EP0389502B1 - Device and process for cooling an engine - Google Patents

Device and process for cooling an engine Download PDF

Info

Publication number
EP0389502B1
EP0389502B1 EP88909289A EP88909289A EP0389502B1 EP 0389502 B1 EP0389502 B1 EP 0389502B1 EP 88909289 A EP88909289 A EP 88909289A EP 88909289 A EP88909289 A EP 88909289A EP 0389502 B1 EP0389502 B1 EP 0389502B1
Authority
EP
European Patent Office
Prior art keywords
coolant
pump
heat exchanger
engine
switching device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88909289A
Other languages
German (de)
French (fr)
Other versions
EP0389502A1 (en
Inventor
Peter Nolting
Wolfgang Scheidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to AT88909289T priority Critical patent/ATE86361T1/en
Publication of EP0389502A1 publication Critical patent/EP0389502A1/en
Application granted granted Critical
Publication of EP0389502B1 publication Critical patent/EP0389502B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/026Thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/143Controlling of coolant flow the coolant being liquid using restrictions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/04Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/12Cabin temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/46Engine parts temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/48Engine room temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/66Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/20Warning devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/34Limping home
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/10Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers
    • F01P7/12Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers by thermostatic control

Definitions

  • the invention relates to a device and a method for cooling a drive motor arranged in a motor vehicle according to the type of the independent claims.
  • a vehicle engine cooling system developed for a test vehicle is known from automotive engineering magazine 87 (1985), number 12, pages 638 to 639.
  • the use of an electrically driven water pump is envisaged, with the aid of which the cooling water flow is adapted to the requirements, for example the increased demand at higher speeds or after the engine has been switched off at higher speeds.
  • a cooling device for an internal combustion engine which contains a first coolant circuit in which a first heat exchanger is arranged. There is a bypass parallel to the heat exchanger, with the distribution of the heating medium flow to the cooler and to the bypass being carried out by a valve.
  • a pump mechanically driven by the engine to be cooled is arranged in the first coolant circuit and takes over a basic load of the coolant delivery quantity.
  • the first coolant circuit contains a further coolant circuit, in which a heating heat exchanger is arranged.
  • An electrically driven pump is arranged in the further heating circuit and is switched on or off as required. A coolant flow in the further coolant circuit is only provided during heating operation.
  • the invention is based on the object of specifying a method and a device for cooling a drive motor arranged in a motor vehicle, which enables adaptation to the cooling requirement, regardless of whether there is a heating requirement or not.
  • a further adaptation to the cooling capacity requirement is possible by means of an air flap which can be actuated by an adjusting device and which is provided for dividing the air heated by this heat exchanger into the channels.
  • the device and the method according to the invention increase the operational reliability of the engine cooling in that, in the event of a pump failure, limited engine operation or at least one Emergency operation with the other pump is guaranteed.
  • a second embodiment of the device and the method according to the invention which is independent of the first embodiment is provided.
  • the difference from the first embodiment is that in the second embodiment a first and a second coolant circuit are provided which are completely separate from one another.
  • the heat exchanger which releases the heated air into the channels, is arranged in the second coolant circuit, which furthermore has an additional electrically driven pump for circulating the coolant in the second coolant circuit.
  • the electronic switching device that controls the electric pump and the other components receives further information, such as, for example, about the engine operating temperature, the engine compartment temperature, the temperature of engine parts, the ambient temperature, the engine speed, the driving speed and a pressure signal of the coolant are supplied. With this information, a precise adjustment of the delivery rate of the electrically driven pump to the required cooling performance is possible.
  • Figures 1 and 2 show a first and a second embodiment of an inventive device for engine cooling.
  • FIG. 1 shows an engine 10 to be cooled with a first and second coolant circuit connection 11, 12.
  • the coolant emerges from the engine 10 at the first connection 11 and returns to the engine 10 at the second connection 12.
  • the flow direction of the coolant is indicated by arrows 13, 14.
  • the coolant circuit contains a first coolant path 15, in the course of which a first heat exchanger 16, which can be operated as a cooler, is arranged.
  • the first coolant path 15 can be bridged with a second coolant path 17 connected as a bypass.
  • a first controllable valve 18 takes over the distribution of coolant in the first and second paths 15, 17.
  • the valve 18 can be a valve controlled by the coolant temperature. It is preferably designed as an electrically controllable valve.
  • the valve 18 works either continuously or in clocked operation. In clocked operation, the coolant flow to the first or second coolant path 15, 17 is either completely released or completely blocked.
  • the clocked operation is particularly suitable for an electrically controlled valve 18.
  • a third coolant path 19 is provided, in the course of which a second heat exchanger 20 is arranged.
  • the third coolant path 19 can be connected to the bypass 17 via a controllable valve 21.
  • a controllable valve 21 instead of connecting the third coolant path 19 to the bypass 17, its configuration as a further bypass to the first coolant path 15 can also be provided.
  • The, preferably electrically controllable valve 21 works either continuously or in clocked operation.
  • an electronic switching device 24 which has operating parameters as input signals of the motor 10 and the cooling circuit are supplied. Specifically, these are the engine speed detected by a speed sensor 25, the engine temperature detected by at least one engine temperature sensor 26, the coolant temperature detected by a coolant temperature sensor 27, the pressure of the coolant in the cooling circuit detected by a pressure sensor 28, and the air temperature immediately detected by an engine compartment temperature sensor 29 Environment of the engine 10, the temperature detected by at least one engine part temperature sensor 30 and the temperature of the air in the further environment (outside temperature) of the engine 10 by an ambient air temperature sensor 31.
  • the electronic switching device 24 receives as further input signals the driving speed detected by a speed sensor 32, the signal emitted by a heating and ventilation controller 33 for specifying at least a target temperature in the vehicle interior, and that Signal delivered by at least one heating air temperature sensor 34.
  • the electronic switching device 24 also outputs an overtemperature warning signal or a signal that indicates a failure of a coolant pump 22, 23 to a device 44.
  • the device 44 is, for example, a signal lamp on the dashboard of the motor vehicle or part of an engine control. The engine power is throttled after a fault occurs.
  • the controllable valve 18 opens, depending on the operating mode either partially or completely, the first coolant path 15 with the first heat exchanger 16 operated as a cooler the adjusting device 35 opens the previously closed blind 36 so that an increased flow of cooling air is passed over the cooler 16. If necessary, the blower motor 37 is switched on to further support the heat dissipation from the cooler 16.
  • Adaptation of the cooling capacity to the cooling capacity requirement is achieved with the electric pump 23 by changing the coolant flow.
  • the adaptation to the cooling power requirement is not only dependent on the coolant temperature recorded by the coolant temperature sensor 27, but depending on other signals.
  • the operating signals of the motor 10, the air temperature in the immediate vicinity of the motor 10, the ambient temperature (outside temperature) which can be measured further away from the motor 10, the temperature of motor parts and the speed of the motor serve as input signals for the electronic switching device 24.
  • the electronic control unit 24 also receives information about the driving speed.
  • the information about, for example, the engine temperature or the temperature of certain engine parts makes it possible to increase the cooling output before a significant rise in the coolant temperature can be determined by the coolant temperature sensor 27.
  • the inclusion of the speed for the cooling capacity control has the advantage that the coolant flow can be increased with the electric pump 23 before local heating occurs in the engine.
  • the measurement of the driving speed has an influence in particular on the actuation of the blind 36 and the fan 37. At higher driving speeds, it would be inappropriate, for example, to keep the blind 36 closed and to switch on the fan 37. Such inappropriate operating states can be identified and avoided with the electronic switching device 24.
  • Another way to remove heat from the cooling circuit is by releasing the third coolant path 19.
  • the controllable valve 18 is either adjusted continuously or in a clocked manner Operation controlled in such a way that at least part of the coolant flow flows from the first cooling circuit connection 11 via the third coolant path 19 and the second heat exchanger 20 back to the second cooling circuit connection 12.
  • the air heated at the second heat exchanger 20 is passed on through the channel 40 and through the channels 42, 43.
  • the heating air duct 42 opens into the vehicle interior.
  • the heating air temperature sensor 34 in conjunction with the electronic switching device 24 and with further temperature sensors (not shown) in the heating system and in the motor vehicle interior, ensures that a target temperature is maintained in the interior.
  • the exhaust air duct 43 which opens out in the open, permits the use of the second heat exchanger 20 as a cooler even at high outside temperatures.
  • the adjusting device 39 closes the heating air duct 42 completely with the air flap 41.
  • the valve 18 can completely block the coolant flow through the first coolant path 15. This operating state occurs in vehicle heating in winter. With the help of the electronic switching device 24 it can be determined that the coolant flow through the third coolant path 19 remains blocked during the warm-up phase of the engine 10 and is only opened when a minimum temperature is present. No heating energy is then available during the start-up phase. This operation can either be activated via the temperature controller 33 or is already predetermined in the electronic switching device 24. The heat output via the second heat exchanger 20 can be changed with the blower motor 38 if necessary.
  • a parallel connection can also be provided if non-return valves or similar devices are arranged in the pump sections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PCT No. PCT/DE88/00667 Sec. 371 Date Mar. 26, 1990 Sec. 102(e) Date Mar. 26, 1990 PCT Filed Oct. 26, 1988 PCT Pub. No. WO89/04419 PCT Pub. Date May 18, 1989.A device for engine cooling includes at least one mechanical coolant pump driven by the engine to be cooled and at least one electric coolant pump controlled by an electronic switching device being provided in at least one cooling circuit of an engine to be cooled. The conveying capacity of the electric pump is set as a function of operating variables of the engine to be cooled and of further variables, while the mechanical pump is designed for a basic conveying capacity. In the coolant circuit a heat exchanger which is operated as a radiator, the cooling capacity of which can be altered with the aid of a radiator blind and of a fan, is arranged in a first coolant path. An additional heat exchanger, the waste heat of which is used for heating purposes or for further engine cooling, is arranged in an additional coolant path or in a separate coolant circuit.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einer Vorrichtung und einem Verfahren zum Kühlen eines in einem Kraftfahrzeug angeordneten Antriebsmotors nach der Gattung der unabhängigen Ansprüche.The invention relates to a device and a method for cooling a drive motor arranged in a motor vehicle according to the type of the independent claims.

