EP0384926A1 - Circuit arrangement for energising and de-energising a bistable relay - Google Patents

Circuit arrangement for energising and de-energising a bistable relay Download PDF

Info

Publication number
EP0384926A1
EP0384926A1 EP89103561A EP89103561A EP0384926A1 EP 0384926 A1 EP0384926 A1 EP 0384926A1 EP 89103561 A EP89103561 A EP 89103561A EP 89103561 A EP89103561 A EP 89103561A EP 0384926 A1 EP0384926 A1 EP 0384926A1
Authority
EP
European Patent Office
Prior art keywords
transistor
voltage
relay
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89103561A
Other languages
German (de)
French (fr)
Other versions
EP0384926B1 (en
Inventor
Jürgen Begau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Legrand GmbH
Original Assignee
Legrand GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Legrand GmbH filed Critical Legrand GmbH
Priority to DE58909010T priority Critical patent/DE58909010D1/en
Publication of EP0384926A1 publication Critical patent/EP0384926A1/en
Application granted granted Critical
Publication of EP0384926B1 publication Critical patent/EP0384926B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/226Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil for bistable relays

Definitions

  • the invention relates to a circuit arrangement for the excitation and de-excitation of a bistable relay in the output of a circuit with a current source whose voltage is lower than the response voltage of the relay, a transistor and charging capacitor-circuit combination according to the preamble of claim 1.
  • Bistable relays are per se quite advantageous because of their advantage of low energy consumption in battery-operated devices for switching higher voltages or currents. However, at least for their activation they need a relatively larger voltage for the current in one direction through the coil of the relay for excitation, while no current is required for maintaining the switched-on state due to the remanence of the magnetic circuit in the case of bistable relays with only one coil, because their armature is kept in the working position after excitation against spring force by remanence and to switch off the relay a lower current at a lower voltage than the response voltage for excitation in the opposite direction is sufficient to cancel the remanence.
  • the invention is based on a prior art of so-called ironless voltage converters or voltage doubler or multiplier circuits, for example. according to the article by H.Michl in "Softstechnik 1968" Nr.18, Page 7o1.
  • a three-part phase chain as used in RC generators, is connected to the output of the RC phase chain generator in connection with a diode-capacitor chain in the manner of the known voltage doubler or multiplier circuits.
  • This circuit and circuits similar in the same way are generally relatively complex since they make use of the multiple application of the voltage doubling principle with the aid of series-connected capacitor groups.
  • the present invention is therefore based on the task of converting a relatively low battery voltage into a higher DC voltage by means of a circuit arrangement which requires less expenditure on components and on assembly or adjustment means, but is nevertheless reliable and meets the requirements of Miniaturization corresponds better in terms of space than is the case with the known solutions.
  • the invention needs here in the case of a time-wise loading of input terminals with partly periodic pulse voltages and partly with direct voltages zero and source pole (positive or negative - depending on the detailed principle of the semiconductor circuit PNP and NPN or NPN and PNP or the like)
  • the circuit principle according to the invention enables the use of series-produced, miniaturized modules by means of optional integration of components or sub-assemblies, such as units for periodic voltage sources, DC voltage sources of various potentials and associated switches of suitable design in input circuits of a control unit for the timing of the switching processes and their use in connection with modules of the type mentioned at the beginning with a lower supply voltage, but also in connection with relays with the usual response voltages.
  • components or sub-assemblies such as units for periodic voltage sources, DC voltage sources of various potentials and associated switches of suitable design in input circuits of a control unit for the timing of the switching processes and their use in connection with modules of the type mentioned at the beginning with a lower supply voltage, but also in connection with relays with the usual response voltages.
  • the PNP transistor 1 with its emitter electrode is connected to the pole of the source voltage, for example. here the positive pole (H) of the current source 2 and its collector electrode 15 connected via the relay 3 to the zero pole (H) of the current source 4.
  • the node 14 between the collector electrode 15 of the first transistor 1 and input terminal 16 of the relay 3 is via the charging capacitor 17 of the circuit combination 18 via a first current path with a rectifier branch 19 with line 20 , diode 21 and series resistor 22 with the zero pole 23 of the power source 2 connected.
  • the conductivity of the diode 21 is opposite to that of the transistor 1.
  • the charging capacitor 17 is also located in the collector-electrode circuit 24 of the second transistor 25, and its emitter-electrode connection 24 at the zero pole 31
  • the circuit functions as follows: In the first operating state, the base electrode of the first transistor 1 is removed from the gene via the current limiting resistor 6 rator 1o is subjected to a periodic pulse voltage which controls a current through the relay 3 via the emitter-collector path 33 so that the current does not yet excite the relay into the switched-on state in the case of L-pulses.
  • the base electrode 29 of the second transistor 25 is at the zero pole 12 from the terminal 28 and via the limiting resistor 3o and enters the pulse pause during the transition, the limiting resistor 6 at the base electrode 5 of the first transistor, the voltage zero (L) is effective, at the input terminal 16 of the relay 3 to a negative induction voltage, which limits a charging current limited by the current limiting resistor 22 via the diode 21, the charging capacitor 17 to a negative voltage 14 and zero pole 23 charges.
  • This process is repeated until the generator 1o is switched off by a controller and until switch 8 is applied to terminal 41 (here: H) and thus the voltage at terminal 7 (here: H) via resistor 6 to base electrode 5 of transistor 1 and this is blocked.
  • the voltage at point 14 exceeds zero, ie. the charging voltage of the capacitor 17 - minus the voltage on the battery 2 - the ignition voltage of the Zener diode 34, then this ignites and the voltage at point 14 is limited to the value: sum of the battery voltage + Zener voltage, but also in the event of a drop in the battery voltage this value stabilized so that the energy of the battery 2 can still be used below a usual limit value for the discharge.
  • terminal 28 is again connected to the zero pole, whereby transistor 2 is blocked, and terminal 7 of switch 8 is also connected to the zero pole, whereby transistor 1 becomes conductive, so that the circuit of battery 2 via transistor 1 and Coil of relay 3 is closed and an opposite of the excitation current de-energizes the relay.
  • the changeover switches in the exemplary embodiment in FIG. 1 are combined with a control for the time sequence of the operating states in a semiconductor module 35 which contains the generator 36 for the periodic pulse voltage.
  • This microprocessor has an output 37 for the input signal of the base electrode 5 of the first transistor 1 to be switched and a second output 38 for the input voltage of the base electrode 29 of the second transistor 25 to be switched between signal L and signal H, and the connections 39 and 4o for the supply voltages H and L.
  • the structure of the circuit arrangement according to the invention is further simplified considerably, so that it only contains the two transistors 1 and 25, the charging capacitor 17, limiting resistors 6 and 3o, and the Zener diode 34 for the relay 3.
  • the programming of the semiconductor module 35 which is preferably designed as a microprocessor or a part of such, consists in a simple manner of timers between those units that are involved in the Changes in operating states come into effect and are dimensioned differently depending on the needs of the application.
  • a microprocessor function comes about in the form of a time sequence with selected times for the operating states.
  • the remaining functions of the circuit are the same as in the exemplary embodiment in FIG. 1 with the proviso that in the exemplary embodiment in FIG. 2 the variant of the rectifier branch 19 integrated in the transistor 25 is required

