EP0386131A1 - Gegenstrom-wärmetauscher. - Google Patents
Gegenstrom-wärmetauscher.Info
- Publication number
- EP0386131A1 EP0386131A1 EP89900222A EP89900222A EP0386131A1 EP 0386131 A1 EP0386131 A1 EP 0386131A1 EP 89900222 A EP89900222 A EP 89900222A EP 89900222 A EP89900222 A EP 89900222A EP 0386131 A1 EP0386131 A1 EP 0386131A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- channels
- exchanger according
- pressure
- exchange surfaces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 claims description 2
- 239000012530 fluid Substances 0.000 abstract 3
- 230000006866 deterioration Effects 0.000 description 2
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0012—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
- F28D9/0018—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form without any annular circulation of the heat exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0037—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/10—Particular pattern of flow of the heat exchange media
- F28F2250/104—Particular pattern of flow of the heat exchange media with parallel flow
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/355—Heat exchange having separate flow passage for two distinct fluids
- Y10S165/356—Plural plates forming a stack providing flow passages therein
- Y10S165/357—Plural plates forming a stack providing flow passages therein forming annular heat exchanger
- Y10S165/358—Radially arranged plates
Definitions
- the invention relates to a countercurrent heat exchanger.
- the object of the invention is to provide a countercurrent heat exchanger with high efficiency, which can also be used at high pressures and temperatures.
- the solution according to the invention is that the channels for the media flowing through have an extent in the direction perpendicular to the exchange surfaces through which the heat exchange mainly takes place, which is at most approximately twice the boundary layer thicknesses of the media flowing through, and that the channels are limited by thin sheets.
- the media are therefore channeled through relatively narrow channels.
- Each part of the media flowing through is always close enough to a heat exchange surface so that all parts of the media are cooled and heated very well and directly. Since the ducts are delimited by thin sheets, deterioration in efficiency is minimized due to the limited thermal conductivity of the wall materials used. Since the channels and the plates are thin, the heat exchanger is very compact, so that it is small in size and can therefore be easily manufactured so that it can withstand high pressures.
- the channels between the exchange surfaces are essentially flat and that on each edge of these surfaces there are inlet channels which narrow in the inlet direction and outlet channels which widen in the outlet direction.
- the channels can narrow in the inflow direction or expand in the downflow direction, because during the flow along the channels a part flows out of the inflow channels into the actual heat exchanger channels or in the outflow channel from the heat exchange channels. exchange channels runs into the drain channel.
- the inlet and outlet channels on one side have a largest cross section, which is the same as the flow cross section of the channels between the exchange surfaces, the channels on the opposite side except for the cross section Narrowing zero.
- the channels between the exchange surfaces have a V-shaped cross section when viewed in the direction of the inflow or outflow.
- an inlet channel and the corresponding outlet channel lie opposite one another on opposite sides of the heat exchanger.
- the heat exchanger area is increased on the one hand. If the corrugations still touch each other, the sheets are supported against each other, which also allows the size to be reduced and thinner sheets to be selected. If the sheets are not stacked in a straight line, but instead are circular, a circular heat exchanger is obtained in which the supply and discharge of the media can be effected in a particularly simple manner by radial fans.
- the sheets can be welded together, soldered, in particular hard-soldered.
- the heat exchanger is advantageously covered with a pressure-resistant and heat-insulating layer. If it is arranged in a pressure-tight and pressure-resistant housing, the interior of which has the pressure of the flowing media, the heat exchanger can also be used at very high pressures of these media. It is only necessary to ensure through a small hole or the like that a little of the media under high pressure can get from the heat exchanger into the pressure vessel, so that pressure equalization takes place here. The high operating pressures no longer need from the thin sheets, but only have to be absorbed by the pressure-resistant container.
- FIG. 1 in cross section the principle of operation of a conventional heat exchanger.
- Figure 2 shows in cross section the principle of operation of the heat exchanger according to the invention.
- 3 shows a special type of construction of the heat exchanger surfaces;
- FIG. 4 shows an embodiment of the heat exchanger according to the invention in cross section along the line E-E of FIG. 5;
- Figure 5 shows the heat exchanger of Figure 4 in cross-section along the line A-A;
- Fig. 6 shows the heat exchanger of Figures 4 and 5 in plan view.
- Fig. 8 shows the heat exchanger of Figure 7 in section along the line C-C.
- Fig. 9 shows another embodiment of the heat exchanger in section along the line F-F of Fig. 10;
- Fig. 10 shows the heat exchanger of Fig. 9 in section along the line D-D;
- FIG. 11 shows a further embodiment of the heat exchanger in radial cross section along the line G-G of FIG. 12;
- the medium 1 shows a conventional heat exchanger, between the walls 1 of which two media 2 and 3 move in the direction of arrows 4 and 5 in counterflow.