Aus der automobiltechnischen Zeitschrift 87 (1985), Heft 12, Seiten 638 bis 639 ist ein für ein Versuchsfahrzeug entwickeltes Fahrzeugmotorkühlsystem bekannt. Vorgesehen ist die Verwendung einer elektrisch angetriebenen Wasserpumpe, mit deren Hilfe der Kühlwasserdurchfluß dem Bedarf angepaßt wird, beispielsweise dem erhöhten Bedarf bei höheren Geschwindigkeiten oder nach dem Abstellen des Motors nach höheren Geschwindigkeiten.A vehicle engine cooling system developed for a test vehicle is known from automotive engineering magazine 87 (1985), number 12, pages 638 to 639. The use of an electrically driven water pump is envisaged, with the aid of which the cooling water flow is adapted to the requirements, for example the increased demand at higher speeds or after the engine has been switched off at higher speeds.

Aus der DE-A 26 31 121 ist eine Kühlvorrichtung für eine Brennkraftmaschine bekannt, die einen ersten Kühlmittelkreislauf enthält, in dem ein erster Wärmetauscher angeordnet ist. Parallel zum Wärmetauscher liegt ein Bypass, wobei die Verteilung des Heizmittelstroms auf den Kühler und auf den Bypass durch ein Ventil vorgenommen wird. Im ersten Kühlmittelkreislauf ist eine vom zu kühlenden Motor mechanisch angetriebene Pumpe angeordnet, die eine Grundlast der Kühlmittelfördermenge übernimmt. Der erste Kühlmittelkreislauf enthält einen weiteren Kühlmittelkreislauf, in dem ein Heizungs-Wärmetauscher angeordnet ist. Im weiteren Heizungskreislauf ist eine elektrisch angetriebene Pumpe angeordnet, die bedarfsweise ein- oder ausgeschaltet wird. Ein Kühlmitteldurchfluß im weiteren Kühlmittelkreislauf ist nur während des Heizbetriebs vorgesehen.From DE-A 26 31 121 a cooling device for an internal combustion engine is known which contains a first coolant circuit in which a first heat exchanger is arranged. There is a bypass parallel to the heat exchanger, with the distribution of the heating medium flow to the cooler and to the bypass being carried out by a valve. A pump mechanically driven by the engine to be cooled is arranged in the first coolant circuit and takes over a basic load of the coolant delivery quantity. The first coolant circuit contains a further coolant circuit, in which a heating heat exchanger is arranged. An electrically driven pump is arranged in the further heating circuit and is switched on or off as required. A coolant flow in the further coolant circuit is only provided during heating operation.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zum Kühlen eines in einem Kraftfahrzeug angeordneten Antriebsmotors anzugeben, das/die eine Anpassung an den Kühlbedarf ermöglicht, unabhängig davon, ob eine Heizungsanforderung vorliegt oder nicht.The invention is based on the object of specifying a method and a device for cooling a drive motor arranged in a motor vehicle, which enables adaptation to the cooling requirement, regardless of whether there is a heating requirement or not.

Die Aufgabe wird durch die in den unabhängigen Ansprüchen angegebenen Merkmale jeweils gelöst.The object is achieved in each case by the features specified in the independent claims.

Vorteile der ErfindungAdvantages of the invention

In einer ersten Ausführung der erfindungsgemäßen Vorrichtung und des erfindungsgemäßen Verfahrens sind eine von dem zu kühlenden Motor angetriebene Kühlmittelpumpe sowie eine elektrisch angetriebene Kühlmittelpumpe vorgesehen, wobei die Förderleistung der elektrisch angetriebenen Kühlmittelpumpe in Abhängigkeit von der von einem Temperaturfühler erfaßten Kühlmitteltemperatur mit Hilfe eines elektronischen Schaltgeräts gesteuert ist. Die mechanisch angetriebene Pumpe übernimmt eine Grundlast, während die Förderleistung der elektrisch angetriebenen der erforderlichen Kühlleistung anpaßbar ist. In einem weiteren, von einem Ventil freigebbaren, im Kühlmittelkreislauf angeordneten Kühlmittelweg ist ein Wärmetauscher angeordnet, von dem ein erster, in den Fahrzeuginnenraum führender Luftkanal und wenigstens ein zweiter, ins Freie mündender Luftkanal wegführt. Eine weitere Anpassung an den Kühlleistungsbedarf ist durch eine von einer Stelleinrichtung betätigbaren Luftklappe möglich, die zur Aufteilung der von diesem Wärmetauscher erwärmten Luft auf die Kanäle vorgesehen ist. Neben einer wirtschaftlicher Betriebsweise des Motors, dessen Betriebstemperatur über das Kühlmittel in einem optimalen Bereich haltbar ist, erhöht die erfindungsgemäße Vorrichtung und das Verfahren die Betriebssicherheit der Motorkühlung dadurch, daß bei einem Ausfall einer Pumpe ein eingeschränkter Motorbetrieb oder wenigstens ein Notlaufbetrieb mit der anderen Pumpe gewährleistet ist. Weiterhin ist eine zweite, von der ersten Ausführung unabhängige Ausführung der erfindungsgemäßen Vorrichtung und des Verfahrens vorgesehen.In a first embodiment of the device and method according to the invention, a coolant pump driven by the engine to be cooled and an electrically driven coolant pump are provided, the delivery rate of the electrically driven coolant pump being controlled as a function of the coolant temperature detected by a temperature sensor with the aid of an electronic switching device . The mechanically driven pump takes on a basic load, while the conveying capacity of the electrically driven cooling capacity can be adapted. In a further coolant path, which can be released by a valve and is arranged in the coolant circuit, a heat exchanger is arranged, from which a first air duct leading into the vehicle interior and at least a second air duct opening out lead away. A further adaptation to the cooling capacity requirement is possible by means of an air flap which can be actuated by an adjusting device and which is provided for dividing the air heated by this heat exchanger into the channels. In addition to economical operation of the engine, the operating temperature of which can be kept in an optimal range via the coolant, the device and the method according to the invention increase the operational reliability of the engine cooling in that, in the event of a pump failure, limited engine operation or at least one Emergency operation with the other pump is guaranteed. Furthermore, a second embodiment of the device and the method according to the invention which is independent of the first embodiment is provided.

Der Unterschied zur ersten Ausführung liegt darin, daß bei der zweiten Ausführung ein erster und ein zweiter Kühlmittelkreislauf vorgesehen sind, die vollständig voneinander getrennt sind. Der Wärmetauscher, der die erwärmte Luft in die Kanäle abgibt, ist im zweiten Kühlmittelkreislauf angeordnet, der weiterhin eine zusätzliche elektrisch antreibbare Pumpe zur Umwälzung des Kühlmittels im zweiten Kühlmittelkreislauf aufweist. Mit dieser Ausführung ist eine weitere Verbesserung der Kühlleistungsregelung möglich.The difference from the first embodiment is that in the second embodiment a first and a second coolant circuit are provided which are completely separate from one another. The heat exchanger, which releases the heated air into the channels, is arranged in the second coolant circuit, which furthermore has an additional electrically driven pump for circulating the coolant in the second coolant circuit. With this version, a further improvement of the cooling capacity control is possible.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der in den unabhängigen Ansprüchen angegebenen Vorrichtungen und Verfahren möglich.Advantageous further developments and improvements of the devices and methods specified in the independent claims are possible through the measures listed in the subclaims.

Das die elektrische Pumpe und die übrigen Komponenten, wie beispielsweise eine Jaulousie, ein Gebläse und Mischventile ansteuernde elektronische Schaltgerät erhält - zusätzlich zur Kühlmitteltemperatur - weitere Informationen, wie beispielsweise über die Motorbetriebstemperatur, die Motorraumtemperatur, die Temperatur von Motorteilen, die Umgebungstemperatur, die Motordrehzahl, die Fahrgeschwindigkeit sowie ein Drucksignal des Kühlmittels zugeführt. Mit diesen Informationen ist eine präzise Anpassung der Förderleistung der elektrisch angetriebenen Pumpe an die erforderliche Kühlleistung möglich.In addition to the coolant temperature, the electronic switching device that controls the electric pump and the other components, such as a jaulousie, a blower and mixing valves, receives further information, such as, for example, about the engine operating temperature, the engine compartment temperature, the temperature of engine parts, the ambient temperature, the engine speed, the driving speed and a pressure signal of the coolant are supplied. With this information, a precise adjustment of the delivery rate of the electrically driven pump to the required cooling performance is possible.