Landscapes

  • Relay Circuits (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

In a circuit arrangement for energising and de-energising a bistable relay in the circuit of a current source whose voltage is less than the response voltage of the relay and of a transistor and charging capacitor circuit combination, the innovation consists in that the base-electrode input of a first transistor (1) in a first operating state can have applied to it a periodic pulse voltage, a charging capacitor (17) of the circuit combination in a first current path (19) being connected via a rectifier device, consisting of the diode (21) and current-limiting resistor (22) in a series circuit on the one hand and the neutral terminal (23) of the current source (2) on the other hand, and, in a second current path (24), can be switched on in a second operating state via a second transistor (25), in the event that the first transistor (1) is blocked by switching over the base electrode from the pulse voltage onto the source terminal and hence, simultaneously, in the event that the second transistor (25) is conducting, by switching over the base electrode (29) of the relay (3) and, finally, the relay (3) can be deenergised in a third operating state by applying the neutral (L) voltage to the base electrode (5) of the first transistor (1). <IMAGE>

Description

Die Erfindung betrifft eine Schaltungsanordnung für die Erregung und Entregung eines bistabilen Relais im Ausgang eines Stromkreises mit einer Stromquelle, deren Spannung niedriger ist als die Ansprechspannung des Relais, einer Transistor- und Ladekondensator-Schaltungs-Kombina­tion gemäß dem Oberbegriff von Anspruch 1.The invention relates to a circuit arrangement for the excitation and de-excitation of a bistable relay in the output of a circuit with a current source whose voltage is lower than the response voltage of the relay, a transistor and charging capacitor-circuit combination according to the preamble of claim 1.

Bistabile Relais sind wegen ihres Vorteils des geringen Energieverbrauchs bei Batterie-betriebenen Geräten zum Schalten größerer Spannungen bzw. Ströme an sich recht vorteilhaft. Sie benötigen jedoch mindestens für ihre Ein­schaltung eine relativ größere Spannung für den Strom in einer Richtung durch die Spule des Relais zur Erregung, während für die Aufrechterhaltung des eingeschalteten Zu­standes infolge der Remanenz des magnetischen Kreises kein Strom erforderlich ist bei bistabilen Relais mit nur einer Spule, weil deren Anker nach Erregung gegen eine Federkraft durch Remanenz in der Arbeitslage gehalten wird und zur Ab­schaltung des Relais ein geringerer Strom bei niedrigerer Spannung als der Ansprechspannung für die Erregung in Gegen­richtung zur die Aufhebung der Remanenz ausreicht.Bistable relays are per se quite advantageous because of their advantage of low energy consumption in battery-operated devices for switching higher voltages or currents. However, at least for their activation they need a relatively larger voltage for the current in one direction through the coil of the relay for excitation, while no current is required for maintaining the switched-on state due to the remanence of the magnetic circuit in the case of bistable relays with only one coil, because their armature is kept in the working position after excitation against spring force by remanence and to switch off the relay a lower current at a lower voltage than the response voltage for excitation in the opposite direction is sufficient to cancel the remanence.