- the medium 2 has an original temperature T_
- the medium 3 has one original temperature ⁇ .
- the temperature gradients in radial direction ⁇ are indicated in the Fig. By a curve 6.
- the temperature initially maintains the original value over most of the width a of the channels.
- a temperature exchange only takes place within the relatively small boundary layer with the width s.
- the cooled or warmed edge areas must first be mixed by the flow with the central areas of the flow, so that they only participate indirectly in the heat exchange, as a result of which the efficiency is reduced.
- FIG. 3 which shows the flow channels in plan view
- walls 1 which have a wave shape
- the heat exchange area is thereby increased. Since the corrugations e.g. touch at lines 7, the arrangement is very stable even when using thin sheets.
- the flow channels 8 are limited laterally; In this way, a large flow channel is broken down into several smaller ones.
- the heat exchanger consists of a stack of sheets 1 which are essentially V-shaped.
- the legs of the V are relatively close together, so that the width of the flow channels 8 is very small here.
- At the ends of the legs of the V there are angled sheet metal areas which delimit the inlet channels 9 and the outlet channels 10.
- these channels taper to a thickness of zero, so that in the illustration of FIG. 5 only inflow channels are open from the right, while only outflow channels 10 are open to the left.
- the one medium can be introduced on one end face at the end of one leg of the V and can be withdrawn on the same end face at the end of the other leg of the V.
- the course of the flow is shown in FIG. 6 in a top view.
- FIGS. 4 to 6 the heat exchanger of FIGS. 4 to 6 is shown, in which the individual channels 9 and 10 are also provided with connecting pieces 11.
- the heat exchanger 12 itself is surrounded by a heat and pressure-resistant insulating compound 13, which is enclosed by a pressure-resistant housing 14.
- the interior of the pressure housing 14 is connected to the flowing media by pressure compensation bores, so that the relatively thin plates 1 of the heat exchanger 12 bear only very low pressure even in cases in which both media have very high, but approximately the same, pressures .
- the actual heat exchanger surfaces are not angled, but straight. Apart from this, the conditions are otherwise essentially the same as in the embodiment of FIGS. 4 to 8, so that a detailed explanation can be dispensed with.
- the inflow channels 9 and outflow channels 10 alternate with one another in the cross-sectional area F and narrow towards the ends, so that a medium flows in or out at one of the four ends.
- 11 and 12 essentially the sheets of the embodiment of FIGS. 9 and 10 are used, which, however, are no longer stacked in a straight line but rather in a circle. This creates the flow conditions as indicated in FIG. 12.
- One medium can be supplied from the left on the inner ring of inlet channels 9 and can be withdrawn from the outlet ring 10 'on the same side of the outer ring.
- the other medium is introduced from the outside on the right through the feed channels 9 ′ and radially removed from the inside of the channels 10.
- radial fans can be used very conveniently for conveying the media.
- a pressure-resistant insulation 13 and a pressure-resistant housing 14 are again provided in the embodiment of FIGS. 11 and 12.
- the plates 1 of the heat exchangers are expediently welded or soldered to one another at the end faces at which the media enter or exit, since here one of the channels narrows to zero width, ie the corresponding plates lie directly on top of one another. In this way, a very stable basic structure is obtained, in which then only the remaining end faces have to be soldered or otherwise closed, which is also easy to achieve because of the corrugations.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Windings For Motors And Generators (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Networks Using Active Elements (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT89900222T ATE74200T1 (de) | 1987-12-10 | 1988-12-01 | Gegenstrom-waermetauscher. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873741869 DE3741869A1 (de) | 1987-12-10 | 1987-12-10 | Gegenstrom-waermetauscher |
