EP0383753B1 - Fuel metering system for internal combustion engines - Google Patents

Fuel metering system for internal combustion engines Download PDF

Info

Publication number
EP0383753B1
EP0383753B1 EP19880901229 EP88901229A EP0383753B1 EP 0383753 B1 EP0383753 B1 EP 0383753B1 EP 19880901229 EP19880901229 EP 19880901229 EP 88901229 A EP88901229 A EP 88901229A EP 0383753 B1 EP0383753 B1 EP 0383753B1
Authority
EP
European Patent Office
Prior art keywords
fuel
internal combustion
metering
counter
fuel metering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19880901229
Other languages
German (de)
French (fr)
Other versions
EP0383753A1 (en
Inventor
Günther PLAPP
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0383753A1 publication Critical patent/EP0383753A1/en
Application granted granted Critical
Publication of EP0383753B1 publication Critical patent/EP0383753B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections

Definitions

  • the invention relates to a fuel metering system for internal combustion engines, the type defined in the preamble of claim 1.
  • Such a fuel metering system is known from GB-A-2138176.
  • the fuel supply is completely switched off or at least severely throttled during the overrun operation of the internal combustion engine, ie when the rotational speed exceeds a certain value when the throttle valve is closed.
  • the internal combustion engine with the intake pipe may have cooled down to such an extent that part of the fuel is on the inner surface of the intake pipe and cylinder precipitates. This part of the fuel is lost to the ignition mixture, which makes it too lean.
  • the internal combustion engine runs unsteadily, the rotational speed "plunges through” or the internal combustion engine stops.
  • hydrocarbon emission peaks occur in the exhaust gas.
  • overrun fuel cut-off is used to enrich the stationary fuel quantity metered by the metering device according to the operating point of the internal combustion engine by a predetermined additional fuel quantity.
  • the additional quantity can be constant over a certain number of ignition pulses and the associated metering pulses or can be varied with each metering pulse.
  • the total metered fuel additive amount can only ever be an inadequate compromise due to the complex relationships between the required additional wall film amount and the associated operating history of the internal combustion engine.
  • the amount added may be too large or too small. The effects are corresponding. Over-greasing of the mixture leads to carbon monoxide exhaust gas peaks, remaining leaning of the mixture to hydrocarbon emission peaks and immersion of the internal combustion engine.
  • the fuel metering system according to the invention with the characterizing features of claim 1 has the advantage that the additional enrichment of the metered fuel quantity is stopped by the provision of the lambda probe when it is reliably determined that "rich mixture” is present. Leaning or supersaturation of the mixture can thus be largely avoided.
  • the lambda probe already present in this control device can advantageously be used.
  • the probe signal of the lambda probe can also be evaluated for the termination of the enrichment in states of the lambda regulation prohibition, and thus with an open control loop.
  • the drawing shows a block diagram of a fuel metering system.
  • 10 denotes a pulse generator which triggers the ignition signals for the internal combustion engine and whose pulse repetition frequency is dependent on the speed of the internal combustion engine.
  • the pulses are fed to a fuel metering unit 11, which consists of a metering time setting device 12 and electromagnetic injection valves, which are combined in a block 13.
  • the electromagnetic injection valves cause fuel to be injected into an air intake pipe of the internal combustion engine during the metering time specified by the metering time setting device.
  • the metering time setting device 12 has a first timer 14 and a second timer 15.
  • the first timing element 14 determines a metering time basic interval t p as a function of the rotational speed and an air quantity signal Q which is dependent on the air quantity drawn in.
  • the second timer 15 serves as a correction stage for the metering time basic interval t p determined in the first timer 14 and outputs a corrected metering time time interval t i to the electromagnetic injection valves depending on further operating parameters, for example a temperature signal ⁇ .
  • the thrust detection stage 16 is a thrust detection stage, which is connected to a throttle valve switch 17.
  • the thrust detection stage 16 generates an output gear signal during the coasting operation, ie when the speed of the internal combustion engine exceeds a certain value when the throttle valve is closed and the throttle valve switch 17 is closed.
  • the speed of the internal combustion engine is from the pulse repetition frequency the pulse generator 10 removed.
  • the output of the thrust detection stage 16 is connected to the metering time setting device 12 and there to the second timing element 15.
  • the output signal causes the metering time setting to be blocked or an extreme reduction in the metering time set, so that the fuel supply to the air intake pipe is blocked or at least largely throttled for the duration of the overrun operation via the electromagnetic injection valves in block 13.
  • the leading edge of the output signal of the thrust detection stage 16 indicates the start of the overrun operation of the internal combustion engine, and the trailing or trailing edge of the output signal of the thrust detection stage 16 indicates the end of the overrun operation.
  • the trailing edge of the output signal of the thrust detection stage 16 is referred to below as the thrust end signal.
  • the thrust detection stage 16 is connected on the output side to an enrichment device 18; which enriches the metered fuel quantity by a predetermined additional fuel quantity in response to the overrun signal and for this purpose controls the metering time setting device 12 in such a way that the corrected metering time time interval t i . is extended by a predetermined time interval.
  • the size of the extension time interval is changed at every metering time interval t i , in such a way that the size of the extension intervals in successive corrected time intervals t i . decreases steadily, e.g. after a linear or exponential function.
  • the enrichment device 18 has a digital down counter 19, the clock input of which corresponds to the output of the first.
  • Timer 14 is connected and thus occupied with counting pulses, the frequency of which corresponds to the pulse repetition frequency of the pulse generator 10 and thus the speed of the internal combustion engine.
  • the parallel count outputs of the down counter 19 are connected to a decoding stage 20.
  • the decoding stage 20 decodes the current count content of the down counter 19 and sends a time extension signal proportional to the counter reading to the second timer 15, which in turn increases the corrected metering time interval t i by an extension time interval corresponding to the time extension signal.
  • the down counter 19 is connected to the output of the slip detection stage 16 via the set input (set) in such a way that the end of the thrust signal, i.e. the trailing edge of the output signal of the slip detection stage 16, sets the down counter 19 to a predetermined counter reading, from which the down counter 19 with each count pulse counts down at its clock input.
  • the output of a lambda probe 21 is connected to the reset input of the down counter 19 and is usually arranged in the exhaust gas flow of the internal combustion engine and is used to regulate the composition of the fuel-air mixture in the intake pipe.
  • This lambda probe 21 sends control signals to an electronic control unit in a known manner if the mixture composition shows over-richness or leanness, ie if the fuel content is too large or too low. These control signals lead to a corresponding correction of the mixture composition by the electronic control unit.
  • a control pulse is sent to the reset input of the down counter 19, which is controlled by the "fuel mixture", ie an increased proportion of fuel in the mixture, characteristic signal of the lambda probe 21 is derived.
  • This control pulse forces the down counter 19 to be reset to its "zero level", regardless of the current counter status.
  • This "zero counter reading” is also detected by the decoding stage 20 and accordingly make the time extension signal reaching the second timing element 15 zero. This eliminates the influence of the enrichment device 18 on the metering time interval t i set by the metering time setting device 12 as a function of the instantaneous operating point of the internal combustion engine.
  • the first timing element 14 determines a metering time basic interval t p as a function of signals of the speed and the air throughput in the air intake pipe. This basic interval is corrected in the second timing element 15 as a function of further operating parameters such as the temperature and reaches the electromagnetic injection valves of the block 13 as a corrected metering time-time interval t i .
  • An output signal is generated in the thrust detection stage 16 when the rotational speed is present when the throttle valve switch 17 is closed exceeds a certain value.
  • the second timing element 15 is blocked with the leading edge of the output signal, the so-called thrust start signal, and thus the injection of fuel into the air intake pipe of the internal combustion engine is stopped by the electromagnetic injection valves 13.
  • the trailing edge of the output signal removes the injection blockage and sets the down counter 19 to a predetermined counter reading.
  • the down counter 19 now begins to continuously reduce its counting content with each counting pulse, the metering time basic intervals t p forming the counting pulses.
  • the decoding stage 20 converts the current counting content of the down counter 19 into a time extension signal, the size of which is proportional to the respective counter content.
  • the time extension signal is fed to the second timer 15 and here causes the corrected metering time interval t i to increase .
  • the opening time of the electromagnetic injection valves of the block 13 is thus increased and the amount of fuel injected into the air intake pipe is increased.
  • the down counter 19 is reset by the output signal of the lambda probe 21.
  • the counting content of the counter thus becomes zero, so that the decoding stage 20 implementing the counting content does not give a time extension signal to the second timing element 15. This switches back to normal operation, in which only the amount of fuel that the internal combustion engine requires in accordance with the current operating parameters is injected via the electromagnetic injection valves in block 13.
  • the counting pulses for the down counter 19 can be taken directly from the pulse generator 10.
  • the output pulses of the pulse generator 10 can also be applied to the thrust detection stage 16 instead of the metering time basic intervals t p .
  • the enrichment device 18 can be varied Be trained way. Instead of the linear decrease of the extension time intervals in successive metering time intervals t i, an exponential shortening of the extension time intervals can be provided.