Mit Rücksicht auf den bei gleichem Volumen grös­seren Energieinhalt einer einzelnen Batterie im Vergleich zu einer Reihenschaltung aus mehreren Batterien mit niedri­gerer Spannung und im Zuge der Miniaturisierung der mit solchen Batterien betriebenen Geräte kommen immer mehr Mi­kroprozessoren in Einsatz, für die eine Versorgungsspannung von 1,5 V ausreicht. Einer Versorgung der einschlägigen Ge­räte mit Relaisausgang steht lediglich entgegen, daß Batte­rien mit 1 ,5 V Spannung für die Erregung des betreffenden Relais nicht ausreichen. Es besteht also ein Bedarf an einer Schaltungsanordnung, mit deren Hilfe die Batterie-Spannung von 1,5 V in eine Relais-Versorgungsspannung von ca. 4,5 V bis 6 V für ein leicht herstellbares und somit preiswertes Remanenzrelais umgewandelt werden kann.In view of the greater energy content of a single battery in the same volume compared to a series connection of several batteries with a lower voltage and in the course of miniaturization of the devices operated with such batteries, more and more microprocessors are being used for which a supply voltage of 1.5 V is used is sufficient. A supply of the relevant devices with relay output only stands in the way that batteries with 1.5 V voltage are not sufficient for the excitation of the relevant relay. There is therefore a need for a circuit arrangement with the aid of which the battery voltage of 1.5 V can be converted into a relay supply voltage of approximately 4.5 V to 6 V for an easily manufacturable and therefore inexpensive remanence relay.

Die Erfindung geht aus von einem Stand der Tech­nik der sogenannten eisenlosen Spannungswandler bzw. Span­nungs-Verdoppler- oder Vervielfacher-Schaltungen, zB. laut dem Aufsatzvon H.Michl in "Funktionstechnik 1968" Nr.18, Seite 7o1. Dort ist eine dreigliedrige Phasenkette, wie sie in RC-Generatoren Verwendung findet, in Verbindung mit einer Dioden-Kondensator-Kette nach Art der bekannten Spannungs-­Verdoppler oder Vervielfacher-Schaltungen an den Ausgang des RC-Phasenketten-Generators angeschlossen. Diese Schaltung und in gleicher Weise ähnliche Schaltungen sind in der Regel, da sie von der mehrfachen Anwendung des Spannungsverdopp­lungs-Prinzips mit Hilfe von Serien-geschalteten Kondensator-­Gruppen Gebrauch macht, relativ aufwendig.The invention is based on a prior art of so-called ironless voltage converters or voltage doubler or multiplier circuits, for example. according to the article by H.Michl in "Funktionstechnik 1968" Nr.18, Page 7o1. There, a three-part phase chain, as used in RC generators, is connected to the output of the RC phase chain generator in connection with a diode-capacitor chain in the manner of the known voltage doubler or multiplier circuits. This circuit and circuits similar in the same way are generally relatively complex since they make use of the multiple application of the voltage doubling principle with the aid of series-connected capacitor groups.

Der vorliegenden Erfindung liegt deshalb die Auf­gabe zugrunde, die Umwandlung einer relativ niedrigen Bat­terie-Spannung in eine höhere Gleichspannung durch eine Schaltungsanordnung zu bewerkstelligen, die einen kleineren Aufwand an Bauelementen und an Montage- bzw. Justierungs­mitteln erfordert, aber trotzdem zuverlässig ist und den Forderungen der Miniaturisierung von der Raumfrage her bes­ser entspricht als es bei den bekannten Lösungen der Fall ist.The present invention is therefore based on the task of converting a relatively low battery voltage into a higher DC voltage by means of a circuit arrangement which requires less expenditure on components and on assembly or adjustment means, but is nevertheless reliable and meets the requirements of Miniaturization corresponds better in terms of space than is the case with the known solutions.

Diese Aufgabe wird durch eine Schaltungsanordnung mit den Merkmalen des kennzeichnenden Teils von Anspruch 1 in Verbindung mit den Teilmerkmalen des Oberbegriffs ge­löst. Sie macht Gebrauch von dem Prinzip der Induktion eines Impulses von relativ hoher Spannung an einer Spule je nach der Schnelligkeit des Abschaltens eines durch sie fließenden Stroms. Hierfür wird dieser Impuls mehrfach hin­tereinander gleichgerichtet zur Ladung eines Kondensators verwertet, bis dieser Kondensator die für die Erregung des Relais notwendige Spannung erreicht bzw. etwas überschrit­ten hat. Nachdem durch die ausreichende Spannung das Relais eingeschaltet ist, genügt für die Abschaltung des Relais dann die Spannung der Batterie allein in zu der Erregungs­spannung umgekehrter Richtung. Die Erfindung benötigt hier­ bei eine lediglich zeitlich gestufte Beaufschlagung von Ein­gangsklemmen mit teils periodischen Impulsspannungen und teilweise mit Gleichspannungen Null und Quellen-Pol (posi­tiv bzw. negative - je nach Detail-Prinzip der Halbleiter-­Schaltung PNP und NPN bzw. NPN und PNP od.dgl.)This object is achieved by a circuit arrangement with the features of the characterizing part of claim 1 in conjunction with the partial features of the preamble. It makes use of the principle of induction of a relatively high voltage pulse on a coil depending on the speed at which a current flowing through it is switched off. For this purpose, this pulse is used several times in a row rectified to charge a capacitor until this capacitor has reached or slightly exceeded the voltage required to excite the relay. After the relay is switched on by the sufficient voltage, the voltage of the battery in the opposite direction to the excitation voltage is then sufficient to switch off the relay. The invention needs here in the case of a time-wise loading of input terminals with partly periodic pulse voltages and partly with direct voltages zero and source pole (positive or negative - depending on the detailed principle of the semiconductor circuit PNP and NPN or NPN and PNP or the like)