Besonders vorteilhaft ist die Möglichkeit, einen Notbetrieb des Motors aufrechtzuerhalten, wenn eine der Kühlmittelpumpen ausfällt. Nach Abgabe eines entsprechenden Warnsignals oder einem Eingriff in die Motorsteuerung ist ein Motorbetrieb mit reduzierter Leistung möglich.The possibility of maintaining an emergency operation of the engine when one of the coolant pumps fails is particularly advantageous. After a corresponding warning signal has been given or an intervention in the engine control system, engine operation with reduced power is possible.

Weitere Einzelheiten und vorteilhafte Weiterbildungen der erfindungsgemäßen Vorrichtung und des erfindungsgemäßen Verfahrens ergeben sich aus weiteren Unteransprüchen in Verbindung mit der folgenden Beschreibung.Further details and advantageous developments of the device according to the invention and the method according to the invention result from further subclaims in connection with the following description.

Zeichnungdrawing

Die Figuren 1 und 2 zeigen ein erstes und ein zweites Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur Motorkühlung.Figures 1 and 2 show a first and a second embodiment of an inventive device for engine cooling.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Figur 1 zeigt einen zu kühlenden Motor 10 mit einem ersten und zweiten Kühlmittelkreislaufanschluß 11, 12. Am ersten Anschluß 11 tritt das Kühlmittel aus dem Motor 10 aus und am zweiten Anschluß 12 gelangt es in den Motor 10 zurück. Die Fließrichtung des Kühlmittels ist mit Pfeilen 13, 14 angedeutet. Der Külmittelkreislauf enthält einen ersten Külmittelweg 15, in dessen Verlauf ein als Kühler betreibbarer erster Wärmetauscher 16 angeordnet ist. Der erste Kühlmittelweg 15 ist mit einem zweiten, als Bypaß geschalteten Kühlmittelweg 17 überbrückbar. Die Külmittelverteilung auf den ersten und zweiten Weg 15, 17 übernimmt ein erstes steuerbares Ventil 18. Das Ventil 18 kann ein von der Kühlmitteltemperatur gesteuertes Ventil sein. Vorzugsweise ist es als ein elektrisch ansteuerbares Ventil ausgebildet. Das Ventil 18 arbeitet entweder stetig oder im getakteten Betrieb. Im getakteten Betrieb ist der Kühlmittelstrom zum ersten oder zweiten Kühlmittelweg 15, 17 entweder vollständig freigegeben oder vollständig gesperrt. Der getaktete Betrieb eignet sich insbesondere bei einem elektrisch gesteuerten Ventil 18.FIG. 1 shows an engine 10 to be cooled with a first and second coolant circuit connection 11, 12. The coolant emerges from the engine 10 at the first connection 11 and returns to the engine 10 at the second connection 12. The flow direction of the coolant is indicated by arrows 13, 14. The coolant circuit contains a first coolant path 15, in the course of which a first heat exchanger 16, which can be operated as a cooler, is arranged. The first coolant path 15 can be bridged with a second coolant path 17 connected as a bypass. A first controllable valve 18 takes over the distribution of coolant in the first and second paths 15, 17. The valve 18 can be a valve controlled by the coolant temperature. It is preferably designed as an electrically controllable valve. The valve 18 works either continuously or in clocked operation. In clocked operation, the coolant flow to the first or second coolant path 15, 17 is either completely released or completely blocked. The clocked operation is particularly suitable for an electrically controlled valve 18.

Ferner ist ein dritter Kühlmittelweg 19 vorgesehen, in dessen Verlauf ein zweiter Wärmetauscher 20 angeordnet ist. Der dritte Kühlmittelweg 19 ist über ein steuerbares Ventil 21 mit dem Bypaß 17 verbindbar. Anstelle der Anbindung des dritten Külmittelwegs 19 an den Bypaß 17 ist auch dessen Ausgestaltung als weiterer Bypaß zum ersten Külmittelweg 15 vorsehbar. Das, vorzugsweise elektrisch ansteuerbare Ventil 21 arbeitet entweder stetig oder im getakteten Betrieb.Furthermore, a third coolant path 19 is provided, in the course of which a second heat exchanger 20 is arranged. The third coolant path 19 can be connected to the bypass 17 via a controllable valve 21. Instead of connecting the third coolant path 19 to the bypass 17, its configuration as a further bypass to the first coolant path 15 can also be provided. The, preferably electrically controllable valve 21 works either continuously or in clocked operation.

Eine im Kühlmittelkreislauf angeordnete, vom Motor 10 angetriebene Kühlmittelpumpe 22 sorgt für den Kühlmitteltransport. Die Pumpe 22 wird im folgenden als mechanische Pumpe 22 bezeichnet. In Reihe zur mechanischen Pumpe 22 ist eine weitere Külmittelpumpe 23 geschaltet, deren Förderleistung elektrisch einstellbar ist. Die weitere Kühlmittelpumpe 23 wird im folgenden als elektrische Pumpe 23 bezeichnet.A coolant pump 22 arranged in the coolant circuit and driven by the engine 10 takes care of the coolant transport. The pump 22 is referred to below as a mechanical pump 22. A further coolant pump 23 is connected in series with the mechanical pump 22 and its delivery rate can be adjusted electrically. The further coolant pump 23 is referred to below as an electrical pump 23.

Zur Steuerung der elektrischen Pumpe 23 ist ein elektronisches Schaltgerät 24 vorgesehen, dem als Eingangssignale Betriebsparameter des Motors 10 sowie des Kühlkreislaufs zugeführt sind. Im einzelnen sind dies die von einem Drehzahlfühler 25 erfaßte Motordrehzahl, die wenigstens von einem Motortemperaturfühler 26 erfaßte Motortemperatur, die von einem Kühlmitteltemperaturfühler 27 erfaßte Kühlmitteltemperatur, der von einem Druckfühler 28 erfaßte Druck des Kühlmittels im Kühlkreislauf, die von einem Motorraumtemperaturfühler 29 erfaßte Lufttemperatur in unmittelbarer Umgebung des Motors 10, die von wenigstens einem Motorteiletemperaturfühler 30 erfaßte Temperatur sowie die von einem Umgebungslufttemperaturfühler 31 erfaßte Temperatur der Luft in der weiteren Umgebung (Außentemperatur) des Motors 10.To control the electric pump 23, an electronic switching device 24 is provided, which has operating parameters as input signals of the motor 10 and the cooling circuit are supplied. Specifically, these are the engine speed detected by a speed sensor 25, the engine temperature detected by at least one engine temperature sensor 26, the coolant temperature detected by a coolant temperature sensor 27, the pressure of the coolant in the cooling circuit detected by a pressure sensor 28, and the air temperature immediately detected by an engine compartment temperature sensor 29 Environment of the engine 10, the temperature detected by at least one engine part temperature sensor 30 and the temperature of the air in the further environment (outside temperature) of the engine 10 by an ambient air temperature sensor 31.

Für den Fall, daß der Motor 10 als Antriebsmotor in einem Kraftfahrzeug eingesetzt wird, werden dem elektronischen Schaltgerät 24 als weitere Eingangssignale die von einem Geschwindigkeitssensor 32 erfaßte Fahrgeschwindigkeit, das von einem Heizungs-Lüftungsregler 33 abgegebene Signal zur Vorgabe wenigstens einer Solltemperatur im Fahrzeuginnenraum sowie das von wenigstens einem Heizlufttemperaturfühler 34 abgegebene Signal zugeführt.In the event that the motor 10 is used as a drive motor in a motor vehicle, the electronic switching device 24 receives as further input signals the driving speed detected by a speed sensor 32, the signal emitted by a heating and ventilation controller 33 for specifying at least a target temperature in the vehicle interior, and that Signal delivered by at least one heating air temperature sensor 34.

Das elektronische Schaltgerät 24 gibt zunächst ein Ausgangssignal an die elektrische Pumpe 23 ab. Weitere Ausgangssignale werden gegebenenfalls an die Ventile 18, 21 ausgegeben, sofern die beiden Ventile 18, 21 elektrisch ansteuerbar sind. Ferner werden Ausgangssignale abgegeben an eine Stelleinrichtung 35, die eine vor dem als Kühler verwendeten ersten Wärmetauscher 16 angeordnete verstellbare Jalousie 36 betätigt, an jeweils wenigstens einen bei den beiden Wärmetauschern 16, 20 angeordneten Gebläsemotoren 37, 38 sowie an eine eine Luftklappe 41 betätigende Stelleinrichtung 39, die in einem vom zweiten Wärmetauscher 20 wegführenden Luftkanal 40 angeordnet ist und die den Luftweg entweder zu einem Heizluftkanal 42 oder zu einem im Freien mündenden Abluftkanal 43 freigibt.The electronic switching device 24 first outputs an output signal to the electric pump 23. Additional output signals are optionally output to the valves 18, 21, provided the two valves 18, 21 can be controlled electrically. Furthermore, output signals are output to an actuating device 35, which actuates an adjustable blind 36 arranged in front of the first heat exchanger 16 used as a cooler, to at least one fan motor 37, 38 arranged at the two heat exchangers 16, 20 and to an actuating device 39 actuating an air flap 41 , which is arranged in an air duct 40 leading away from the second heat exchanger 20 and which opens the air path either to a heating air duct 42 or to an exhaust air duct 43 which opens out in the open.