Abstract

In a fuel metering system for internal combustion engines, fuel metering is arrested during engine overrunning, but after overrunning, it is increased briefly above the metered quantity required for normal operation at the instantaneous operating point of the internal combustion engine, in order to accelerate, by means of this fuel enrichment, the reformation of the fuel film in the inlet tube without adversely affecting the composition of the fuel-air mixture. Precise metering of the fuel enrichment is achieved using the ''rich mixture'' output signal of a lambda sensor (21) as the cut-out criterion for the fuel enrichment.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem Kraftstoffzumeßsystem für Brennkraftmaschinen, der im Oberbegriff des Anspruchs 1 definierten Gattung.The invention relates to a fuel metering system for internal combustion engines, the type defined in the preamble of claim 1.

Ein solches Kraftstoffzumeßsystem ist aus der GB-A-2138176 bekannt. Bei diesem Kraftstoffzumeßsystem wird während des Schubbetriebes der Brennkraftmaschine, d.h. wenn die Drehzahl bei geschlossener Drosselklappe einen bestimmten Wert übersteigt, die Kraftstoff-Zufuhr ganz abgeschaltet oder zumindest stark gedrosselt. Nach Ende des Schubbetriebes, insbesondere nach Ende eines längeren Schubbetriebes, kann sich die Brennkraftmaschine mit dem Ansaugrohr soweit abgekühlt haben, daß sich ein Teil des Kraftstoffes an der Innenfläche von Ansaugrohr und Zylinder niederschlägt. Dieser Teil des Kraftstoffs geht dem Zündgemisch verloren, das damit zu mager wird. Als Folge davon läuft die Brennkraftmaschine unruhig, die Drehzahl "taucht durch" oder die Brennkraftmaschine geht aus. Außerdem treten im Abgas Kohlenwasserstoff-Emissionsspitzen auf.Such a fuel metering system is known from GB-A-2138176. In this fuel metering system, the fuel supply is completely switched off or at least severely throttled during the overrun operation of the internal combustion engine, ie when the rotational speed exceeds a certain value when the throttle valve is closed. After the overrun operation, in particular after the end of a longer overrun operation, the internal combustion engine with the intake pipe may have cooled down to such an extent that part of the fuel is on the inner surface of the intake pipe and cylinder precipitates. This part of the fuel is lost to the ignition mixture, which makes it too lean. As a result, the internal combustion engine runs unsteadily, the rotational speed "plunges through" or the internal combustion engine stops. In addition, hydrocarbon emission peaks occur in the exhaust gas.