Das erfindungsgemäße Schaltungsprinzip ermöglicht die Verwendung von von serienhergestellten, miniaturisier­ten Bausteinen mittels wahlweise gehäufter Integration von Bauelementen bzw. Teil-Baugruppen, wie Baueinheiten für periodische Spannungsquellen, Gleichspannungsquellen ver­schiedenen Potentials und zugehörigen Schaltern geeigneter Bauart in Eingangskreisen eines Steuerwerks für den Zeit­ablauf der Schaltvorgänge und ihren Einsatz in Verbindung mit Baugruppen der eingangs erwähnten Art mit niedrigerer Versorgungsspannung, aber auch in Verbindung mit Relais der üblichen Ansprechspannungen.The circuit principle according to the invention enables the use of series-produced, miniaturized modules by means of optional integration of components or sub-assemblies, such as units for periodic voltage sources, DC voltage sources of various potentials and associated switches of suitable design in input circuits of a control unit for the timing of the switching processes and their use in connection with modules of the type mentioned at the beginning with a lower supply voltage, but also in connection with relays with the usual response voltages.

Andere Besonderheiten sind Gegenstand der Unteran­sprüche, insbesondere bezüglich der Steuerung der Eingangs­spannungen an den einzelnen Klemmen. Ein Ausführungsbei­spiel ist in der folgenden Beschreibung in Verbindung mit der Zeichnung beschrieben; es stellen dar:

  • Fig1: Eine allgemeine Variante mit einem ersten Strompfad mit gesonderter Diode (gestrichelt gezeichnet) und einem zweiten Strompfad mit einem NPN-Transistor im Ladeeingangs-Zweig des Ladekondensators;
  • Fig. 2: eine schaltbildtechnisch vereinfachte Variante, wobei die Diode funktionell in die Basis-Kollektor-Strecke des zweiten Transistors integriert ist, außerdem mit einem Mikroprozessor für die Umschaltung des Basis-Elektroden-­Eingangs des ersten Transistors von H/L-Impuls-Spannung auf Gleichspannung Null, sowie die Umschaltung der Basis-­Elektrode des zweiten Transistors von Gleichspannung Null (L) auf Quellen-, hier positiven Pol (H).
Other special features are the subject of the subclaims, in particular with regard to the control of the input voltages at the individual terminals. An embodiment is described in the following description in conjunction with the drawing; it represents:
  • Fig1: A general variant with a first current path with a separate diode (shown in dashed lines) and a second current path with an NPN transistor in the charging input branch of the charging capacitor;
  • FIG. 2: a variant simplified in terms of circuit diagrams, the diode being functionally integrated in the base-collector path of the second transistor, and also with a microprocessor for switching over the base-electrode input of the first transistor from H / L pulse voltage to DC voltage zero, as well as switching the base electrode of the second transistor from DC voltage zero (L) to source, here positive pole (H).

In Fig.1 ist der PNP-Transistor 1 mit seiner Emit­ter-Elektrode an den Pol der Quellenspannung, zB. hier den positiven Pol (H) der Stromquelle 2 und mit seiner Kollek­tor-Elektrode 15 über das Relais 3 an den Null-Pol (H) der Stromquelle 4 angeschlossen. Die Basis-Elektrode 5 des Transistors 1 ist über den Strombegrenzungs-Widerstand 6 mit der Klemme 7 verbunden, die mittels des Umschalters 8 wahlweise an den Ausgang 9 des Generators 1o für eine pe­riodische Impulsspannung (abwechselnd H, L) oder an die Klemme 26 für den Null-Pol (L) 12, dh. hier den Null-Pol 13 der Stromquelle 2, oder an die Klemme 41 für den Quel­len-Pol (hier H gleich positiver Pol) anschließbar ist.In Figure 1, the PNP transistor 1 with its emitter electrode is connected to the pole of the source voltage, for example. here the positive pole (H) of the current source 2 and its collector electrode 15 connected via the relay 3 to the zero pole (H) of the current source 4. The base electrode 5 of the transistor 1 is connected via the current limiting resistor 6 to the terminal 7, which can be connected to the output 9 of the generator 1o for a periodic pulse voltage (alternating H, L) or to the terminal 26 for by means of the switch 8 the zero pole (L) 12, ie. here the zero pole 13 of the current source 2, or can be connected to the terminal 41 for the source pole (here H = positive pole).