DE3741869 | 1987-12-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0386131A1 true EP0386131A1 (de) | 1990-09-12 |
EP0386131B1 EP0386131B1 (de) | 1992-03-25 |
Family
ID=6342292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19890900222 Expired - Lifetime EP0386131B1 (de) | 1987-12-10 | 1988-12-01 | Gegenstrom-wärmetauscher |
Country Status (11)
Country | Link |
---|---|
US (1) | US5121792A (de) |
EP (1) | EP0386131B1 (de) |
JP (1) | JP2602969B2 (de) |
KR (1) | KR0128254B1 (de) |
AT (1) | ATE74200T1 (de) |
AU (1) | AU623873B2 (de) |
DE (2) | DE3741869A1 (de) |
DK (1) | DK165652C (de) |
FI (1) | FI902871A0 (de) |
NO (1) | NO902593L (de) |
WO (1) | WO1989005432A1 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9000712L (sv) * | 1990-02-28 | 1991-08-29 | Alfa Laval Thermal | Permanent sammanfogad plattvaermevaexlare |
DE59309277D1 (de) * | 1993-03-25 | 1999-02-18 | Sulzer Chemtech Ag | Als Wärmeübertrager ausgebildetes Packungselement für Stoffaustausch- oder Stoffumwandlungs-Verfahren |
JP2642308B2 (ja) * | 1993-12-28 | 1997-08-20 | リンナイ株式会社 | 吸収式冷凍機用の溶液熱交換器 |
AUPN123495A0 (en) * | 1995-02-20 | 1995-03-16 | F F Seeley Nominees Pty Ltd | Contra flow heat exchanger |
IL114613A (en) * | 1995-07-16 | 1999-09-22 | Tat Ind Ltd | Parallel flow condenser heat exchanger |
SE510938C2 (sv) * | 1998-03-20 | 1999-07-12 | Stellan Grunditz | Värmeväxlare uppbyggd av kupade plattor |
NL1016104C1 (nl) * | 2000-09-05 | 2002-03-07 | 3F Holding B V | Warmtewisselaar en daarmee uitgerust verwarmingssysteem. |
GB0129040D0 (en) * | 2001-12-05 | 2002-01-23 | Semikron Ltd | Heat sinks for electrical or other apparatus |
FR2848653B1 (fr) * | 2002-12-13 | 2005-03-11 | Technologies De L Echange Ther | Echangeur thermique procedes et moyens de fabrication de cet echangeur |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR476682A (fr) * | 1913-09-24 | 1915-08-24 | Anders Johan Ericsson Munters | Appareil propre à refroidir ou chauffer les liquides |
US1710818A (en) * | 1928-01-18 | 1929-04-30 | William F Fosbury | Feed-water heater or condenser |
GB532473A (en) * | 1939-08-10 | 1941-01-24 | Edward Samuel Symonds | Improvements in plate heat-exchange apparatus for treating fluids, applicable also for treating gases with liquids |
GB567880A (en) * | 1943-02-05 | 1945-03-07 | James Frank Belaieff | Improvements in, or relating to, plate heat exchange apparatus |
FR900326A (fr) * | 1943-07-30 | 1945-06-26 | Système échangeur de chaleur pour moteurs d'aéronefs et autres applications | |
BE650355A (de) * | 1964-06-26 | |||
GB1126066A (en) * | 1965-07-28 | 1968-09-05 | Janusz Gutkowski | Improvements in heat exchangers |
US3525390A (en) * | 1968-08-12 | 1970-08-25 | United Aircraft Corp | Header construction for a plate-fin heat exchanger |
US4042018A (en) * | 1975-09-29 | 1977-08-16 | Des Champs Laboratories Incorporated | Packaging for heat exchangers |
SE7903535L (sv) * | 1979-04-23 | 1980-10-24 | Sigurd Hultgren | Vermevexlare |
SE424143B (sv) * | 1980-12-08 | 1982-07-05 | Alfa Laval Ab | Plattindunstare |
US4512397A (en) * | 1982-05-27 | 1985-04-23 | Walter Stark | Housing for cross flow heat exchanger |
JPS5997491A (ja) * | 1982-11-25 | 1984-06-05 | Japan Vilene Co Ltd | 気流分岐部付き熱交換器 |
US4556105A (en) * | 1983-10-24 | 1985-12-03 | Boner Alan H | Parallel heat exchanger with interlocking plate arrangement |
-
1987
- 1987-12-10 DE DE19873741869 patent/DE3741869A1/de not_active Ceased
-
1988
- 1988-12-01 AU AU28156/89A patent/AU623873B2/en not_active Ceased
- 1988-12-01 DE DE8989900222T patent/DE3869620D1/de not_active Expired - Lifetime
- 1988-12-01 WO PCT/EP1988/001095 patent/WO1989005432A1/de active IP Right Grant
- 1988-12-01 EP EP19890900222 patent/EP0386131B1/de not_active Expired - Lifetime
- 1988-12-01 KR KR1019890701492A patent/KR0128254B1/ko not_active IP Right Cessation
- 1988-12-01 JP JP1500719A patent/JP2602969B2/ja not_active Expired - Lifetime
- 1988-12-01 AT AT89900222T patent/ATE74200T1/de not_active IP Right Cessation
- 1988-12-01 US US07/499,382 patent/US5121792A/en not_active Expired - Fee Related
-
1990
- 1990-06-08 DK DK140490A patent/DK165652C/da not_active IP Right Cessation
- 1990-06-08 FI FI902871A patent/FI902871A0/fi not_active IP Right Cessation
- 1990-06-11 NO NO90902593A patent/NO902593L/no unknown