Um den schnellen Aufbau eines Kraftstoff-Wandfilmes nach Schubabschalten ohne Beeinträchtigung der Mengenbalance des zugemessenen Kraftstoffes einerseits und des dem Zylinder zur Verbrennung zugeführten Gemisches andererseits zu erreichen wird mit Schubabschalten die entsprechend dem Betriebspunkt der Brennkraftmaschine von der Zumeßeinrichtung zugemessene stationäre Kraftstoffmenge um eine vorgegebene Kraftstoffzusatzmenge anreichert. Die Zusatzmenge kann dabei über eine gewisse Anzahl von Zündimpulsen und damit gekoppelten Zumeßimpulsen hinweg konstant sein oder bei jedem Zumeßimpuls variiert werden.In order to achieve the rapid build-up of a fuel wall film after overrun fuel cut-off without impairing the quantity balance of the metered fuel on the one hand and the mixture supplied to the cylinder for combustion on the other hand, overrun fuel cut-off is used to enrich the stationary fuel quantity metered by the metering device according to the operating point of the internal combustion engine by a predetermined additional fuel quantity. The additional quantity can be constant over a certain number of ignition pulses and the associated metering pulses or can be varied with each metering pulse.

Selbst bei Variation der Zumeßmenge mit jedem Zumeßimpuls kann die insgesamt zugemessene Kraftstoffzusatzmenge aufgrund der komplexen Zusammenhänge von erforderlicher zusätzlicher Wandfilmmenge und der zugehörien Betriebskollektiv-Vorgeschichte der Brennkraftmaschine immer nur ein unzureichender Kompromiß sein. Die Zusatzmenge kann zu groß oder zu gering sein. Entsprechend sind die Auswirkungen. Überfettung des Gemisches führt zu Kohlenmonoxyd-Abgasspitzen, verbleibende Ausmagerung des Gemisches zu Kohlenwasserstoff-Emissionsspitzen und zum Durchtauchen der Brennkraftmaschine.Even when the metered quantity varies with each metering pulse, the total metered fuel additive amount can only ever be an inadequate compromise due to the complex relationships between the required additional wall film amount and the associated operating history of the internal combustion engine. The amount added may be too large or too small. The effects are corresponding. Over-greasing of the mixture leads to carbon monoxide exhaust gas peaks, remaining leaning of the mixture to hydrocarbon emission peaks and immersion of the internal combustion engine.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Kraftstoffzumeßsystem mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß durch das Vorsehen der Lambda-Sonde die zusätzliche Anreicherung der zugemessenen Kraftstoffmenge dann abgebrochen wird, wenn zuverlässig festgestellt wird, daß "fettes Gemisch" vorliegt. Ausmagerung oder Übersättigung des Gemisches ist damit weitgehend vermeidbar.The fuel metering system according to the invention with the characterizing features of claim 1 has the advantage that the additional enrichment of the metered fuel quantity is stopped by the provision of the lambda probe when it is reliably determined that "rich mixture" is present. Leaning or supersaturation of the mixture can thus be largely avoided.

Bei Brennkraftmaschinen mit Lambda-Regeleinrichtung (DE-OS 3207787) kann vorteilhaft die in dieser Regeleinrichtung bereits vorhandene Lambda-Sonde verwendet werden. Dabei kann auch in Zuständen des Lambda-Regelungsverbotes, und damit bei offenem Regelkreis, das Sondensignal der Lambda-Sonde für den Anreicherungsabbruch ausgewertet werden.In internal combustion engines with a lambda control device (DE-OS 3207787), the lambda probe already present in this control device can advantageously be used. In this case, the probe signal of the lambda probe can also be evaluated for the termination of the enrichment in states of the lambda regulation prohibition, and thus with an open control loop.

Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Kraftstoffzumeßsystems möglich.Advantageous further developments and improvements of the fuel metering system specified in claim 1 are possible through the measures listed in the further claims.

Zeichnungdrawing

Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels in der nachfolgenden Beschreibung näher erläutert. Dabei zeigt die Zeichnung ein Blockschaltbild eines Kraftstoffzumeßsystems.The invention is explained in more detail in the following description with reference to an embodiment shown in the drawing. The drawing shows a block diagram of a fuel metering system.

Beschreibung des AusführungsbeispielsDescription of the embodiment

In der Zeichnung ist mit 10 ein Impulsgeber bezeichnet, der die Zündsignale für die Brennkraftmaschine auslöst und dessen Impulsfolgefrequenz von der Drehzahl der Brennkraftmaschine abhängig ist. Die Impulse sind einer Kraftstoff-Zumeßeinheit 11 zugeführt, die aus einer Zumeßzeit-Einstellvorrichtung 12 und elektromagnetischen Einspritzventilen besteht, die in einem Block 13 zusammengefaßt sind. Die elektromagnetischen Einspritzventile bewirken während der von der Zumeßzeit-Einstellvorrichtung vorgegeben Zumeßzeit eine Einspritzung von Kraftstoff in ein Luftansaugrohr der Brennkraftmaschine.In the drawing, 10 denotes a pulse generator which triggers the ignition signals for the internal combustion engine and whose pulse repetition frequency is dependent on the speed of the internal combustion engine. The pulses are fed to a fuel metering unit 11, which consists of a metering time setting device 12 and electromagnetic injection valves, which are combined in a block 13. The electromagnetic injection valves cause fuel to be injected into an air intake pipe of the internal combustion engine during the metering time specified by the metering time setting device.