Der Knotenpunkt 14 zwischen Kollektor-Elektrode 15 des ersten Transistors 1 und Eingangsklemme 16 des Re­lais 3 ist über den Ladekondensator 17 der Schaltungskom­bination 18 über einen ersten Strompfad mit einem Gleich­richter-Zweig 19 mit Leitung 2o, Diode 21 und Vorwider­stand 22 mit dem Null-Pol 23 der Stromquelle 2 verbunden. Die Leitfähigkeit der Diode 21 ist entgegengesetzt gerich­tet derjenigen des Transistors 1. Der Ladekondensator 17 liegt außerdem im Kollektor-Elektrodenkreis 24 des zwei­ten Transistors 25, und dessen Emitter-Elektroden-Anschluß 24 an dem Null-Pol 31The node 14 between the collector electrode 15 of the first transistor 1 and input terminal 16 of the relay 3 is via the charging capacitor 17 of the circuit combination 18 via a first current path with a rectifier branch 19 with line 20 , diode 21 and series resistor 22 with the zero pole 23 of the power source 2 connected. The conductivity of the diode 21 is opposite to that of the transistor 1. The charging capacitor 17 is also located in the collector-electrode circuit 24 of the second transistor 25, and its emitter-electrode connection 24 at the zero pole 31

Die Funktion der Schaltung ist folgende: Im ersten Betriebszustand wird die Basis-Elektrode des ersten Transi­stors 1 über den Strombegrenzungs-Widerstand 6 aus dem Gene­ rator 1o mit einer periodischen Impulsspannung beaufschlagt, die über die Emitter-Kollektor-Strecke 33 einen Strom durch das Relais 3 so steuert, daß bei L-Impulsen der Strom das Relais noch nicht bis in den Einschaltzustand erregt. Dabei ist von der Klemme 28 aus und über den Begrenzungs-Widerstand 3o die Basis-Elektrode 29 des zweiten Transistors 25 am Null-­Pol 12 und tritt beim Übergang in die Impulspause, wobei über den Begrenzungs-Widerstand 6 an der Basis-Elektrode 5 des ersten Transistors die Spannung Null (L) wirksam ist, an der Eingangsklemme 16 des Relais 3 eine negative Induktionsspan­nung auf, die einen durch den Strombegrenzungs-Widerstand 22 begrenzten Ladestrom über die Diode 21 den Ladekondensator 17 auf eine negative Spannung 14 und Null-Pol 23 auflädt. Dieser Vorgang wiederholt sich so lange, bis der Generator 1o durch eine Steuerung abgeschaltet und bis Schalter 8 auf Klemme 41 (hier: H) und damit die Spannung an Klemme 7 (hier: H) über Widerstand 6 an Basiselektrode 5 des Transistors 1 angelegt und dieser dadurch gesperrt wird.The circuit functions as follows: In the first operating state, the base electrode of the first transistor 1 is removed from the gene via the current limiting resistor 6 rator 1o is subjected to a periodic pulse voltage which controls a current through the relay 3 via the emitter-collector path 33 so that the current does not yet excite the relay into the switched-on state in the case of L-pulses. In this case, the base electrode 29 of the second transistor 25 is at the zero pole 12 from the terminal 28 and via the limiting resistor 3o and enters the pulse pause during the transition, the limiting resistor 6 at the base electrode 5 of the first transistor, the voltage zero (L) is effective, at the input terminal 16 of the relay 3 to a negative induction voltage, which limits a charging current limited by the current limiting resistor 22 via the diode 21, the charging capacitor 17 to a negative voltage 14 and zero pole 23 charges. This process is repeated until the generator 1o is switched off by a controller and until switch 8 is applied to terminal 41 (here: H) and thus the voltage at terminal 7 (here: H) via resistor 6 to base electrode 5 of transistor 1 and this is blocked.

Überschreitet die Spannung an Punkt 14 gegen Null, dh. die Ladespannung des Kondensators 17 - abzüglich der Spannung an der Batterie 2 - die Zündspannung der Zenerdiode 34, dann zündet diese und wird die Spannung an Punkt 14 auf den Wert: Summe aus Batteriespannung + Zenerspannung begrenzt, aber auch im Falle des Abfalls der Batteriespannung auf diesen Wert stabilisiert, so daß die Energie der Batterie 2 noch bis unter einen üblichen Grenzwert der Entladung ausgenützt werden kann.If the voltage at point 14 exceeds zero, ie. the charging voltage of the capacitor 17 - minus the voltage on the battery 2 - the ignition voltage of the Zener diode 34, then this ignites and the voltage at point 14 is limited to the value: sum of the battery voltage + Zener voltage, but also in the event of a drop in the battery voltage this value stabilized so that the energy of the battery 2 can still be used below a usual limit value for the discharge.

Wenn dann die Spannung am Relais zur Erregung bis zum Einschaltzustand ausreicht, wird in einem zweiten Betriebs­zustand ein positiverImpuls an der Klemme 28 über den Begren­zungs-Widerstand 3o auf die Basis-Elektrode 29 geleitet und der Ladekondensator 17 durch den Transistor-Eingangsstrom zum Relaisdeingang 16 über das Relais entladen und dadurch das Relais 3 in den Einschaltzustand erregt.Then, when the voltage at the relay is sufficient for excitation up to the switch-on state, in a second operating state a positive pulse at the terminal 28 is passed to the base electrode 29 via the limiting resistor 3o and the charging capacitor 17 is discharged by the transistor input current to the relay input 16 via the relay and thereby the relay 3 is excited in the switched-on state.