Non-Patent Citations (1)
Title |
---|
See references of WO8905432A1 * |
Also Published As
Publication number | Publication date |
---|---|
FI902871A0 (fi) | 1990-06-08 |
DK140490D0 (da) | 1990-06-08 |
JPH03501645A (ja) | 1991-04-11 |
DE3869620D1 (de) | 1992-04-30 |
KR900700838A (ko) | 1990-08-17 |
KR0128254B1 (ko) | 1998-04-03 |
WO1989005432A1 (en) | 1989-06-15 |
JP2602969B2 (ja) | 1997-04-23 |
NO902593D0 (no) | 1990-06-11 |
NO902593L (no) | 1990-06-11 |
AU623873B2 (en) | 1992-05-28 |
DE3741869A1 (de) | 1989-06-22 |
US5121792A (en) | 1992-06-16 |
EP0386131B1 (de) | 1992-03-25 |
ATE74200T1 (de) | 1992-04-15 |
DK165652C (da) | 1993-05-17 |
DK165652B (da) | 1992-12-28 |
AU2815689A (en) | 1989-07-05 |
DK140490A (da) | 1990-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2736472C3 (de) | Hubkolbenmaschine, insbesondere Heißgasmaschine oder Verdichter | |
DE102006048305B4 (de) | Plattenwärmetauscher | |
DE69422207T2 (de) | Plattenwärmetauscher und entsprechende Platten | |
EP1856734B1 (de) | Mikrowärmeübertrager | |
DE112011101673T5 (de) | Wärmetauscher | |
DE10118625A1 (de) | Wellenförmige Lamelle mit teilweisem Versatz für Plattenwärmetauscher | |
DE1776042A1 (de) | Waermeaustauscher | |
DE112014003010T5 (de) | Fluidkanäle mit Leistungsverbesserungsmerkmalen und diese enthaltende Vorrichtungen | |
DE2951352C2 (de) | Flachrohr-Wärmetauscher | |
DE2713510B2 (de) | Auslaßventil einer Kolbenbrennkraftmaschine | |
EP0386131B1 (de) | Gegenstrom-wärmetauscher | |
EP0681156A1 (de) | Wärmeaustauscher | |
DE2404630C2 (de) | Wärmeaustauscher | |
DE3508834A1 (de) | Oelfilter mit integriertem waermetauscher | |
DE2536657B2 (de) | Wärmeaustauscher zum Vorwärmen von Verbrennungsluft für insbesondere ölbeheizte Industrieöfen | |
EP1477761B1 (de) | Platten-Wärmeübertrager | |
DE2916116A1 (de) | Waermeaustauscher | |
DE1451254A1 (de) | Plattenfoermiger Waermetauscher | |
DE1452809A1 (de) | Waermeaustauscher und Herstellungsverfahren | |
DE69308090T2 (de) | Vorrichtung zur thermischen regelung einer umlaufenden flüssigkeit | |
DD144601A5 (de) | Waermeaustauscher | |
DE2126226C3 (de) | Wärmeaustauscher | |
DE2542683C3 (de) | Gegenstrom-Wärmetauscher mit einem Kern aus übereinander angeordneten Plattenbauteilen | |
DE69801631T2 (de) | Wärmetauscherelement mit hohem Wirkungsgrad für einen Heizkörper in einem Gliederheizkessel | |
DE10236665A1 (de) | Gas-Flüssigkeits-Wärmetauscher und damit ausgerüsteter Boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900608 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19910325 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 74200 Country of ref document: AT Date of ref document: 19920415 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3869620 Country of ref document: DE Date of ref document: 19920430 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SITA MASCHINENBAU- UND FORSCHUNGS GMBH |
|
RIN2 | Information on inventor provided after grant (corrected) |
Free format text: SCHUKEY, JUERGEN RICHARD |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
BECN | Be: change of holder's name |
Effective date: 19920325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19921231 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 89900222.4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000526 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010618 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20010622 Year of fee payment: 13 Ref country code: CH Payment date: 20010622 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20010625 Year of fee payment: 13 Ref country code: SE Payment date: 20010625 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010626 Year of fee payment: 13 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20001201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010821 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011231 |
|
BERE | Be: lapsed |
Owner name: SITA MASCHINENBAU- UND FORSCHUNGS G.M.B.H. Effective date: 20011231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020702 |
|
EUG | Se: european patent has lapsed |
Ref document number: 89900222.4 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020830 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20020701 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051201 |