Die Zumeßzeit-Einstellvorrichtung 12 weist ein erstes Zeitglied 14 und ein zweites Zeitglied 15 auf. Das erste Zeitglied 14 bestimmt abhängig von der Drehzahl und einem von der angesaugten Luftmenge abhängigen Luftmengensignal Q ein Zumeßzeit-Grundintervall tp. Das zweite Zeitglied 15 dient als Korrekturstufe für das im ersten Zeitglied 14 bestimmte Zumeßzeit-Grundintervall tp und gibt an die elektromagnetischen Einspritzventile ein in Abhängigkeit von weiteren Betriebskenngrößen, z.B. einem Temperatursignal ϑ, korrigiertes Zumeßzeit-Zeitintervall ti.The metering time setting device 12 has a first timer 14 and a second timer 15. The first timing element 14 determines a metering time basic interval t p as a function of the rotational speed and an air quantity signal Q which is dependent on the air quantity drawn in. The second timer 15 serves as a correction stage for the metering time basic interval t p determined in the first timer 14 and outputs a corrected metering time time interval t i to the electromagnetic injection valves depending on further operating parameters, for example a temperature signal ϑ.

Mit 16 ist eine Schuberkennungsstufe gekennzeichnet, die mit einem Drosselklappenschalter 17 verbunden ist. Die Schuberkennungsstufe 16 erzeugt während des Schubbetriebes, d.h. wenn bei geschlossener Drosselklappe und damit geschlossenem Drosselklappenschalter 17 die Drehzahl der Brennkraftmaschine einen bestimmten Wert überschreitet, ein Ausgangsgangssignal. Die Drehzahl der Brennkraftmaschine ist von der Impulsfolgefrequenz des Impulsgebers 10 abgenommen. Der Ausgang der Schuberkennungsstufe 16 ist mit der Zumeßzeit-Einstellvorrichtung 12 und dort mit dem zweiten Zeitglied 15 verbunden. Das Ausgangssignal bewirkt hier die Blockierung der Zumeßzeit-Einstellung oder eine extreme Reduzierung der eingestellten Zumeßzeit, so daß über die elektromagnetischen Einspritzventile im Block 13 die Kraftstoffzufuhr zum Luftansaugrohr für die Dauer des Schubbetriebes abgesperrt oder doch zumindest weitgehend gedrosselt wird. Die Vorderflanke des Ausgangssignals der Schuberkennungsstufe 16 kennzeichnet dabei den Beginn des Schubbetriebes der Brennkraftmaschine, und die hintere oder Rückflanke des Ausgangssignals der Schuberkennungsstufe 16 kennzeichnet das Ende des Schubbetriebes. Die Rückflanke des Ausgangssignals der Schuberkennungsstufe 16 wird im folgenden mit Schubendesignal bezeichnet.16 is a thrust detection stage, which is connected to a throttle valve switch 17. The thrust detection stage 16 generates an output gear signal during the coasting operation, ie when the speed of the internal combustion engine exceeds a certain value when the throttle valve is closed and the throttle valve switch 17 is closed. The speed of the internal combustion engine is from the pulse repetition frequency the pulse generator 10 removed. The output of the thrust detection stage 16 is connected to the metering time setting device 12 and there to the second timing element 15. The output signal causes the metering time setting to be blocked or an extreme reduction in the metering time set, so that the fuel supply to the air intake pipe is blocked or at least largely throttled for the duration of the overrun operation via the electromagnetic injection valves in block 13. The leading edge of the output signal of the thrust detection stage 16 indicates the start of the overrun operation of the internal combustion engine, and the trailing or trailing edge of the output signal of the thrust detection stage 16 indicates the end of the overrun operation. The trailing edge of the output signal of the thrust detection stage 16 is referred to below as the thrust end signal.

Die Schuberkennungsstufe 16 ist ausgangsseitig mit einer Anreicherungseinrichtung 18 verbunden; die auf das Schubendesignal hin die zugemessene Kraftstoffmenge um eine vorgegebene Kraftstoff-Zusatzmenge anreichert und hierzu die Zumeßzeit-Einstellvorrichtung 12 derart steuert, daß das korrigierte Zumeßzeit-Zeitintervall ti. um ein vorgegebenes Zeitintervall verlängert wird. Die Größe des Verlängerungszeitintervalls wird dabei bei jedem Zumeßzeit-Zeitintervall ti verändert, und zwar in der Weise, daß die Größe der Verlängerungsintervalle in aufeinanderfolgenden korrigierten Zeitintervallen ti. stetig abnimmt, z.B. nach einer linearen oder exponentiellen Funktion.The thrust detection stage 16 is connected on the output side to an enrichment device 18; which enriches the metered fuel quantity by a predetermined additional fuel quantity in response to the overrun signal and for this purpose controls the metering time setting device 12 in such a way that the corrected metering time time interval t i . is extended by a predetermined time interval. The size of the extension time interval is changed at every metering time interval t i , in such a way that the size of the extension intervals in successive corrected time intervals t i . decreases steadily, e.g. after a linear or exponential function.