In einem dritten Betriebszustand werden Klemme 28 wieder mit dem Null-Pol verbunden, wodurch Transistor 2 gesperrt wird, und Klemme 7 des Schalters 8 ebenfalls mit dem Nullpol verbunden, wodurch Transistor 1 leitend wird, so daß der Stromkreis der Batterie 2 über Transistor 1 und Spule des Relais 3 geschlossen ist und ein dem Erre­gungsstrom entgegengesetzter das Relais entregt.In a third operating state, terminal 28 is again connected to the zero pole, whereby transistor 2 is blocked, and terminal 7 of switch 8 is also connected to the zero pole, whereby transistor 1 becomes conductive, so that the circuit of battery 2 via transistor 1 and Coil of relay 3 is closed and an opposite of the excitation current de-energizes the relay.

In Fig.2 sind die Umschalter im Ausführungsbeispiel der Fig.1 zugleich mit einer Steuerung für die Zeitfolge der Betriebszustände in einem Halbleiter-Baustein 35 zusammenge­faßt, der den Generator 36 für die periodische Impulsspan­nung enthält. Dieser Mikroprozessor besitzt einen Ausgang 37 für das umzuschaltende Eingangssignal der Basis-Elektrode 5 des ersten Transistors 1 und einen zweiten Ausgang 38 für die zwischen Signal L und Signal H umzuschaltende Eingangs­spannung der Basis-Elektrode 29 des zweiten Transistors 25, sowie die Anschlüsse 39 und 4o für die Versorgungsspannun­gen H und L. Damit ist der Aufbau der erfindungsgemäßen Schaltungsanordnung weiter wesentlich vereinfacht, so daß sie lediglich noch die beiden Transistoren 1 und 25, den Ladekondensator 17, Begrenzungswiderstände 6 und 3o, sowie die Zenerdiode 34 für das Relais 3 enthält.In FIG. 2, the changeover switches in the exemplary embodiment in FIG. 1 are combined with a control for the time sequence of the operating states in a semiconductor module 35 which contains the generator 36 for the periodic pulse voltage. This microprocessor has an output 37 for the input signal of the base electrode 5 of the first transistor 1 to be switched and a second output 38 for the input voltage of the base electrode 29 of the second transistor 25 to be switched between signal L and signal H, and the connections 39 and 4o for the supply voltages H and L. Thus, the structure of the circuit arrangement according to the invention is further simplified considerably, so that it only contains the two transistors 1 and 25, the charging capacitor 17, limiting resistors 6 and 3o, and the Zener diode 34 for the relay 3.

Die Programmierung des Halbleiter-Bausteins 35, der vorzugsweise als Mikroprozessor bzw. ein Teil eines solchen ausgebildet ist, besteht in einfacher Weise aus Zeitgliedern zwischen denjenigen Baueinheiten, die bei dem Wechsel der Betriebszustände zur Wirkung gelangen und je nach Bedarf des Verwendungsfalls verschieden dimensioniert sind. Eine Mikroprozessor-Funktion kommt dabei in Form einer Zeitfolge mit vergewählten Zeiten für die Betriebszu­stände zustande. Die übrigen Funktionen der Schaltung sind die gleichen wie bei dem Ausführungsbeispiel der Fig.1 mit der Maßgabe, daß in dem Ausführungsbeispiel der Fig.2 die Variante des in den Transistor 25 integrierten Gleichrich­ter-Zweiges 19 vorausgesetzt istThe programming of the semiconductor module 35, which is preferably designed as a microprocessor or a part of such, consists in a simple manner of timers between those units that are involved in the Changes in operating states come into effect and are dimensioned differently depending on the needs of the application. A microprocessor function comes about in the form of a time sequence with selected times for the operating states. The remaining functions of the circuit are the same as in the exemplary embodiment in FIG. 1 with the proviso that in the exemplary embodiment in FIG. 2 the variant of the rectifier branch 19 integrated in the transistor 25 is required

Claims (5)

1. Schaltungsanordnung für die Erregung und Entregung eines bistabilen Relais im Ausgang eines Stromkreises mit einer Stromquelle, deren Spannung niedriger ist als die Ansprechspannung des Relais, einer Transistor- und Ladekondensator-Schaltungskombination,
dadurch gekennzeichnet,
daß der Basis-Elektroden-Eingang (5) eines ersten Tran­sistors (1) - vom PNP-Typ im Falle eines positiven Quel­lenpols der Stromquelle (2) - in einem ersten Betriebs­zustand durch eine periodische Impulsspannung (abwech­selnd H, L) (9) beaufschlagbar ist, wobei derLLadekon­densator (17) der Schaltungskombination (18)
a) in einem ersten Strompfad (19) zwischen Knotenpunkt (14) von Kollektor-Elektrode (15) des ersten Tran­sistors (1) und Relais-Eingangsklemme (16) über eine Gleichrichter-Einrichtung aus Diode (21) und Strom­ begrenzungswiderstand (22) in Serienschaltung einer­seits und Null-Pol (23) der Stromquelle (2) liegt, wobei dem Ladekondensator (17) infolge der Abschalt-­Induktionsspannung periodische Ladestromimpulse zu­geführt werden, und
b) in einem zweiten Strompfad (24) in einem zweiten Be­triebszustand über einen zweiten Transistor (25), dessen Durchlaßrichtung derjenigen des erstgenann­ten (1) entgegengesetzt ist, - im genannten Falle also vom NPN-Typ -, mit der Beendigung des Ladevor­gangs bei Erreichen einer Spannung, die ausreichend größer ist als die Ansprechspannung, bei Sperrung des ersten Transistors (1) durch Umschaltung der Basis­elektrode (5) von der Impulsspannung auf den Quellen­pol (den positiven Pol im Falle des Beispiels) und gleichzeitig damit bei Leitfähigkeit des zweiten Tran­sistors (25) durch Umschaltung der Basis-Elektrode (29) desselben von Null (L) auf positiven Pol (H)
das Relais (3) einschaltbar und schließlich in einem drit­ten Betriebszustand infolge Leitfähigkeit des ersten Tran­sistors (1) bei Beaufschlagung dessen Basis-Elektrode (5) mit Spannung Null (L) durch dessen entgegengesetzten Strom das Relais (3) entregbar ist.
1. Circuit arrangement for the excitation and de-excitation of a bistable relay in the output of a circuit with a current source whose voltage is lower than the response voltage of the relay, a transistor and charging capacitor circuit combination,
characterized,
that the base electrode input (5) of a first transistor (1) - of the PNP type in the case of a positive source pole of the current source (2) - can be acted upon in a first operating state by a periodic pulse voltage (alternating H, L) (9) , the charging capacitor (17) of the circuit combination ( 18 )
a) in a first current path (19) between the node (14) of the collector electrode (15) of the first transistor (1) and relay input terminal (16) via a rectifier device comprising a diode (21) and current limiting resistor (22) in series connection, on the one hand, and zero pole (23) of the current source (2), the charging capacitor (17) being supplied with periodic charging current pulses as a result of the shutdown induction voltage, and
b) in a second current path (24) in a second operating state via a second transistor (25), the forward direction of which is opposite to that of the former (1), - in the case mentioned, that is of the NPN type - with the completion of the charging process when reached a voltage which is sufficiently greater than the response voltage when the first transistor (1) is blocked by switching the base electrode (5) from the pulse voltage to the source pole (the positive pole in the case of the example) and at the same time with the conductivity of the second transistor ( 25) by switching the base electrode (29) from zero (L) to positive pole (H)
the relay (3) can be switched on and finally in a third operating state due to the conductivity of the first transistor (1) when its base electrode (5) is supplied with voltage zero (L) by means of the opposite current of which the relay (3) can be de-excited.
2. Schaltungsanordnung nach Anspruch 1,
dadurch gekennzeichnet,
daß die Diode in der Basis-Kollektorstrecke (32) des zweiten Transistors (25) funktionelle integriert ist.
2. Circuit arrangement according to claim 1,
characterized,
that the diode is functionally integrated in the base-collector path (32) of the second transistor (25).
3. Schaltungsanordnung nach einem der Ansprüche 1 und 2,
dadurch gekennzeichnet,
daß der Kollektor-Emitter-Strecke (33) des ersten Tran­sistors (1) eine Zener-Diode (34) parallel geschaltet ist, deren Leitfähigkeit derjenigen der Kollektor-Emit­ter-Strecke des ersten Transistors (1) entgegengesetzt ist.
3. Circuit arrangement according to one of claims 1 and 2,
characterized,
that the collector-emitter path (33) of the first transistor (1) is connected in parallel with a Zener diode (34), the conductivity of which is opposite to that of the collector-emitter path of the first transistor (1).
4. Schaltungsanordnung nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß die Basiselektrode (5 bzw. 29) über ihren Vorwider­stand (6 bzw. 3o) durch Ausgangssignale von Spannungs­quellen (L, H) bzw. einen Signalgenerator beaufschlagt ist, die manuell, gegebenenfalls mit Hilfe einer Schalt­automatik, in einer vorgegebenen Zeitfolge automatisch angesteuert ist.
4. Circuit arrangement according to one of claims 1 to 3,
characterized,
that the base electrode (5 or 29) via its series resistor (6 or 3o) is acted upon by output signals from voltage sources (L, H) or a signal generator, which is controlled automatically, optionally with the aid of an automatic switch, in a predetermined time sequence .
5. Schaltungsanordnung nach Anspruch 4,
dadurch gekennzeichnet,
daß die vorgegebene Zeitfolge der beabsichtigten Betriebs­zustände durch eine programmierte bzw. programmierbare Baugruppe, zB. einen Halbleiter-Baustein (35) mit inte­griertem Impulsgenerator "H/L" (36) mit einer ersten Um­schaltfunktion zwischen den Gleichspannungen "L" und "H" an einem zweiten Ausgang steuerbar ist.
5. Circuit arrangement according to claim 4,
characterized,
that the predetermined time sequence of the intended operating states by a programmed or programmable module, for example. a semiconductor module (35) with an integrated pulse generator "H / L" (36) with a first switchover function between the direct voltages "L" and "H" can be controlled at a second output.
EP19890103561 1987-09-11 1989-03-01 Circuit arrangement for energising and de-energising a bistable relay Expired - Lifetime EP0384926B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE58909010T DE58909010D1 (en) 1989-03-01 1989-03-01 Circuit arrangement for the excitation and de-excitation of a bistable relay.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873730517 DE3730517A1 (en) 1987-09-11 1987-09-11 CIRCUIT ARRANGEMENT FOR THE EXCITATION AND EXCURSION OF A BISTABLE RELAY

Publications (2)

Publication Number Publication Date
EP0384926A1 true EP0384926A1 (en) 1990-09-05
EP0384926B1 EP0384926B1 (en) 1995-02-15

Family

ID=6335775

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890103561 Expired - Lifetime EP0384926B1 (en) 1987-09-11 1989-03-01 Circuit arrangement for energising and de-energising a bistable relay

Country Status (2)

Country Link
EP (1) EP0384926B1 (en)
DE (1) DE3730517A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5699221A (en) * 1993-02-24 1997-12-16 Paralight Limited Support bracket for an electrical unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4325578A1 (en) * 1993-07-30 1995-02-02 Hartmann & Laemmle Elektronisc Switching device for an electromagnet
US9305729B2 (en) * 2013-08-21 2016-04-05 Littelfuse, Inc. Capacitive driven normal relay emulator using voltage boost
CN105406522A (en) * 2014-03-25 2016-03-16 泉州七星电气有限公司 Pulse type electricity acquiring method of line fault indicator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE30150E (en) * 1971-08-02 1979-11-13 Ncr Corporation Inductor drive means
EP0190717A1 (en) * 1985-02-05 1986-08-13 DIEHL GMBH &amp; CO. Circuit for a bistable relay presenting a monostable switching behaviour
US4757418A (en) * 1987-01-30 1988-07-12 Ncr Corporation Solenoid driver circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3139502C2 (en) * 1981-09-29 1987-01-29 Mannesmann AG, 4000 Düsseldorf Circuit for magnetically triggered printing elements, such as printing needles, printing hammers or the like, for printers, in particular for matrix printers
DE3239840C2 (en) * 1982-10-27 1986-11-20 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement for operating electromagnetic switching devices
DE3316251A1 (en) * 1983-05-04 1984-11-08 Robert Bosch Gmbh, 7000 Stuttgart Circuit arrangement for DC voltage conversion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE30150E (en) * 1971-08-02 1979-11-13 Ncr Corporation Inductor drive means
EP0190717A1 (en) * 1985-02-05 1986-08-13 DIEHL GMBH &amp; CO. Circuit for a bistable relay presenting a monostable switching behaviour
US4757418A (en) * 1987-01-30 1988-07-12 Ncr Corporation Solenoid driver circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5699221A (en) * 1993-02-24 1997-12-16 Paralight Limited Support bracket for an electrical unit

Also Published As

Publication number Publication date
DE3730517A1 (en) 1989-03-23
EP0384926B1 (en) 1995-02-15
DE3730517C2 (en) 1993-04-29

Similar Documents

Publication Publication Date Title
EP0006843B2 (en) Electronically controlled magnetic valve
EP0241976B1 (en) Circuit arrangement to produce a dc voltage from a sinusoidal input voltage
DE2907673A1 (en) CIRCUIT FOR CONTROLLING A BISTABLE RELAY
DE69226004T2 (en) Bootstrap circuit for driving a power MOS transistor in a boost mode
DE3781289T2 (en) CAPACITOR CHARGING.
EP0601352B1 (en) Braking device for a series commutator motor
EP0384926B1 (en) Circuit arrangement for energising and de-energising a bistable relay
DE1762444A1 (en) Electronic pulse shaper circuit
DE3418362C2 (en)
EP0120258B1 (en) Energy economising circuit
DE19806805B4 (en) Starting device for an electric motor
DE4106597C2 (en) Control circuit for solenoid
DE2016198A1 (en) Circuit arrangement for controlling electric stepper motors or step magnet arrangements
EP0324902B1 (en) Power supply for producing a regulated voltage
DE19654378A1 (en) Energising circuit for relay with at least one excitation coil operating at high temperature and high voltage e.g. for motor vehicle applications
DE2531510A1 (en) Memory simple supply voltage monitoring circuit - inhibits storage operation immediately after switching on, when voltage is rising
DE2359555C3 (en) Circuit arrangement for load-dependent control of a base load in electronic regulators with a pulse-width-controlled actuator
DE2855425A1 (en) ELECTRICAL CIRCUIT FOR A HIGH FREQUENCY ARC WELDING DEVICE
DE3927879A1 (en) Spray gun with oscillating armature motor - has motor coil with rated operating voltage equal to battery voltage, and driver circuit
DE3328309A1 (en) Response circuit for electromagnets
DE3444035C2 (en)
DE3490306T1 (en) Control system for forklifts
DE4027282C1 (en) Electronic control circuit for residual magnetisation relay - uses high-low stage to limit release voltage of coil to 1/10 to charging voltage
DE3840991A1 (en) Drive circuit for electromagnetic switchgear
DE1438107C (en) Charging device for an accumulator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19930528

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950215

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950222

REF Corresponds to:

Ref document number: 58909010

Country of ref document: DE

Date of ref document: 19950323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19950331

Ref country code: LI

Effective date: 19950331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960228

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960426

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST