz des Eintakt-Hochfrequenz-Lampengenerators weiter verbessert werden, denn jeder Schalttakt liefert einen Heizstromimpuls. Die Frequenzerhöhung ist in Abhängigkeit vom jeweils erstmaligen Anlegen der Elektronikversorgungsspannung an die Steuerelektronik realisiert.The starting behavior can be further improved by increasing the switching frequency of the single-cycle high-frequency lamp generator, because each switching cycle delivers a heating current pulse. The frequency is increased depending on the first time the electronics supply voltage is applied to the control electronics.

Fig. 9 zeigt weiterhin die Überstromerfassung des Emitterstromes von T1 über den Spannungsabfall an dem Widerstand RO, der in Reihe zum Emitter geschaltet ist. Wird ein bestimmter Stromgrenzwert erreicht, wirkt der entsprechende Spannungsabfall auf die Steuerelektronik 16 in der Art ein, daß die Treiberschaltung 17 abgeschaltet und damit der Schalttransistor T1 ausgeschaltet wird. Diese Schaltungsanordnung wirkt somit als eine elektronische Überstromsicherung.FIG. 9 also shows the overcurrent detection of the emitter current from T1 via the voltage drop across the resistor RO, which is connected in series with the emitter. If a certain current limit value is reached, the corresponding voltage drop acts on the control electronics 16 in such a way that the driver circuit 17 is switched off and thus the switching transistor T1 is switched off. This circuit arrangement thus acts as an electronic overcurrent protection.

Fig. 10 zeigt einen Schaltungsausschnitt der Schaltungsanordnung zur Überspannungserfassung. Die Kollektorspannung des Schalttransistors wird über den Spannungsteiler R5/R6 und die Diode D15 auf die Triggerdiode Q1 geschaltet. In logischer "ODER"-Verknüpfung kann die Triggerdiode Q1 in Abhängigkeit von der Höhe der Elektronikversorgungsspannung auch über die Diode D16 geschaltet werden. Der Kondensator C13 verhindert dabei ein Ansprechen der Triggerschaltung auf nur kurzfristig auftretende Spannungsspitzen und bietet bei Durchschaltung der Triggerdiode den erforderlichen Zündstrom für den Thyristor Q2. Wird der Thyristor Q2 mittels eines Triggerimpulses gezündet, so fällt er über den Widerstand R7 in Selbsthaltung.10 shows a circuit section of the circuit arrangement for overvoltage detection. The collector voltage of the switching transistor is switched to the trigger diode Q1 via the voltage divider R5 / R6 and the diode D15. In a logical "OR" combination, the trigger diode Q1 can also be switched via the diode D16 depending on the level of the electronics supply voltage. The capacitor C13 prevents the trigger circuit from responding to voltage spikes that only occur for a short time and, when the trigger diode is switched through, provides the required ignition current for the thyristor Q2. If the thyristor Q2 is ignited by means of a trigger pulse, it drops into a latched state via the resistor R7.

Gleichzeitig schließt er über die Diode D17 den Ausgang der Steuerelektronik und über die Diode D18 den Ausgang der Anlaufschaltung kurz. Damit ist der Eintakt-Hochfrequenz-Lampengenerator abgeschaltet. Ein erneuter Start der Lampe ist erst nach erfolgter Netztrennung, d.h. durch Aufheben der Selbsthaltung des Thyristorstromes Q2, möglich.At the same time, it short-circuits the output of the control electronics via diode D17 and the output of the start-up circuit via diode D18. The single-ended high-frequency lamp generator is now switched off. The lamp cannot be restarted until the mains have been disconnected, i.e. by canceling the latching of the thyristor current Q2.

Fig. 11 zeigt den Schaltungsausschnitt der Schaltungsanordnung zur Anlaufschaltung 19 und zur Elektronik-Selbstversorgung 20. Mit jedem Einschalten der Netzspannung wird der Kondensator C14 über den Widerstand R10 und die Diode D10 aufgeladen. Über den Spannungsteiler R8/R9 wird ein maximal zulässiger Spannungswert an C14 vorgegeben, bei dem der Thyristor Q3 diese Spannung auf die Elektronikversorgung zuschaltet.11 shows the circuit section of the circuit arrangement for the starting circuit 19 and for the electronic self-supply 20. Each time the mains voltage is switched on, the capacitor C14 is charged via the resistor R10 and the diode D10. A maximum permissible voltage value at C14 is specified via the voltage divider R8 / R9, at which the thyristor Q3 connects this voltage to the electronics supply.

Damit kann der Eintakt-Hochfrequenz-Lampengenerator anschwingen und nach dem Sperrwandler-Prinzip über die magnetisch gekoppelten Spulen L1-L5 bzw. alternativ L6-L5 die Elektronik-Eigenversorgung übernehmen. Die Spannungsstabilisation erfolgt im Block 20 (Fig. 8) in einfacher Art mit Hilfe eines Längstransistors.This allows the single-ended high-frequency lamp generator to oscillate and take over the electronics self-supply according to the flyback converter principle via the magnetically coupled coils L1-L5 or alternatively L6-L5. The voltage stabilization takes place in block 20 (FIG. 8) in a simple manner with the aid of a series transistor.

Claims (13)

  1. A circuit for the high-frequency operation of one or more low-pressure discharge lamps connected in parallel, the circuit comprising a mains rectifier (2) followed by an active harmonic filter (3), followed by a smoothing capacitor (C0) and a high-frequency generator associated with each low-pressure discharge lamp (LL1), characterised in that the high-frequency generator is a single-cycle high-frequency generator comprising a switching transistor (T1), a switching inductance (L1) and an oscillating capacitor (C1),
    the active harmonic filter (3) comprises a series inductance (L2), a pump capacitor (C2) and two
    decoupling diodes (D5, D6),
    the first decoupling diode (D5) being situated between the oscillating capacitor (C1) and the switching transistor (T1) and
    the second decoupling diode (D6) being disposed between the smoothing capacitor (C0) and the mains voltage, and the pump capacitor (C2) being charged directly from the mains with the switching on of the switching transistor (T1).
  2. A circuit according to claim 1, characterised in that the pump capacitor (C2) is connected in parallel to the switching inductance (L1) via the two decougling diodes (D5, D6).
  3. A circuit according to claim 1 or 2, characterised in that the re-rise of the voltage at the switching transistor (T1) is determined by the resonance characteristic governed by the switching inductance (L1) and the pump capacitor (C2).
  4. A circuit according to any one of claims 1 to 3, characterised in that the single-cycle high-frequency generator is operated at resonance frequency governed by the switching inductance (L1) and the oscillating capacitor (C1).
  5. A circuit according to any one of claims 1 to 4, characterised in that the switching transistor (T1) is controlled by an electronic control circuit (6).
  6. A circuit according to claim 5, characterised in that the electronic control circuit (6) forms an electronic interface.
  7. A circuit according to claim 6, characterised in that the control circuit (6) comprises an electronic oscillator and a pulse-width modulator.
  8. A circuit according to any one of claims 1 to 7, characterised in that the switching inductance (L1) comprises two additional secondary windings (L3) and (L4) each switched to the associated lamp filament via a thyristor (Q4, Q5) in dependence on the lamp voltage.
  9. A circuit according to claim 8, characterised in that by means of an electronic control unit (16), whenever the circuit is operated for the first time, the switching frequency of the single-cycle high-frequency generator is increased and then continuously reduced to the actual clock frequency in the 1/10 second range.
  10. A circuit according to claim 8 or 9, characterised in that both the overvoltage at the collector of the switching transistor (T1) and the overvoltage of an electronic power supply (10) are used, via a voltage divider (R5/R6) and a third diode (D15), in the case of the former, and via a fourth diode (D16) in the case of the latter, for triggering via a trigger diode (Q1) of another thyristor (Q2) which in turn renders inoperative a starting circuit (19) and the control circuit (16) of the switching transistor.
  11. A circuit according to claim 8 or 9, characterised in that to protect the circuit from overcurrents, the emitter current of the switching transistor (T1) is detected as a voltage field at a protective resistor (RO) and a signal corresponding to the voltage drop is fed to the control circuit (16) which switches off the switching transistor when the voltage drop exceeds a predetermined value.
  12. A circuit according to claim 8 or 9, characterised in that when the mains voltage is applied the circuit automatically builds up the electronic power supply voltage to the maximum permissible limit via a build-up resistor (R10) and a build-up diode (D10), at a capacitor (C14), in order then to be switched to the electronic power supply (20) by means of an additional thyristor (Q3).
  13. A circuit according to any one of claims 8 to 12, characterised in that on each lamp cycle an AC voltage is tapped off via another secondary winding (L5) on the switching inductance (L1) or on a protective inductance (L6 ) and is made available as an internal electronic power supply via rectifier (D19).
EP90104513A 1989-03-16 1990-03-09 Circuit Expired - Lifetime EP0389847B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP89104702 1989-03-16
EP89104702 1989-03-16

Publications (3)

Publication Number Publication Date
EP0389847A2 EP0389847A2 (en) 1990-10-03
EP0389847A3 EP0389847A3 (en) 1992-03-04
EP0389847B1 true EP0389847B1 (en) 1995-02-15

Family

ID=8201092

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90104513A Expired - Lifetime EP0389847B1 (en) 1989-03-16 1990-03-09 Circuit

Country Status (10)

Country Link
US (1) US5070276A (en)
EP (1) EP0389847B1 (en)
JP (1) JPH03173347A (en)
KR (1) KR900015582A (en)
CN (1) CN1024979C (en)
AT (1) ATE118666T1 (en)
CA (1) CA2012441A1 (en)
DE (1) DE59008453D1 (en)
ES (1) ES2068266T3 (en)
IN (1) IN171097B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4217822A1 (en) * 1991-10-18 1993-04-22 Heinrich Korte Switching circuit for HF low pressure discharge lamp - uses series oscillator resonated at characteristic frequency for lamp ignition
TW339496B (en) * 1994-06-22 1998-09-01 Philips Electronics Nv Method and circuit arrangement for operating a high-pressure discharge lamp
FI96734C (en) 1994-11-22 1996-08-12 Helvar Oy Interference filter for a discharge lamp's electronic connection device
US5682086A (en) * 1995-10-05 1997-10-28 Yin Nan Enterprises Co., Ltd. Dynamic filter for an electronic ballast with a parallel-load resonant inverter
US6137234A (en) * 1999-10-18 2000-10-24 U.S. Philips Corporation Circuit arrangement
US6396220B1 (en) * 2001-05-07 2002-05-28 Koninklijke Philips Electronics N.V. Lamp ignition with compensation for parasitic loading capacitance
US7954961B2 (en) * 2005-06-30 2011-06-07 Koninklijke Philips Electronics N.V. Method for driving a high-pressure gas discharge lamp of a projector system
DK2523305T3 (en) * 2011-05-12 2018-01-15 Moog Unna Gmbh EMERGENCY ENERGY SUPPLY AND EMERGENCY PROCEDURE
CN111243825B (en) * 2018-11-29 2023-06-16 阿尔贝特·莫伊雷尔 Device for demagnetizing ferromagnetic material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3266600D1 (en) * 1981-02-21 1985-11-07 Emi Plc Thorn Lamp driver circuits
JPS59128128A (en) * 1983-01-13 1984-07-24 Matsushita Electric Works Ltd Loading method
DE3303374A1 (en) * 1983-02-02 1984-08-02 Rheintechnik Weiland & Kaspar Kg, 6680 Neunkirchen Power supply circuit for fluorescent tubes
DE3312572A1 (en) * 1983-04-08 1984-10-18 Trilux-Lenze Gmbh + Co Kg, 5760 Arnsberg Electronic ballast for a fluorescent lamp
SE444496B (en) * 1984-08-02 1986-04-14 Innocap Ab CLUTCH DEVICE FOR GAS EMISSION POWER DRIVING
US4873471A (en) * 1986-03-28 1989-10-10 Thomas Industries Inc. High frequency ballast for gaseous discharge lamps
DE3611611A1 (en) * 1986-04-07 1987-10-08 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh CIRCUIT ARRANGEMENT FOR HIGH-FREQUENCY OPERATION OF A LOW-PRESSURE DISCHARGE LAMP
DE3623749A1 (en) * 1986-07-14 1988-01-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh CIRCUIT ARRANGEMENT FOR OPERATING LOW-PRESSURE DISCHARGE LAMPS
DE3700421A1 (en) * 1987-01-08 1988-07-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh CIRCUIT ARRANGEMENT FOR OPERATING A LOW-PRESSURE DISCHARGE LAMP
US4904903A (en) * 1988-04-05 1990-02-27 Innovative Controls, Inc. Ballast for high intensity discharge lamps

Also Published As

Publication number Publication date
DE59008453D1 (en) 1995-03-23
KR900015582A (en) 1990-10-27
IN171097B (en) 1992-07-18
US5070276A (en) 1991-12-03
CA2012441A1 (en) 1990-09-16
ATE118666T1 (en) 1995-03-15
EP0389847A3 (en) 1992-03-04
CN1045677A (en) 1990-09-26
CN1024979C (en) 1994-06-08
ES2068266T3 (en) 1995-04-16
EP0389847A2 (en) 1990-10-03
JPH03173347A (en) 1991-07-26

Similar Documents

Publication Publication Date Title
DE3587792T2 (en) Electronic ballast for fluorescent lamps.
DE69019648T2 (en) Device for supplying a fluorescent lamp.
DE68927334T2 (en) Control circuits for fluorescent lamps
DE4002334C2 (en) Circuit for operating an electric discharge lamp in a motor vehicle
DE4420182B4 (en) Power supply apparatus
DE60006046T2 (en) Ballast for high voltage gas discharge lamp
DE69719076T2 (en) ELECTRONIC BALLAST WITH &#34;VALLEY-FILL&#34; PERFORMANCE FACTOR CORRECTION
EP0522266A1 (en) Overvoltage protected ballast
DE3246454A1 (en) INVERTER WITH A LOAD CIRCUIT CONTAINING A SERIES RESONANCE CIRCUIT AND A DISCHARGE LAMP
EP0439240B1 (en) Electronic ballast
EP0062276B1 (en) Ballast circuit for the operation of low-pressure discharge lamps
DE2827693A1 (en) INVERTER AND ITS USE IN A BATTERY CHARGER
DE69016815T2 (en) Ballasts for gas discharge lamps.
DE2948287A1 (en) CIRCUIT ARRANGEMENT FOR HIGH INTENSITY DISCHARGE LAMPS
EP0389847B1 (en) Circuit
DE3445817C2 (en)
DE3014419A1 (en) Discharge lamp auxiliary power supply - has separate oscillator and independently powered regulation circuit providing high stability lamp voltage
DE69709652T2 (en) UNIVERSAL ELECTRONIC STARTER FOR POWER FLOW DISCHARGE LAMPS
EP0057910B1 (en) Circuit for the regulated supply to a user
EP0331157B1 (en) Switching power supply
EP1326484B1 (en) Apparatus for operating discharge lamps
DE69618566T2 (en) CIRCUIT
DE3338464A1 (en) High-frequency brightness control for fluorescent lamps
DE2445032C2 (en) Circuit arrangement for generating a switch-on voltage for the control part of a medium-frequency converter
EP1443808B1 (en) Circuit and method for starting and operating gas discharge lamps with preheating filaments

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920826

17Q First examination report despatched

Effective date: 19940121

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950215

Ref country code: DK

Effective date: 19950215

Ref country code: BE

Effective date: 19950215

REF Corresponds to:

Ref document number: 118666

Country of ref document: AT

Date of ref document: 19950315

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950309

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950221

REF Corresponds to:

Ref document number: 59008453

Country of ref document: DE

Date of ref document: 19950323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950331

Ref country code: LI

Effective date: 19950331

Ref country code: CH

Effective date: 19950331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2068266

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950515

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970531

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980302

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19980310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980317

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990309

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000526

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050309