Die Anreicherungseinrichtung 18 weist einen digitalen Abwärts- oder Rückwärtszähler 19 (down-counter) auf, dessen Takteingang mit dem Ausgang des ersten. Zeitgliedes 14 verbunden ist und damit mit Zählimpulsen belegt wird, deren Frequenz der Impulsfolgefrequenz des Impulsgebers 10 und damit der Drehzahl der Brennkraftmaschine entspricht. Die parallelen Zählausgänge des Abwärtszählers 19 sind mit einer Decodierstufe 20 verbunden. Die Decodierstufe 20 decodiert den momentanen Zählinhalt des Abwärtszählers 19 und gibt ein dem Zählerstand proportionales Zeitverlängerungssignal an das zweite Zeitglied 15, das seinerseits das korrigierte Zumeßzeit-Zeitintervall ti um ein dem Zeitverlängerungssignal entsprechendes Verlängerungszeitintervall vergrößert. Über den Setzeingang (set) ist der Abwärtszähler 19 mit dem Ausgang der Schuberkennungsstufe 16 derart verbunden, daß das Schubendesignal, also die Rückflanke des Ausgangssignals der Schuberkennungsstufe 16, den Abwärtszähler 19 auf einen vorgegebenen Zählerstand einstellt, von dem aus der Abwärtszähler 19 mit jedem Zählimpuls an seinem Takteingang abwärts zählt.The enrichment device 18 has a digital down counter 19, the clock input of which corresponds to the output of the first. Timer 14 is connected and thus occupied with counting pulses, the frequency of which corresponds to the pulse repetition frequency of the pulse generator 10 and thus the speed of the internal combustion engine. The parallel count outputs of the down counter 19 are connected to a decoding stage 20. The decoding stage 20 decodes the current count content of the down counter 19 and sends a time extension signal proportional to the counter reading to the second timer 15, which in turn increases the corrected metering time interval t i by an extension time interval corresponding to the time extension signal. The down counter 19 is connected to the output of the slip detection stage 16 via the set input (set) in such a way that the end of the thrust signal, i.e. the trailing edge of the output signal of the slip detection stage 16, sets the down counter 19 to a predetermined counter reading, from which the down counter 19 with each count pulse counts down at its clock input.

Mit dem Reset-Eingang des Abwärtszählers 19 ist der Ausgang einer Lambda-Sonde 21 verbunden, die üblicherweise im Abgasstrom der Brennkraftmaschine angeordnet ist und zur Regelung der Zusammensetzung des Kraftstoff-Luft-Gemisches im Ansaugrohr dient. Diese LambdaSonde 21 gibt in bekannter Weise Steuersignale an ein elektronisches Steuergerät, wenn die Gemisch-Zusammensetzung eine Überfettung oder eine Ausmagerung zeigt,wenn also der Kraftstoffanteil zu groß oder zu gering ist. Diese Steuersignale führen zu entsprechenden Korrektur der Gemischzusammensetzung durch das elektronische Steuergerät. An den Reset-Eingang des Abwärtszählers 19 ist ein Steuerimpuls geführt, der von dem für "fettes Gemisch", also erhöhten Kraftstoffanteil im Gemisch, charakteristischen Kennsignal der Lambda-Sonde 21 abgeleitet ist. Dieser Steuerimpuls erzwingt ein Rücksetzen des Abwärtszählers 19 auf seinen "Nullstand", und zwar unabhängig von den momentanen Zählerstand. Diesen "Nullzählerstand" erfaßt ebenfalls die Decodierstufe 20 und mach entsprechend das an das zweite Zeitglied 15 gelangende Zeitverlängerungssignal zu Null. Damit ist die von der Anreicherungseinrichtung 18 bewirkte Beeinflussung des von der Zumeßzeit-Einstellvorrichtung 12 in Abhängigkeit von dem momentanen Betriebspunkt der Brennkraftmaschine eingestellten Zumeßzeit-Zeitintervalls ti aufgehoben.The output of a lambda probe 21 is connected to the reset input of the down counter 19 and is usually arranged in the exhaust gas flow of the internal combustion engine and is used to regulate the composition of the fuel-air mixture in the intake pipe. This lambda probe 21 sends control signals to an electronic control unit in a known manner if the mixture composition shows over-richness or leanness, ie if the fuel content is too large or too low. These control signals lead to a corresponding correction of the mixture composition by the electronic control unit. A control pulse is sent to the reset input of the down counter 19, which is controlled by the "fuel mixture", ie an increased proportion of fuel in the mixture, characteristic signal of the lambda probe 21 is derived. This control pulse forces the down counter 19 to be reset to its "zero level", regardless of the current counter status. This "zero counter reading" is also detected by the decoding stage 20 and accordingly make the time extension signal reaching the second timing element 15 zero. This eliminates the influence of the enrichment device 18 on the metering time interval t i set by the metering time setting device 12 as a function of the instantaneous operating point of the internal combustion engine.