Das elektronische Schaltgerät 24 gibt weiterhin ein Übertemperaturwarnsignal oder ein Signal, das auf einen Ausfall einer Kühlmittelpumpe 22, 23 hinweist, an eine Einrichtung 44 aus. Die Einrichtung 44 ist beispielsweise eine Signallampe am Armaturenbrett des Kraftfahrzeugs oder ein Teil einer Motorsteuerung. Die Motorleistung wird nach dem Auftreten einer Störung gedrosselt.The electronic switching device 24 also outputs an overtemperature warning signal or a signal that indicates a failure of a coolant pump 22, 23 to a device 44. The device 44 is, for example, a signal lamp on the dashboard of the motor vehicle or part of an engine control. The engine power is throttled after a fault occurs.

Die erfindungsgemäße Vorrichtung gemäß Figur 1 arbeitet folgendermaßen:
   Nach Inbetriebnahme des Motors 10 beginnt die mechanische Pumpe 22 mit der Förderung des Kühlmittels. Die Förderleistung der mechanischen Pumpe 22 hängt von der Drehzahl des Motors 10 ab und ist auf einen Wert festgelegt, der zur erforderlichen Kühlmittelförderleistung nicht ausreicht. Bei kaltem Motor 10 fließt das Kühlmittel vom ersten Kühlkreislaufanschluß 11 über den Bypaß 17 und die mechanische Pumpe 22 an den zweiten Kühlkreislaufanschluß 12 zurück. Dieser kleine Kreislauf bedingt nahezu keine Kühlleistung auf, so daß der Motor 10 möglichst rasch auf die Betriebstemperatur kommt, bei der er den minimalen Wirkungsgrad aufweist. Bei einem Ansteigen der Kühlmitteltemperatur, die von dem wenigstens einen Kühlmitteltemperaturfühler 27 erfaßt wird, öffnet das steuerbare Ventil 18, je nach Betriebsweise entweder teilweise oder vollständig, den ersten Kühlmittelweg 15 mit dem als Kühler betriebenen ersten Wärmetauscher 16. Bei einem weiteren Kühlmitteltemperaturanstieg wird mit Hilfe der Stelleinrichtung 35 die zuvor geschlossene Jalousie 36 geöffnet, so daß ein vermehrter Kühlluftstrom über den Kühler 16 geleitet wird. Bedarfsweise wird der Gebläsemotor 37 zur weiteren Unterstützung der Wärmeabfuhr vom Kühler 16 dazugeschaltet. Eine Anpassung der Kühlleistung an den Kühlleistungsbedarf wird mit der elektrischen Pumpe 23 durch Verändern des Kühlmittelstroms erreicht. Die Anpassung an den Kühlleistungsbedarf erfolgt nicht nur in Abhängigkeit von der vom Kühlmitteltemperaturfühler 27 aufgenommenen Kühlmitteltemperatur, sondern in Abhängigkeit von weiteren Signalen. Als Eingangssignale dienen dem elektronischen Schaltgerät 24 die Betriebstemperatur des Motors 10, die Lufttemperatur in unmittelbarer Umgebung des Motors 10, die in weiterer Entfernung vom Motor 10 meßbare Umgebungstemperatur (Außentemperatur), die Temperatur von Motorteilen sowie die Drehzahl des Motors. Bei einer Verwendung der erfindungsgemäßen Vorrichtung im Kraftfahrzeug erhält das elektronische Steuergerät 24 auch eine Information über die Fahrgeschwindigkeit.
The device according to the invention according to FIG. 1 works as follows:
After the engine 10 has been started up, the mechanical pump 22 begins to deliver the coolant. The delivery rate of the mechanical pump 22 depends on the speed of the engine 10 and is set to a value that is not sufficient for the required coolant delivery rate. When the engine 10 is cold, the coolant flows back from the first cooling circuit connection 11 via the bypass 17 and the mechanical pump 22 to the second cooling circuit connection 12. This small circuit requires almost no cooling power, so that the engine 10 quickly reaches the operating temperature at which it has the minimum efficiency. When the coolant temperature, which is detected by the at least one coolant temperature sensor 27, rises, the controllable valve 18 opens, depending on the operating mode either partially or completely, the first coolant path 15 with the first heat exchanger 16 operated as a cooler the adjusting device 35 opens the previously closed blind 36 so that an increased flow of cooling air is passed over the cooler 16. If necessary, the blower motor 37 is switched on to further support the heat dissipation from the cooler 16. Adaptation of the cooling capacity to the cooling capacity requirement is achieved with the electric pump 23 by changing the coolant flow. The adaptation to the cooling power requirement is not only dependent on the coolant temperature recorded by the coolant temperature sensor 27, but depending on other signals. The operating signals of the motor 10, the air temperature in the immediate vicinity of the motor 10, the ambient temperature (outside temperature) which can be measured further away from the motor 10, the temperature of motor parts and the speed of the motor serve as input signals for the electronic switching device 24. When the device according to the invention is used in the motor vehicle, the electronic control unit 24 also receives information about the driving speed.

Die Information über, beispielsweise die Motortemperatur oder die Temperatur bestimmter Motorteile ermöglicht es, die Kühlleistung zu erhöhen, bevor ein nennenswerter Temperaturanstieg des Kühlmittels vom Kühlmitteltemperaturfühler 27 feststellbar ist. Die Einbeziehung der Drehzahl zur Kühlleistungsregelung bringt den Vorteil mit sich, daß der Kühlmittelstrom vor dem Auftreten einer lokalen Erhitzung im Motor mit der elektrischen Pumpe 23 erhöhbar ist. Die Messung der Fahrgeschwindigkeit hat insbesondere auf die Betätigung der Jalousie 36 und des Ventilators 37 Einfluß. Bei höheren Fahrgeschwindigkeiten wäre es beispielsweise unzweckmäßig, die Jalousie 36 geschlossen zu halten und den Ventilator 37 einzuschalten. Derartige unzweckmäßige Betriebszustände sind mit dem elektronischen Schaltgerät 24 erkenn- und vermeidbar.The information about, for example, the engine temperature or the temperature of certain engine parts makes it possible to increase the cooling output before a significant rise in the coolant temperature can be determined by the coolant temperature sensor 27. The inclusion of the speed for the cooling capacity control has the advantage that the coolant flow can be increased with the electric pump 23 before local heating occurs in the engine. The measurement of the driving speed has an influence in particular on the actuation of the blind 36 and the fan 37. At higher driving speeds, it would be inappropriate, for example, to keep the blind 36 closed and to switch on the fan 37. Such inappropriate operating states can be identified and avoided with the electronic switching device 24.

Eine weitere Möglichkeit, Wärme aus dem Kühlkreislauf abzuführen, besteht durch die Freigabe des dritten Kühlmittelwegs 19. Für den Fall, daß der dritte Kühlmittelweg 19 über das steuerbare Ventil 21 am Bypaß 17 angeschlossen ist, wird das ansteuerbare Ventil 18 entweder kontinuierlich verstellt oder im getakteten Betrieb derart angesteuert, daß wenigstens ein Teil des Kühlmittelstromes vom ersten Kühlkreislaufanschluß 11 über den dritten Kühlmittelweg 19 und zweiten Wärmetauscher 20 zurück zum zweiten Külkreislaufanschluß 12 fließt. Die am zweiten Wärmetauscher 20 erwärmte Luft wird durch den Kanal 40 und durch die Kanäle 42, 43 weitergeleitet. Bei der Verwendung der erfindungsgemäßen Vorrichtung im Kraftfahrzeug mündet der Heizluftkanal 42 im Fahrzeuginneren. Der Heizlufttemperaturfühler 34 sorgt, in Verbindung mit dem elektronischen Schaltgerät 24 sowie mit weiteren nicht gezeigten Temperaturfühlern im Heizungssystem und im Kraftfahrzeuginnenraum, für die Einhaltung einer Solltemperatur im Innenraum. Der im Freien mündende Abluftkanal 43 gestattet die Verwendung des zweiten Wärmetauschers 20 auch bei hohen Außentemperaturen als Kühler. In diesem Betriebsfall schließt die Stelleinrichtung 39 mit der Luftklappe 41 den Heizluftkanal 42 vollständig ab.Another way to remove heat from the cooling circuit is by releasing the third coolant path 19. In the event that the third coolant path 19 is connected to the bypass 17 via the controllable valve 21, the controllable valve 18 is either adjusted continuously or in a clocked manner Operation controlled in such a way that at least part of the coolant flow flows from the first cooling circuit connection 11 via the third coolant path 19 and the second heat exchanger 20 back to the second cooling circuit connection 12. The air heated at the second heat exchanger 20 is passed on through the channel 40 and through the channels 42, 43. When using of the device according to the invention in the motor vehicle, the heating air duct 42 opens into the vehicle interior. The heating air temperature sensor 34, in conjunction with the electronic switching device 24 and with further temperature sensors (not shown) in the heating system and in the motor vehicle interior, ensures that a target temperature is maintained in the interior. The exhaust air duct 43, which opens out in the open, permits the use of the second heat exchanger 20 as a cooler even at high outside temperatures. In this operating case, the adjusting device 39 closes the heating air duct 42 completely with the air flap 41.