Zusammenfassend ist die Arbeitsweise des vorstehend beschriebenen Kraftstoffzumeßsystems kurz wie folgt zu beschreiben:In summary, the operation of the fuel metering system described above can be briefly described as follows:

Das erste Zeitglied 14 bestimmt ein Zumeßzeit-Grundintervall tp in Abhängigkeit von Signalen der Drehzahl und des Luftdurchsatzes im Luftansaugrohr. Dieses Grundintervall wird im zweiten Zeitglied 15 abhänaig von weiteren Betriebskenngrößen wie z.B. der Temperatur, korrigiert und gelangt als korrigiertes Zumeßzeit-Zeitintervall ti zu den elektromagnetischen Einspritzventilen des Blocks 13. In der Schuberkennungsstufe 16 entsteht dann ein Ausgangssignal, wenn bei geschlossenem Drosselklappenschalter 17 die Drehzahl einen bestimmten Wert überschreitet. Mit der Vorderflanke des Ausgangssignals, dem sog. Schubbeginnsignal wird das zweite Zeitglied 15 blockiert und damit die Einspritzung von Kraftstoff in das Luftansaugrohr der Brennkraftmaschine durch die elektromagnetischen Einspritzventile 13 gestoppt. Die Rückflanke des Ausgangssignals, das sog. Schubendesignal, hebt die Einspritzblockierung wieder auf und setzt den Abwärtszähler 19 auf einen vorgegebenen Zählerstand. Der Abwärtszähler 19 beginnt nun seinen Zählinhalt mit jedem Zählimpuls kontinuierlich zu verringern, wobei die Zumeßzeit-Grundintervalle tp die Zählimpulse bilden. Die Decodierstufe 20 setzt den momentanen Zählinhalt des Abwärtszählers 19 in ein Zeitverlängerungssignal um, Dessen Größe proportional dem jeweiligen Zählerinhalt ist. Das Zeitverlängerungssignal wird dem zweiten Zeitglied 15 zugeführt und bewirkt hier eine Vergrößerung des korrigierten Zumeßzeit-Zeitintervall ti. Damit wird die Öffnungszeit der elektromagnetischen Einspritzventile des Blockes 13 vergrößert und die in das Luftansaugrohr eingespritzte Kraftstoffmenge erhöht. Sobald die Lambda-Sonde 21 "fettes Gemisch" erkennt, wird durch das Ausgangssignal der Lambda-Sonde 21 Der Abwärtszähler 19 zurückgesetzt. Der Zählinhalt des Zählers wird damit zu Null, so daß die den Zählinhalt umsetzende Decodierstufe 20 an das zweite Zeitglied 15 kein Zeitverlängerungssignal gibt. Damit ist wieder auf Normalbetrieb umgeschaltet, in welchem über die elektromagnetischen Einspritzventile im Block 13 nur noch eine solche Kraftstoffmenge eingespritzt wird, welche die Brennkraftmaschine entsprechend den momentanen Betriebskenngrößen benötigt.The first timing element 14 determines a metering time basic interval t p as a function of signals of the speed and the air throughput in the air intake pipe. This basic interval is corrected in the second timing element 15 as a function of further operating parameters such as the temperature and reaches the electromagnetic injection valves of the block 13 as a corrected metering time-time interval t i . An output signal is generated in the thrust detection stage 16 when the rotational speed is present when the throttle valve switch 17 is closed exceeds a certain value. The second timing element 15 is blocked with the leading edge of the output signal, the so-called thrust start signal, and thus the injection of fuel into the air intake pipe of the internal combustion engine is stopped by the electromagnetic injection valves 13. The trailing edge of the output signal, the so-called thrust end signal, removes the injection blockage and sets the down counter 19 to a predetermined counter reading. The down counter 19 now begins to continuously reduce its counting content with each counting pulse, the metering time basic intervals t p forming the counting pulses. The decoding stage 20 converts the current counting content of the down counter 19 into a time extension signal, the size of which is proportional to the respective counter content. The time extension signal is fed to the second timer 15 and here causes the corrected metering time interval t i to increase . The opening time of the electromagnetic injection valves of the block 13 is thus increased and the amount of fuel injected into the air intake pipe is increased. As soon as the lambda probe 21 detects "rich mixture", the down counter 19 is reset by the output signal of the lambda probe 21. The counting content of the counter thus becomes zero, so that the decoding stage 20 implementing the counting content does not give a time extension signal to the second timing element 15. This switches back to normal operation, in which only the amount of fuel that the internal combustion engine requires in accordance with the current operating parameters is injected via the electromagnetic injection valves in block 13.

Die Erfindung ist nicht auf das vorstehend beschriebene Ausführungsbeispiel beschränkt. So können die Zählimpulse für den Abwärtszähler 19 unmittelbar von Dem Impulsgeber 10 abgenommen sein. Zur Drehzahlerfassung durch die Schuberkennungsstufe 16 können auch die Ausgangsimpulse des Impulsgebers 10 anstelle der ZumeßzeitGrundintervalle tp an die Schuberkennungsstufe 16 gelegt werden. Die Anreicherungseinrichtung 18 kann in vielfältiger Weise ausgebildet werden. Dabei kann anstelle der linearen Abnahme der Verlängerungszeitintervalle in aufeinanderfolgenden Zumeß-Zeitintervallen ti eine exponentielle Verkürzung der Verlängerungszeitintervalle vorgesehen werden.The invention is not restricted to the exemplary embodiment described above. Thus, the counting pulses for the down counter 19 can be taken directly from the pulse generator 10. For speed detection by the thrust detection stage 16, the output pulses of the pulse generator 10 can also be applied to the thrust detection stage 16 instead of the metering time basic intervals t p . The enrichment device 18 can be varied Be trained way. Instead of the linear decrease of the extension time intervals in successive metering time intervals t i, an exponential shortening of the extension time intervals can be provided.

Die Unterteilung des Kraftstoffzumeßsystems in separate Funktionseinheiten mit klar zugeordneten Aufgaben, wie Zumeßeinrichtung 11, Zumeßzeit-Einstellvorrichtung 12, Schuberkennungsstufe 16 und Anreicherungseinrichtung 18, ist nicht zwingend und dient nur dem besseren Verständnis. Die Aufgaben dieser Funktionseinheiten werden heute üblicherweise von einem Mikroprozessor oder Mikrocomputer wahrgenommen, in welchem bestimmte Teile und Baugruppen an der Abwicklung verschiedener Funktionen gleichzeitig oder aufeinanderfolgend beteiligt sind, so daß sich hier eine solche klare Auftrennung nicht nachvollziehen läßt.The subdivision of the fuel metering system into separate functional units with clearly assigned tasks, such as metering device 11, metering time setting device 12, thrust detection stage 16 and enrichment device 18, is not mandatory and is only for better understanding. Today, the functions of these functional units are usually performed by a microprocessor or microcomputer, in which certain parts and assemblies are involved in the execution of various functions simultaneously or in succession, so that such a clear separation cannot be understood here.

Claims (7)

1. Fuel metering system for internal combustion engines, in which the fuel quantity to be metered per ignition interval is determined in dependence on operating characteristics of the internal combustion engine such as rotational speed, air intake quantity, temperature and in which the fuel metering is blocked or at least reduced when overrun begins and is released again when overrun ends and during this process the fuel quantity to be metered is enriched by a predeterminable additional quantity, a lambda probe (21) being provided which generates at least one identification signal characteristic of an increased fuel proportion in the fuel/air mixture ("rich mixture"), characterised in that the enriching of the metered fuel quantity is terminated following the identification signal of the lambda probe (21).
2. System according to Claim 1, characterised in that the fuel metering is effected by determining the fuel metering time in dependence on the operating characteristics of the internal combustion engine, and in that the fuel metering time is extended by a predetermined time interval in order to enrich the fuel quantity to be metered.
3. System according to Claim 2, characterised in that the magnitude of the extension time intervals following one another with each ignition interval decreases continuously, for example linearly or exponentially.
4. System according to Claim 3, characterised in that a digital counter (19) clocked with the ignition frequency and a decoding stage (20) connected to its parallel counting outputs, the output signal of which is a measure of the magnitude of the extension time intervals, are provided for determining the extension time intervals.
5. System according to Claim 4, characterised in that counter is constructed as a down-counter (19) which can be adjusted to a predetermined count by a signal characteristic of the end of overrun and in that the decoding stage (20) is constructed in such a manner that the magnitude of the extension time interval is proportional to the instantaneous count.
6. System according to Claim 5, characterised in that the down-counter (19) exhibits a reset input which is connected to the identification signal output of the lambda probe (21), and in that the identification signal of the lambda probe (21) forms a counter reset signal.
7. System according to one of Claims 4-6, characterised in that a first timing section (14) for forming a basic metering time interval (tp) and a second timing section (15) following the first timing section (14), for correction of the basic metering time interval (tp), are provided for determining the fuel metering time, and in that the output of the decoding stage (20) is connected to the second timing section (15).
EP19880901229 1987-04-04 1988-02-02 Fuel metering system for internal combustion engines Expired - Lifetime EP0383753B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873711398 DE3711398A1 (en) 1987-04-04 1987-04-04 FUEL METERING SYSTEM FOR INTERNAL COMBUSTION ENGINES
DE3711398 1987-04-04

Publications (2)

Publication Number Publication Date
EP0383753A1 EP0383753A1 (en) 1990-08-29
EP0383753B1 true EP0383753B1 (en) 1991-08-28

Family

ID=6324880

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880901229 Expired - Lifetime EP0383753B1 (en) 1987-04-04 1988-02-02 Fuel metering system for internal combustion engines

Country Status (6)

Country Link
US (1) US5020495A (en)
EP (1) EP0383753B1 (en)
JP (1) JP2604840B2 (en)
KR (1) KR0121323B1 (en)
DE (2) DE3711398A1 (en)
WO (1) WO1988008077A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4236922C2 (en) * 1992-10-31 2003-05-08 Bosch Gmbh Robert Method for setting the fuel / air mixture for an internal combustion engine after a coasting phase
EP0766783B1 (en) * 1994-06-24 1998-08-26 Siemens Aktiengesellschaft Method of controlling the fuel supply to an internal-combustion engine with a selective cylinder cut-off capability
DE19548054C1 (en) * 1995-12-21 1997-06-05 Siemens Ag IC engine ignition control method
DE19954608B4 (en) * 1999-11-12 2007-05-16 Volkswagen Ag Method for detecting the actual power of an internal combustion engine of a vehicle in overrun mode
JP3966014B2 (en) 2002-02-25 2007-08-29 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP4334367B2 (en) * 2004-02-09 2009-09-30 本田技研工業株式会社 Fuel injection control device
CN103328793B (en) * 2011-01-20 2017-09-01 丰田自动车株式会社 The control device of internal combustion engine
US9599052B2 (en) 2014-01-09 2017-03-21 Ford Global Technologies, Llc Methods and system for catalyst reactivation
DE102015226138B3 (en) 2015-12-21 2016-12-29 Continental Automotive Gmbh Method for determining the composition of the fuel used to operate an internal combustion engine
DE102015226446B4 (en) * 2015-12-22 2017-08-31 Continental Automotive Gmbh Method for determining the composition of the fuel used to operate an internal combustion engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2736307C2 (en) * 1976-08-18 1986-07-31 Nippondenso Co., Ltd., Kariya, Aichi Method and device for a fuel supply system of an internal combustion engine with external ignition
JPS561937Y2 (en) * 1976-08-31 1981-01-17
DE2727804A1 (en) * 1977-06-21 1979-01-18 Bosch Gmbh Robert PROCEDURE FOR OPERATING AND SETTING UP AN INJECTION SYSTEM IN COMBUSTION MACHINES
JPS57124033A (en) * 1981-01-26 1982-08-02 Nissan Motor Co Ltd Fuel controller for internal combustion engine
JPS57191426A (en) * 1981-05-20 1982-11-25 Honda Motor Co Ltd Fuel supply cutting device for reducing speed of internal combustion engine
JPS5825524A (en) * 1981-08-07 1983-02-15 Toyota Motor Corp Fuel injection method of electronically controlled fuel injection engine
DE3207787A1 (en) * 1982-03-04 1983-09-08 Robert Bosch Gmbh, 7000 Stuttgart FUEL FEEDING SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
JPS58214626A (en) * 1982-06-08 1983-12-13 Toyota Motor Corp Air-fuel ratio control method for fuel injection internal-combustion engine
JPS58217736A (en) * 1982-06-09 1983-12-17 Honda Motor Co Ltd Fuel supply controlling method for internal-combustion engine
JPS5965537A (en) * 1982-10-08 1984-04-13 Hitachi Ltd Air-fuel ratio control device for engine
JPS59185833A (en) * 1983-04-06 1984-10-22 Honda Motor Co Ltd Fuel feed control method of internal-combustion engine
JPS6030446A (en) * 1983-07-28 1985-02-16 Toyota Motor Corp Fuel injection control method
JPH0674765B2 (en) * 1984-11-30 1994-09-21 スズキ株式会社 Air-fuel ratio control method for internal combustion engine
JPH08222928A (en) * 1995-02-15 1996-08-30 Casio Comput Co Ltd Antenna system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN; BAND 8; NR. 170 (M-315)(1607); 7. AUGUST 1984; & JP A 5965537 (HITACHI SEISAKUSHO K.K.) 13. APRIL 1984 *
PATENT ABSTRACTS OF JAPAN; BAND 8; NR: 76 (M-288)(1513); 9.April 1984, & JP A 58222928 (TOYOTA JIDOSHA KOGYO K.K.) 24.DECEMBER 1983 *
PATENT ABSTRACTS OF JAPAN; BAND8; NR. 64 (M-S85) (1501); 27.MAERZ 1984; & JP A 58214626 (TOYOTA JIDOSHA KOGYO K.K.) 13.DECEMBER 1983 *

Also Published As

Publication number Publication date
DE3711398A1 (en) 1988-10-20
JP2604840B2 (en) 1997-04-30
JPH02502934A (en) 1990-09-13
DE3864521D1 (en) 1991-10-02
WO1988008077A1 (en) 1988-10-20
EP0383753A1 (en) 1990-08-29
KR890700748A (en) 1989-04-27
US5020495A (en) 1991-06-04
KR0121323B1 (en) 1997-11-24

Similar Documents

Publication Publication Date Title
DE2742763C3 (en) Electronic fuel injection system for an internal combustion engine
DE3226537C2 (en) Method for regulating the air / fuel mixture ratio in an internal combustion engine
DE2647517C2 (en)
DE3141595C2 (en) METHOD FOR REGULATING THE FUEL / AIR RATIO FOR AN INTERNAL COMBUSTION ENGINE
DE3108601C2 (en) Method for controlling fuel injection in an internal combustion engine
DE3710155C2 (en)
DE3024933C2 (en) Method for regulating the fuel-air ratio in internal combustion engines
DE3219021C3 (en)
DE2229928B2 (en) Method and device for reducing harmful components of exhaust gas emissions from internal combustion engines
DE2202614A1 (en) EXHAUST GAS AFTER-COMBUSTION DEVICE
EP0383753B1 (en) Fuel metering system for internal combustion engines
DE2728414C2 (en) Device for controlling the injection quantity in internal combustion engines during a cold start
DE2929516A1 (en) FUEL SUPPLY CONTROL ARRANGEMENT FOR MULTI-CYLINDER INTERNAL COMBUSTION ENGINE
DE2847794A1 (en) FUEL INJECTION SYSTEM
DE2929797C2 (en) Method and arrangement for controlling the fuel supply, in particular the fuel injection, to an internal combustion engine
DE2247656A1 (en) METHOD AND DEVICE FOR EXHAUST GAS DETOXIFICATION FROM INTERNAL COMBUSTION MACHINERY
DE2736306A1 (en) FUEL SUPPLY SYSTEM FOR A COMBUSTION ENGINE WITH EXTERNAL IGNITION
DE3135148A1 (en) "METHOD AND DEVICE FOR REGULATING THE FUEL-AIR RATIO FOR AN INTERNAL COMBUSTION ENGINE"
DE3300960C2 (en)
DE2530308A1 (en) METHOD AND DEVICE FOR LIMITING THE PULSE DURATION OF FUEL INJECTION CONTROL COMMANDS
DE3732039A1 (en) FUEL INJECTION CONTROL SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
DE3243456C2 (en) Electronic fuel injection control system for an internal combustion engine
DE2551688A1 (en) FUEL INJECTION DEVICE FOR COMBUSTION MACHINERY
DE2846386C2 (en)
DE3012424C2 (en) Fuel injection control device for an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19910206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3864521

Country of ref document: DE

Date of ref document: 19911002

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070418

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070531

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070216

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080201