Reicht die vom zweiten Wärmetauscher 20 aufgebrachte Kühlleistung zur Motorkühlung aus, so kann das Ventil 18 den Kühlmittelstrom durch den ersten Kühlmittelweg 15 vollständig sperren. Dieser Betriebszustand tritt bei der Kraftfahrzeugheizung im Winter auf. Mit Hilfe des elektronischen Schaltgerätes 24 ist festlegbar, daß während der Warmlaufphase des Motors 10 der Kühlmittelstrom durch den dritten Kühlmittelweg 19 gesperrt bleibt und erst bei Vorliegen einer Mindesttemperatur geöffnet wird. Während der Anlaufphase steht dann allerdings keine Heizenergie zur Verfügung. Dieser Betrieb kann entweder über den Temperaturregler 33 aktiviert werden oder ist bereits im elektronischen Schaltgerät 24 fest vorgegeben. Die Wärmeabgabe über den zweiten Wärmetauscher 20 ist bedarfsweise mit dem Gebläsemotor 38 veränderbar.If the cooling power applied by the second heat exchanger 20 is sufficient for engine cooling, the valve 18 can completely block the coolant flow through the first coolant path 15. This operating state occurs in vehicle heating in winter. With the help of the electronic switching device 24 it can be determined that the coolant flow through the third coolant path 19 remains blocked during the warm-up phase of the engine 10 and is only opened when a minimum temperature is present. No heating energy is then available during the start-up phase. This operation can either be activated via the temperature controller 33 or is already predetermined in the electronic switching device 24. The heat output via the second heat exchanger 20 can be changed with the blower motor 38 if necessary.

Die Erfassung des Kühlmitteldruckes mit Hilfe des Druckfühlers 28 ermöglicht in Verbindung mit der Kühlmitteltemperatur durch Korrelation eine Aussage über den Kühlmittelzustand (Gefahr der Dampfbildung).The detection of the coolant pressure with the aid of the pressure sensor 28, in conjunction with the coolant temperature, enables a statement to be made about the condition of the coolant by correlation (risk of vapor formation).

Figur 2 zeigt ein weiteres vorteilhaftes Ausführungsbeispiel der erfindungsgemäßen Vorrichtung. Diejenigen Teile der Figur 2, die mit denen in der Figur 1 übereinstimmen, sind mit denselben Bezugszahlen versehen. Der in Figur 1 gezeigte dritte Kühlmittelweg 19 und das im Bypaß 17 angeordnete Ventil 21 sind bei der Vorrichtung gemäß Figur 2 nicht mehr vorhanden. Der zweite Wärmetauscher 20 ist dagegen in einem separaten Kühlmittelkreislauf angeordnet. Der Motor 10 weist deshalb einen dritten Kühlmittelanschluß 50 und einen vierten Kühlmittelanschluß 51 auf. Das Külmittel fließt vom dritten Külmittelanschluß 50 zum vierten Kühlmittelanschluß 51. Die Fließrichtung ist mit Pfeilen 52, 53 angedeutet. Die Umwälzung des Kühlmittels erfolgt mit einer dritten Kühlmittelpumpe 54, deren Förderleistung vorzugsweise mit einem elektrischen Signal vorgebbar ist.Figure 2 shows a further advantageous embodiment of the device according to the invention. Those parts of FIG. 2 which correspond to those in FIG. 1 are provided with the same reference numbers. The third coolant path 19 shown in Figure 1 and that in Bypass 17 arranged valve 21 are no longer present in the device according to Figure 2. By contrast, the second heat exchanger 20 is arranged in a separate coolant circuit. The engine 10 therefore has a third coolant connection 50 and a fourth coolant connection 51. The coolant flows from the third coolant connection 50 to the fourth coolant connection 51. The direction of flow is indicated by arrows 52, 53. The coolant is circulated with a third coolant pump 54, the delivery rate of which can preferably be predetermined with an electrical signal.

Die Aufspaltung des Kühlkreislaufes in zwei getrennte, voneinander unabhängige Kreisläufe bringt den Vorteil mit sich, daß der Motor partiell unterschiedlich gekühlt werden kann. Der zweite Kühlkreislauf mit dem zweiten Wärmetauscher 20 dient zur Fahrzeugbeheizung oder zur Wärmeabfuhr von Spitzenleistungen, für die der erste Kühlkreislauf nicht ausgelegt ist..Splitting the cooling circuit into two separate, independent circuits has the advantage that the engine can be cooled differently in some cases. The second cooling circuit with the second heat exchanger 20 is used for vehicle heating or for heat dissipation of peak power for which the first cooling circuit is not designed.

Mit der erfindungsgemäßen Vorrichtung und dem erfindungsgemäßen Verfahren zur Motorkühlung wird zunächst ein schnelles Erreichen und präzises Halten der Kühlmitteltemperatur erreicht. Der Motor 10 wird dadurch in einem Temperaturbereich mit minimalen Wirkungsgrad gehalten. Der schnelle Aufheizvorgang reduziert den Verschleiß bei niedrigen Betriebstemperaturen. Die Anpassung der Kühlleistung an die erforderliche Kühlleistung für den Motor 10 trägt zu einer Energieeinsparung bei, da die bisherige Überdimensionierung des Kühlkreislaufes entfällt. Das elektronische Schaltgerät 24 schließt nicht sinnvolle Betriebszustände aus. Insbesondere bei der Verwendung der erfindungsgemäßen Vorrichtung zur Kühlung eines Kraftfahrzeugmotors ist eine optimale Abstimmung zwischen erforderlicher Kühlung und Heizung des Fahrzeuginnenraums möglich.With the device according to the invention and the method according to the invention for engine cooling, the coolant temperature is first reached quickly and precisely. The motor 10 is thereby kept in a temperature range with minimal efficiency. The quick heating process reduces wear at low operating temperatures. The adaptation of the cooling capacity to the cooling capacity required for the engine 10 contributes to energy savings, since the previous oversizing of the cooling circuit is no longer necessary. The electronic switching device 24 does not exclude sensible operating states. In particular when using the device according to the invention for cooling a motor vehicle engine, an optimal coordination between the required cooling and heating of the vehicle interior is possible.

Anstelle der Reihenschaltung der beiden Pumpen 22, 23 kann auch eine Parallelschaltung vorgesehen sein, wenn in den Pumpstrecken jeweils Rückschlagventile oder ähnlich wirkende Einrichtungen angeordnet sind.Instead of the series connection of the two pumps 22, 23, a parallel connection can also be provided if non-return valves or similar devices are arranged in the pump sections.

Claims (21)

  1. Device for cooling an engine (10) arranged in a motor vehicle, having a coolant circuit (13, 14), having a first heat exchanger (16) arranged in the coolant circuit (13, 14), having a bypass (17), leading past the first heat exchanger (16), having a valve (18) for distributing the coolant flow to the first heat exchanger (16) and the bypass (17), having a further coolant path (19), which can be opened by a valve (21) and is arranged in the coolant circuit (13, 14), having a second heat exchanger (20) arranged in the coolant path (19), having at least one coolant pump (22) arranged in the coolant circuit (13, 14) and is driven continuously by the engine (10) to be cooled, the delivery rate of which pump is set to a specifiable part of the required cooling capacity, having an electrically drivable coolant pump (23) arranged in the coolant circuit (13, 14), having at least one temperature sensor (27) for detecting the coolant temperature, and having an electronic switching device (24) for the pump (23), characterised in that the electronic switching device varies the delivery rate of the electrically drivable pump (23) as a function of the coolant temperature detected by the temperature sensor (27), in that the electrically drivable pump (23) is connected in parallel or in series with the mechanically driven pump (22), in that at least one first air duct (42) leading away from the second heat exchanger (20) and into the vehicle interior and at least one second air duct (42, 43) leading away from the second heat exchanger (20) and leading into the open air are provided, and in that an air flap (41) actuable by an actuator (39) is provided for distributing the air heated by the second heat exchanger (20) to the ducts (42, 43).
  2. Device for cooling an engine (10) arranged in a motor vehicle, having a first coolant circuit (13, 14), having a first heat exchanger (16) arranged in the first coolant circuit (13, 14), having a second coolant circuit (52, 53), having a second heat exchanger (20) arranged in the second coolant circuit (52, 53), having at least one coolant pump (22) arranged in the first coolant circuit (13, 14) and driven continuously by the engine (10) to be cooled, the delivery rate of which pump is set to a specified part of the required cooling capacity, having an electrically drivable coolant pump (23) arranged in the first coolant circuit (13, 14), having at least one temperature sensor (27) for detecting the coolant temperature, and having an electronic switching device (24) for the electrically controllable pump (23), characterised in that the first and second coolant circuit (13, 14; 52, 53) are separate from one another and each have separate connections (11, 12; 50, 51) to the engine (10), in that the electrically drivable pump (23) is connected in parallel or in series with the mechanically driven pump (22), in that a further electrically drivable pump (54) is arranged in the second coolant circuit (52, 53), in that the electronic switching device (24) varies the delivery rate of the electrically drivable pumps (23, 54) as a function of the coolant temperature detected by the temperature sensor (27), in that at least one first air duct (42) leading away from the second heat exchanger (20) and into the vehicle interior, and at least one second air duct (43) leading away from the second heat exchanger (20) and into the open air are provided, and in that an air flap (41) actuable by an actuator (39) is provided for distributing the air heated by the second heat exchanger (20) to the ducts (42, 43).
  3. Device according to Claim 1, characterised in that a further electrically drivable coolant pump is provided in the further coolant path (19), the delivery rate of which pump can be variably specified by the switching device (24).
  4. Device according to one of the preceding claims, characterised in that an operating temperature of the engine (10) detected by a sensor (26) is fed as an input signal to the electronic switching device (24).
  5. Device according to one of the preceding claims, characterised in that a temperature detected by a sensor (29) in the immediate vicinity of the engine (10) is fed as an input signal to the electronic switching device (24).
  6. Device according to one of the preceding claims, characterised in that a temperature of at least one engine part to be cooled, said temperature being picked up by at least one sensor (30), is fed as an input signal to the electronic switching device (24).
  7. Device according to one of the preceding claims, characterised in that an ambient temperature detected by a sensor (31) is fed to the electronic switching device (24).
  8. Device according to one of the preceding claims, characterised in that a speed of the engine (10) detected by a sensor (25) is fed to the electronic switching device (24).
  9. Device according to one of the preceding claims, characterised in that a pressure of the coolant detected by a sensor (28) is fed to the electronic switching device (24).
  10. Device according to one of the preceding claims, characterised in that an electric fan (37, 38) which can be controlled by the electronic switching device (24) is provided for air-cooling the heat exchanger (16, 20) arranged in the coolant path (15, 19; 52, 53).
  11. Device according to one of the preceding claims, characterised in that the travelling speed of the motor vehicle detected by a sensor (32) is fed as a further input signal to the electronic switching device (24).
  12. Device according to one of the preceding claims, characterised in that a blind (36) which can be actuated by an electronic switching device via an actuator (35) is provided for influencing the airflow through the heat exchanger (16).
  13. Device according to one of the preceding claims, characterised in that a signal emitted by a heating/ ventilation controller (33) is fed to the electronic switching device (24).
  14. Method for cooling an engine (10) arranged in a motor vehicle, having a coolant circuit (13, 14), having a first heat exchanger (16) arranged in the coolant circuit (13, 14), having a bypass (17), leading past the first heat exchanger (16), having a valve (18) for distributing the coolant flow to the first heat exchanger (16) and the bypass (17), having a further coolant path (19), which can be opened by a valve (21) and is arranged in the coolant circuit (13, 14), having a second heat exchanger (20) arranged in the coolant path (19), having at least one coolant pump (22) arranged in the coolant circuit (13, 14) and driven continuously by the engine (10) to be cooled, the delivery rate of which pump is set to a specifiable part of the required cooling capacity, having an electrically drivable coolant pump (23) arranged in the coolant circuit (13, 14), having at least one temperature sensor (27) for detecting the coolant temperature, and having an electronic switching device (24) for the pump (23), characterised in that the delivery rate of the electrically drivable pump (23) is varied by the electronic switching device (24) as a function of the coolant temperature detected by the temperature sensor (27), in that the electrically drivable pump (23) is connected in parallel or in series with the mechanically driven pump (22), in that at least one first air duct (42) leading away from the second heat exchanger (20) and into the vehicle interior and at least one second air duct (42, 43) leading away from the second heat exchanger (20) and into the open air are provided, and in that the distribution of the air heated by the second heat exchanger (20) between the ducts (42, 43) is performed by an air flap (41) which is actuated by an actuator (39).
  15. Method for cooling an engine (10) arranged in a motor vehicle, having a first coolant circuit (13, 14), having a first heat exchanger (16) arranged in the first coolant circuit (13, 14), having a second coolant circuit (52, 53), having a second heat exchanger (20) arranged in the second coolant circuit (52, 53), having at least one coolant pump (22) arranged in the first coolant circuit (13, 14), and driven continuously by the engine (10) to be cooled, the delivery rate of which pump is set to a specified part of the required cooling capacity, having an electrically drivable coolant pump (23) arranged in the first coolant circuit (13, 14), having at least one temperature sensor (27) for detecting the coolant temperature, and having an electronic switching device (24) for the electrically controllable pump (23), characterised in that the first and second coolant circuit (13, 14; 52, 53) are separate from one another and each have separate connections (11, 12; 50, 51) to the engine (10), in that the electrically drivable pump (23) is connected in parallel or in series with the mechanically driven pump (22), in that a further electrically drivable pump (54) is arranged in the second coolant circuit (52, 53), in that the delivery rates of the electrically controllable pumps (23, 54) are varied by the electronic switching device (24) as a function of the coolant temperature detected by the temperature sensor (27), in that at least one first air duct (42) leading away from the second heat exchanger (20) into the vehicle interior and at least one second air duct (43) leading away from the second heat exchanger (20) and into the open air are provided, and in that the distribution of the air heated by the second heat exchanger (20) between the ducts (42, 43) is performed by an air flap (41) which is actuated by an actuator (39).
  16. Method according to Claim 14 or 15, characterised in that the delivery rate of the electrically driven pump (23, 54) is controlled by the electronic switching device (24) as a function of the engine speed detected by a sensor (25).
  17. Method according to one of Claims 14 to 16, characterised in that the delivery rate of the electrically drivable pump (23, 54) is controlled by the electronic switching device (24) as a function of the temperatures detected by an engine compartment temperature sensor (29) and an engine-part temperature sensor (30).
  18. Method according to one of Claims 14 to 17, characterised in that the delivery rate of the electrically drivable pump (23, 54) is controlled by the electronic switching device (24) as a function of the ambient temperature detected by a sensor (31).
  19. Method according to one of Claims 14 to 18, characterised in that the air heated by the further heat exchanger (20) is used for heating purposes and/or for further engine cooling, the air distribution being carried out by means of the air flap (41).
  20. Method according to one of Claims 14 to 19, characterised in that, in the case of failure of one of the pumps (22, 23, 54), an emergency-running mode is initiated.
  21. Method according to one of Claims 14 to 20, characterised in that the coolant condition is determined from a correlation of the signals emitted by a coolant temperature sensor (27) and by a coolant pressure sensor (28).
EP88909289A 1987-11-12 1988-10-26 Device and process for cooling an engine Expired - Lifetime EP0389502B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88909289T ATE86361T1 (en) 1987-11-12 1988-10-26 DEVICE AND METHOD FOR ENGINE COOLING.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3738412 1987-11-12
DE19873738412 DE3738412A1 (en) 1987-11-12 1987-11-12 ENGINE COOLING DEVICE AND METHOD

Publications (2)

Publication Number Publication Date
EP0389502A1 EP0389502A1 (en) 1990-10-03
EP0389502B1 true EP0389502B1 (en) 1993-03-03

Family

ID=6340334

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88909289A Expired - Lifetime EP0389502B1 (en) 1987-11-12 1988-10-26 Device and process for cooling an engine

Country Status (7)

Country Link
US (1) US5036803A (en)
EP (1) EP0389502B1 (en)
JP (1) JPH03500795A (en)
KR (1) KR960012136B1 (en)
AT (1) ATE86361T1 (en)
DE (2) DE3738412A1 (en)
WO (1) WO1989004419A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6230668B1 (en) 2000-05-22 2001-05-15 General Electric Company Locomotive cooling system

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2767995B2 (en) * 1989-12-28 1998-06-25 株式会社デンソー Internal combustion engine cooling system
US5482432A (en) * 1990-07-09 1996-01-09 Deco-Grand, Inc. Bearingless automotive coolant pump with in-line drive
CA2086115C (en) * 1990-07-09 1999-10-12 Joseph Paliwoda Electric drive water pump
DE4033261C2 (en) * 1990-10-19 1995-06-08 Freudenberg Carl Fa Temperature controlled cooling circuit of an internal combustion engine
DE4109498B4 (en) * 1991-03-22 2006-09-14 Robert Bosch Gmbh Device and method for controlling the temperature of an internal combustion engine
FR2693231B1 (en) * 1992-07-06 1994-09-30 Valeo Thermique Moteur Sa Cooling device for motor vehicle engine.
NL9201377A (en) * 1992-07-30 1994-02-16 Dsm Nv Integrated cooling system.
DE4345532B4 (en) * 1992-10-01 2008-05-21 Hitachi, Ltd. Cooling system for electric motor vehicle with electric drive motor - includes pump and cooling line for non-freezing coolant soln. which is force-circulated through pipeline for cooling heat produced by electric drive motor and cooled by radiator and fan.
DE4333613C2 (en) * 1992-10-01 2002-10-17 Hitachi Ltd Cooling system of an electric motor vehicle and an electric motor used therefor
KR940010453A (en) * 1992-10-01 1994-05-26 가나이 쯔도무 Electric motor cooling system and electric motor used for this
DE4324178A1 (en) * 1993-07-19 1995-01-26 Bayerische Motoren Werke Ag Cooling system for an internal combustion engine of a motor vehicle with a thermostatic valve that contains an electrically heated expansion element
DE4327261C1 (en) * 1993-08-13 1994-10-13 Daimler Benz Ag Coolant circuit
JPH07259562A (en) * 1994-03-23 1995-10-09 Unisia Jecs Corp Diagnostic device of radiator fan controller
DE19508102C1 (en) * 1995-03-08 1996-07-25 Volkswagen Ag Method for regulating a cooling circuit of an internal combustion engine, in particular for motor vehicles
US5781206A (en) * 1995-05-01 1998-07-14 Minnesota Mining And Manufacturing Company Apparatus and method for recalibrating a multi-color imaging system
JP3116781B2 (en) * 1995-09-11 2000-12-11 トヨタ自動車株式会社 Radiator cooling fan system abnormality detector
DE19539604A1 (en) * 1995-10-25 1997-04-30 Pierburg Ag Cooling system for vehicle internal combustion engine
DE19540591C2 (en) * 1995-10-31 1999-05-20 Behr Gmbh & Co Method for regulating the volume flow distribution in a coolant circuit for motor vehicles with an engine and device for carrying out the method
US5660149A (en) * 1995-12-21 1997-08-26 Siemens Electric Limited Total cooling assembly for I.C. engine-powered vehicles
US6016774A (en) * 1995-12-21 2000-01-25 Siemens Canada Limited Total cooling assembly for a vehicle having an internal combustion engine
DE19601319A1 (en) * 1996-01-16 1997-07-17 Wilo Gmbh Radiator of an automobile engine
DE19735058B4 (en) * 1996-02-21 2010-09-16 Behr Thermot-Tronik Gmbh Cooling system for an internal combustion engine
DE19641559A1 (en) * 1996-10-09 1998-04-16 Voith Turbo Kg Drive unit with thermally controlled water pump
DE19641558A1 (en) * 1996-10-09 1998-04-16 Voith Turbo Kg Method and control for regulating the cooling circuit of a vehicle by means of a thermally controlled water pump
IT1291190B1 (en) * 1997-03-13 1998-12-29 Gate Spa Cooling system for an internal combustion engine, particularly for motor vehicles
JP3891512B2 (en) * 1997-05-29 2007-03-14 日本サーモスタット株式会社 Cooling control device and cooling control method for internal combustion engine
DE19728351B4 (en) * 1997-07-03 2004-07-22 Daimlerchrysler Ag Method for thermoregulation of an internal combustion engine
AT502321B8 (en) * 1997-07-23 2007-08-15 Tcg Unitech Gmbh CONTROL OF A COOLANT PUMP
DE19818030C2 (en) * 1998-04-22 2003-12-18 Schatz Thermo System Gmbh Method and device for operating a coolant circuit of an internal combustion engine
JPH11303635A (en) * 1998-04-23 1999-11-02 Aisin Seiki Co Ltd Cooling device for engine
US6178928B1 (en) 1998-06-17 2001-01-30 Siemens Canada Limited Internal combustion engine total cooling control system
DE19832626C1 (en) * 1998-07-21 2000-03-16 Daimler Chrysler Ag Regulation of a cooling circuit of a motor-driven vehicle
US6142108A (en) * 1998-12-16 2000-11-07 Caterpillar Inc. Temperature control system for use with an enclosure which houses an internal combustion engine
FR2796987B1 (en) * 1999-07-30 2002-09-20 Valeo Thermique Moteur Sa DEVICE FOR REGULATING THE COOLING OF A MOTOR VEHICLE HEAT ENGINE
WO2001011211A1 (en) * 1999-08-05 2001-02-15 Mitsuhiro Sano Cooling controller for internal-combustion engine
DE19939138A1 (en) 1999-08-18 2001-02-22 Bosch Gmbh Robert Method for regulating the temperature of the coolant of an internal combustion engine by means of an electrically operated coolant pump
US6227153B1 (en) 1999-09-17 2001-05-08 General Electric Company Engine cooling apparatus and method
DE19952898A1 (en) * 1999-11-03 2001-05-10 Behr Gmbh & Co Device for control of final control element, especially air flap, of heating or air-conditioning installation of car has circuit outside adjusting drive and control part
DE19960190A1 (en) * 1999-12-14 2001-07-05 Bosch Gmbh Robert Control valve
DE10001278A1 (en) 2000-01-14 2001-07-19 Pierburg Ag Cooling system for motor vehicle has second coolant circuit feed and outlet points connected to first coolant circuit line on outlet side of engine cooling channels
US6394044B1 (en) 2000-01-31 2002-05-28 General Electric Company Locomotive engine temperature control
US6394207B1 (en) * 2000-02-16 2002-05-28 General Motors Corporation Thermal management of fuel cell powered vehicles
DE10019419A1 (en) 2000-04-19 2001-10-25 Bosch Gmbh Robert Cooling system for motor vehicle detects faulty positioning of cooling flow closure unit from variation with time of temperature difference between model and actual temperature variation
US6283100B1 (en) 2000-04-20 2001-09-04 General Electric Company Method and system for controlling a compression ignition engine during partial load conditions to reduce exhaust emissions
US6286311B1 (en) 2000-05-16 2001-09-11 General Electric Company System and method for controlling a locomotive engine during high load conditions at low ambient temperature
JP4446622B2 (en) * 2001-03-27 2010-04-07 トヨタ紡織株式会社 Oil pump for internal combustion engine and method of using the same
DE10143109B4 (en) * 2001-09-03 2020-12-03 Att Automotive Thermo Tech Gmbh Method and device for setting defined coolant flows in cooling systems of internal combustion engines in motor vehicles
DE10154926A1 (en) * 2001-11-08 2003-05-22 Daimler Chrysler Ag Coolant circuit for an internal combustion engine
DE10163943A1 (en) 2001-12-22 2003-07-03 Bosch Gmbh Robert Method for controlling electrically operable components of a cooling system, computer program, control unit, cooling system and internal combustion engine
DE10163944A1 (en) 2001-12-22 2003-07-03 Bosch Gmbh Robert Method for controlling electrically operable components of a cooling system, computer program, control unit, cooling system and internal combustion engine
DE10207653C1 (en) * 2002-02-22 2003-09-25 Gpm Geraete Und Pumpenbau Gmbh Electric coolant pump with integrated valve, and method for controlling it
DE10228495A1 (en) 2002-06-26 2004-01-15 Robert Bosch Gmbh Method for operating a cooling and heating circuit of a motor vehicle
DE10234087A1 (en) 2002-07-26 2004-02-05 Robert Bosch Gmbh Method for operating a cooling and heating circuit of a motor vehicle and cooling and heating circuit for a motor vehicle
DE10234608A1 (en) 2002-07-30 2004-02-19 Robert Bosch Gmbh Method for operating a cooling and heating circuit of a motor vehicle
US6910529B2 (en) * 2003-01-08 2005-06-28 Ise Corporation Vehicle rooftop engine cooling system
US20060000429A1 (en) * 2003-01-08 2006-01-05 Stone Kevin T Vehicle rooftop engine cooling system
US20080053129A1 (en) * 2003-01-08 2008-03-06 Ise Corporation Vehicle Rooftop Engine Cooling System and Method
US7546184B2 (en) * 2003-07-28 2009-06-09 General Electric Company Locomotive engine restart shutdown override system and method
DE10343775B4 (en) * 2003-09-18 2014-09-18 Volkswagen Ag Power demand controlled cooling and heating system for motor vehicles with independent of the internal combustion engine drivable conveyor
FR2866604B1 (en) * 2004-02-19 2007-06-01 Plastic Omnium Cie COOLING AIR SUPPLY DEVICE FOR A VEHICLE, METHOD OF SERVING AN AIR INTAKE CLUTCH DEVICE AND COMPUTER IMPLEMENTING THE METHOD
GB2420846B (en) * 2004-12-04 2009-07-08 Ford Global Technologies Llc A cooling system for a motor vehicle engine
US7267086B2 (en) * 2005-02-23 2007-09-11 Emp Advanced Development, Llc Thermal management system and method for a heat producing system
US7454896B2 (en) * 2005-02-23 2008-11-25 Emp Advanced Development, Llc Thermal management system for a vehicle
JP4557756B2 (en) * 2005-03-11 2010-10-06 トヨタ自動車株式会社 Electric motor cooling device and control method thereof, and abnormality determination method at the time of starting the cooling device
DE102005042396A1 (en) 2005-09-06 2007-03-15 Behr Gmbh & Co. Kg Cooling system for a motor vehicle
EP2066884B1 (en) * 2006-09-22 2011-08-24 Renault Trucks Cooling circuit for the thermal engine of an automotive vehicle
JP4277046B2 (en) * 2007-02-28 2009-06-10 トヨタ自動車株式会社 Cooling device for internal combustion engine
US8607744B2 (en) * 2008-01-04 2013-12-17 GM Global Technology Operations LLC Active air vent utilizing smart material actuation
US8196553B2 (en) * 2008-01-30 2012-06-12 Chrysler Group Llc Series electric-mechanical water pump system for engine cooling
US8869756B2 (en) * 2008-12-10 2014-10-28 Ford Global Technologies, Llc Cooling system and method for a vehicle engine
US8256386B2 (en) * 2009-01-08 2012-09-04 Honda Motor Co., Ltd. Saddle-ride vehicle
US20100218916A1 (en) * 2009-02-27 2010-09-02 Ford Global Technolgies, Llc Plug-in hybrid electric vehicle secondary cooling system
DE102009017353B4 (en) * 2009-04-14 2011-05-05 Audi Ag Method and device for diagnosing a Verbausaus a cooler, in particular an ozone-reducing cooler, in a cooling circuit of a liquid-cooled internal combustion engine
DE102009058585A1 (en) * 2009-12-17 2011-06-22 Bayerische Motoren Werke Aktiengesellschaft, 80809 Cooling arrangement for a motor vehicle internal combustion engine and method for operating the same
US8311708B2 (en) * 2010-02-16 2012-11-13 Ford Global Technologies, Llc Adjustable grill shutter system
US9771853B2 (en) * 2010-03-02 2017-09-26 GM Global Technology Operations LLC Waste heat accumulator/distributor system
US9605604B2 (en) * 2010-03-17 2017-03-28 Ford Global Technologies, Llc Turbocharger control
US8997847B2 (en) 2010-09-10 2015-04-07 Ford Global Technologies, Llc Cooling in a liquid-to-air heat exchanger
US20120163781A1 (en) * 2010-12-22 2012-06-28 Hotstart, Inc. Fluid heater
CN102230417B (en) * 2011-06-15 2012-10-03 中国汽车技术研究中心 Engine electric control auxiliary cooling system freeing from engine rotational speed influence
US9416720B2 (en) 2011-12-01 2016-08-16 Paccar Inc Systems and methods for controlling a variable speed water pump
JP2014101876A (en) * 2012-11-20 2014-06-05 Hyundai Motor Company Co Ltd Engine system including thermostat
US20160033214A1 (en) * 2014-08-04 2016-02-04 Kia Motors Corporation Universal controlling method and system for flow rate of cooling water and active air flap
KR101646441B1 (en) 2015-01-29 2016-08-05 현대자동차주식회사 Aaf and ets integrated control method for vehicle and control apparatus thereof
DE102016203981A1 (en) * 2016-03-10 2017-09-14 Mahle International Gmbh Method for operating a cooling system for a vehicle and cooling system
US10662859B1 (en) * 2016-05-02 2020-05-26 Northwest Uld, Inc. Dual flap active inlet cooling shroud
KR101856360B1 (en) 2016-09-19 2018-05-09 현대자동차주식회사 Method for Controlling Active Air Flap Based On Aerodynamic Force Gain and Eco Vehicle thereby
US11512623B2 (en) 2017-07-17 2022-11-29 Kohler Co. Apparatus for controlling cooling airflow to an intenral combustion engine, and engines and methods utilizing the same
US10844772B2 (en) 2018-03-15 2020-11-24 GM Global Technology Operations LLC Thermal management system and method for a vehicle propulsion system
KR101933612B1 (en) * 2018-10-22 2019-03-15 (주)부영이엔지 Unmanned management system of environment-friendly substation
US11413951B2 (en) * 2019-06-05 2022-08-16 Ford Global Technologies, Llc Method for detecting heater core isolation valve status

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2703680A (en) * 1948-10-01 1955-03-08 Friedrich K H Nallinger Motor vehicle heating system
DE1233656B (en) * 1961-12-29 1967-02-02 Tatra Np Device for regulating the temperature of an air-cooled internal combustion engine located in the rear of a motor vehicle
FR1392259A (en) * 1964-04-29 1965-03-12 Fiat Spa Installation for liquid cooling of internal combustion engines for motor vehicles
US3854459A (en) * 1973-12-28 1974-12-17 Mack Trucks Fan shroud for an engine cooling system
DE2408508C3 (en) * 1974-02-22 1979-02-22 Sueddeutsche Kuehlerfabrik Julius Fr. Behr Gmbh & Co Kg, 7000 Stuttgart Device for water-side temperature control, in particular of motor vehicle heating and air conditioning systems
DE2631121A1 (en) * 1976-07-10 1978-01-12 Daimler Benz Ag Liq. cooled IC engine coolant cycle - has additional pump for matching circulation to heat release
US4167924A (en) * 1977-10-03 1979-09-18 General Motors Corporation Closed loop fuel control system having variable control authority
DE3024209A1 (en) * 1979-07-02 1981-01-22 Guenter Dr Rinnerthaler Liq. cooling system for automobile engine with electronic control - regulating circulation pump or variable selective blocking element and by=pass line
JPS56148610A (en) * 1980-04-18 1981-11-18 Toyota Motor Corp Cooling device for engine
FR2519694A1 (en) * 1982-01-08 1983-07-18 Valeo Economical hydraulic cooling circuit for motor vehicle engine - uses continuously running electrically driven coolant pump and higher power pump connected to engine through clutch when temp. is high
JPS58124017A (en) * 1982-01-19 1983-07-23 Nippon Denso Co Ltd Cooling system controller of engine
DE3424580C1 (en) * 1984-07-04 1985-11-07 Audi AG, 8070 Ingolstadt Cooling system for a liquid-cooled internal combustion engine
US4656973A (en) * 1984-08-17 1987-04-14 Instrument Sales And Service, Inc. Temperature responsive engine control apparatus
DE3435833A1 (en) * 1984-09-28 1986-04-10 Bayerische Motoren Werke AG, 8000 München Control device for the liquid cooling circuit of internal combustion engines
US4591691A (en) * 1984-10-29 1986-05-27 Badali Edward A Auxiliary electric heating system for internal combustion engine powered vehicles
US4691669A (en) * 1986-03-17 1987-09-08 Otteman John H Engine overheat protection system
JPS62247112A (en) * 1986-03-28 1987-10-28 Aisin Seiki Co Ltd Cooling system control device for internal combustion engine
JPS6316121A (en) * 1986-07-07 1988-01-23 Aisin Seiki Co Ltd Cooling device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6230668B1 (en) 2000-05-22 2001-05-15 General Electric Company Locomotive cooling system

Also Published As

Publication number Publication date
KR960012136B1 (en) 1996-09-16
WO1989004419A1 (en) 1989-05-18
JPH03500795A (en) 1991-02-21
ATE86361T1 (en) 1993-03-15
DE3878919D1 (en) 1993-04-08
DE3738412A1 (en) 1989-05-24
KR900700721A (en) 1990-08-16
EP0389502A1 (en) 1990-10-03
US5036803A (en) 1991-08-06

Similar Documents

Publication Publication Date Title
EP0389502B1 (en) Device and process for cooling an engine
EP0638712B1 (en) Coolant circuit
EP0499071B1 (en) Cooling system for an intenal combustion engine of a motor vehicle
DE19719792B4 (en) Method and device for regulating the temperature of a medium
DE102014115530B4 (en) Method for regulating the coolant temperature of a HVAC heat pump system field
DE102013204703B4 (en) DIAGNOSIS OF A COOLANT THERMOSTAT IN AN ENGINE COOLING SYSTEM
DE19930148B4 (en) Temperature control in electric vehicle
DE10392580B4 (en) Coolant fan control for fuel cell systems
EP0372171B1 (en) Air conditioning system
DE10334919A1 (en) Cooling system for a diesel engine
DE10134678A1 (en) Arrangement for cooling and heating motor vehicle, has at least one bypass line with bypass valve associated with and arranged in parallel with at least one auxiliary radiator segment
EP0777585B1 (en) Motor vehicle heat exchanger
DE10309779B4 (en) Heating, air conditioning
WO2019048522A1 (en) Control module for the temperature control of a camera
EP1923549B1 (en) Cooling system for a motor vehicle
DE102017217685A1 (en) Arrangement for controlling the temperature of a battery and further electrical components of a vehicle, vehicle and method for controlling the arrangement
DE10319762A1 (en) Charge air cooling circuit and method of operating such a circuit
DE112016003786T5 (en) cooler
DE4341756A1 (en) Air conditioning unit for motor vehicle
DE102017005336B4 (en) Cooling system for an internal combustion engine and another object
DE4431041C2 (en) Method and device for self-adaptive control of a motor vehicle heater
EP3916209A1 (en) Hybrid vehicle with a cooling system
DE3607854C2 (en)
DE102019209942A1 (en) Arrangement and method for temperature control of an internal combustion engine and electrical drive components of a hybrid vehicle with cooling device
DE4323205C1 (en) Method for cooling the passenger compartment of a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR LI

17Q First examination report despatched

Effective date: 19910705

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR LI

REF Corresponds to:

Ref document number: 86361

Country of ref document: AT

Date of ref document: 19930315

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3878919

Country of ref document: DE

Date of ref document: 19930408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19931026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931031

Ref country code: CH

Effective date: 19931031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST