EP0383753A1 - Fuel metering system for internal combustion engines. - Google Patents

Fuel metering system for internal combustion engines.

Info

Publication number
EP0383753A1
EP0383753A1 EP88901229A EP88901229A EP0383753A1 EP 0383753 A1 EP0383753 A1 EP 0383753A1 EP 88901229 A EP88901229 A EP 88901229A EP 88901229 A EP88901229 A EP 88901229A EP 0383753 A1 EP0383753 A1 EP 0383753A1
Authority
EP
European Patent Office
Prior art keywords
fuel
metering
internal combustion
signal
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88901229A
Other languages
German (de)
French (fr)
Other versions
EP0383753B1 (en
Inventor
Guenther Plapp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0383753A1 publication Critical patent/EP0383753A1/en
Application granted granted Critical
Publication of EP0383753B1 publication Critical patent/EP0383753B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections

Definitions

  • the invention relates to a fuel metering system for internal combustion engines, of the type defined in the preamble of claim 1.
  • Such a fuel metering system is known from DE-OS 27 27 804.
  • the fuel supply is completely switched off or at least severely throttled during the overrun operation of the internal combustion engine, ie when the rotational speed exceeds a certain value when the throttle valve is closed.
  • the internal combustion engine with the intake pipe may have cooled down to such an extent that part of the fuel is on the inner surface of the intake pipe and cylinder precipitates. This part of the fuel is lost to the ignition mixture, which makes it too lean.
  • the internal combustion engine runs unsteadily, the rotational speed "plunges through” or the internal combustion engine stops.
  • hydrocarbon emission peaks occur in the exhaust gas.
  • the steady-state amount of fuel metered by the metering device in accordance with the operating point of the internal combustion engine is enriched by a predetermined fuel add-on quantity .
  • the additional quantity can be constant over a certain number of ignition pulses and the associated metering pulses or can be varied with each metering pulse.
  • the total metered fuel additive amount can only ever be an inadequate compromise due to the complex relationships between the required additional wall film amount and the associated operating history of the internal combustion engine.
  • the amount added may be too large or too small. The effects are corresponding. Over-greasing of the mixture leads to carbon monoxide exhaust gas peaks, remaining leaning of the mixture to hydrocarbon emission peaks and immersion of the internal combustion engine.
  • the fuel metering system according to the invention with the characterizing features of claim 1 has the advantage that the additional enrichment of the metered fuel margin is canceled by the provision of the lambda probe when it is reliably determined that "rich mixture” is present. Leaning or supersaturation of the mixture can thus be largely avoided.
  • the lambda probe already present in this control device can advantageously be used.
  • the probe signal of the lambda probe can also be evaluated for the termination of the enrichment even in states of the lambda regulation prohibition, and thus with the control loop open.
  • the invention is explained in more detail in the following description with reference to an embodiment shown in the drawing.
  • the drawing shows a block diagram of a fuel metering system. Description of the embodiment
  • 10 denotes a pulse generator, which triggers the ignition signals for the internal combustion engine and whose pulse repetition frequency is dependent on the speed of the internal combustion engine.
  • the pulses are fed to a fuel metering unit 11, which consists of a metering time setting device 12 and electromagnetic injection valves, which are combined in a block 13.
  • the electromagnetic injection valves cause fuel to be injected into an air intake pipe of the internal combustion engine during the metering time specified by the metering time setting device.
  • the metering time setting device 12 has a first timer 14 and a second timer 15.
  • the first timing element 14 determines a metering time basic interval t p as a function of the rotational speed and an air quantity signal Q which is dependent on the air quantity drawn in.
  • the second timing element 15 serves as a correction stage for the metering time basic interval t p determined in the first timing element 14 and supplies the electromagnetic injection valves as a function of further operating parameters, for example a temperature signal , corrected metering time interval t i .
  • the thrust detection stage 16 is a thrust detection stage, which is connected to a throttle valve switch 17.
  • the thrust detection stage 16 generates an output gear signal during the coasting operation, that is to say when the rotational speed of the internal combustion engine exceeds a certain value when the throttle valve is closed and the throttle valve switch 17 is closed.
  • the speed of the internal combustion engine is from the pulse repetition frequency the pulse generator 10 removed.
  • the output of the thrust detection stage 16 is connected to the metering time setting device 12 and there to the second timing element 15.
  • the output signal causes the metering time setting to be blocked or an extreme reduction in the metering time set so that the fuel supply to the air intake pipe is blocked or at least largely throttled for the duration of the overrun operation via the electromagnetic injection valves in block 13.
  • the leading edge of the thrust detection stage 16 causes the metering time setting to be blocked or an extreme reduction in the metering time set so that the fuel supply to the air intake pipe is blocked or at least largely throttled for the duration of the overrun operation via the electromagnetic injection valves in
  • Output signal of the thrust detection stage 16 denotes the start of the overrun operation of the internal combustion engine, and the rear or trailing edge of the output signal of the thrust detection stage 16 denotes the end of the overrun operation.
  • the trailing edge of the output signal of the thrust detection stage 16 is referred to below as the thrust end signal.
  • the thrust detection stage 16 is connected on the output side to an enrichment device 18 which, in response to the end of the thrust signal, enriches the metered fuel quantity by a predetermined additional fuel quantity and for this purpose controls the metering time setting device 12 such that the corrected metering time time interval t i is extended by a predetermined time interval .
  • the size of the extension time interval is changed at each metering time interval t i in such a way that the size of the extension intervals decreases continuously in successive corrected time intervals t i , for example according to a linear or exponential function.
  • the enrichment device 18 has a digital down-counter 19, the clock input of which corresponds to the output of the first timer of the 14 is connected and thus occupied with counting pulses, the frequency of which corresponds to the pulse repetition frequency of the pulse generator 10 and thus the speed of the internal combustion engine.
  • the parallel count outputs of the down counter 19 are connected to a decoding stage 20.
  • the decoding stage 20 decodes the current count content of the down counter 19 and sends a time extension signal proportional to the counter reading to the second timer 15, which in turn increases the corrected metering time interval t i by an extension time interval corresponding to the time extension signal.
  • the down counter 19 is connected via the set input (set) to the output of the slip detection stage 16 in such a way that the end of the push signal, i.e. the trailing edge of the output signal of the slip detection stage 16, sets the down counter 19 to a predetermined counter reading, from which the down counter 19 with each count pulse counts down at its clock input.
  • a lambda probe 21 connected, which is usually arranged in the exhaust gas flow of the internal combustion engine and is used to regulate the composition of the fuel-air mixture in the intake pipe.
  • This lambda probe 21 sends control signals to an electronic control unit in a known manner if the mixture composition shows over-richness or leanness, ie if the fuel content is too large or too low. These control signals lead to a corresponding correction of the mixture composition by the electronic
  • Control unit A control pulse is sent to the reset input of the down counter 19, which is derived from that for "rich mixture", ie increased fuel content in the mixture, characteristic signal of the lambda probe 21 is derived. This control pulse forces the down counter 19 to be reset to its "zero level", regardless of the current counter status. This "zero counter reading” is also detected by the decoding stage 20 and accordingly makes the time extension signal reaching the second timing element 15 zero. The influence of the enrichment device 18 on the metering time interval t i set by the metering time setting device 12 as a function of the instantaneous operating point of the internal combustion engine is thus eliminated.
  • the first timing element 14 determines a metering time basic interval tp as a function of signals of the speed and the air throughput in the air intake pipe. This basic interval becomes dependent on further operating parameters in the second timing element 15. such as, for example, the temperature, corrects and reaches the electromagnetic injection valves of the block 13 as a corrected metering time interval t i .
  • an output signal is produced when the rotational speed exceeds a certain value when the throttle valve switch 17 is closed.
  • the second timing element 15 is blocked with the leading edge of the output signal, the so-called overrun start signal, and thus the injection of fuel into the air intake pipe of the internal combustion engine is stopped by the electromagnetic injection valves 13.
  • the trailing edge of the output signal removes the injection blockage and sets the down counter 19 to a predetermined one
  • the decoding stage 20 converts the current counting content of the down counter 19 into a time extension signal, the size of which is proportional to the respective counter content.
  • the time extension signal is supplied to the second timer 15 and here causes an increase in the corrected metering time interval t i. This increases the opening time of the electromagnetic injectors of the block 13 and increases the amount of fuel injected into the air intake pipe.
  • the down counter 19 is reset by the output signal of the lambda probe 21.
  • the counting content of the counter thus becomes zero, so that the decoding stage 20 implementing the counting content does not give a time extension signal to the second timing element 15. This switches back to normal operation, in which only the amount of fuel that the internal combustion engine requires in accordance with the current operating parameters is injected via the electromagnetic injection valves in block 13.
  • the invention is not restricted to the exemplary embodiment described above.
  • the counting pulses for the down counter 19 can be taken directly from the pulse generator 10.
  • the output pulses of the pulse generator 10 can also be applied to the thrust detection stage 16 instead of the metering time basic intervals t p .
  • Enrichment device 18 can be many are wrinkled. Instead of the linear decrease in the extension time intervals in successive metering time intervals t i, an exponential shortening of the extension time intervals can be provided.

Abstract

Dans le système décrit, le dosage de carburant est arrêté pendant la décélération du moteur et, après cessation de cette dernière, accru, pendant une brève période, par rapport au dosage nécessaire au fonctionnement normal à cet instant de marche du moteur, afin d'accélérer, au moyen de cet enrichissement du carburant, la reconstitution du film de carburant dans la tubulure d'admisssion sans affecter la composition du mélange carburant-air. Pour le dosage précis de l'enrichissement du carburant, on utilise comme critère d'interruption de cet enrichissement le signal de sortie ''mélange riche'' d'une sonde lambda (21).In the system described, the metering of fuel is stopped during the deceleration of the engine and, after cessation of the latter, increased, for a brief period, compared to the metering necessary for normal operation at this instant of running the engine, in order to accelerate, by means of this fuel enrichment, the reconstitution of the fuel film in the intake manifold without affecting the composition of the fuel-air mixture. For the precise dosage of fuel enrichment, the `` rich mixture '' output signal from a lambda probe (21) is used as the criterion for interrupting this enrichment.

Description

Kraftstoffzu meβsystem für Brennkraftmaschinen Fuel metering system for internal combustion engines
Stand der TechnikState of the art
Die Erfindung geht aus von einem Kraftstoffzumeßsystem für Brennkraftmaschiner, der im Oberbegriff des Anspruchs 1 definierten Gattung.The invention relates to a fuel metering system for internal combustion engines, of the type defined in the preamble of claim 1.
Ein solches Kraftstoffzumeßsystem ist aus der DE-OS 27 27 804 bekannt. Bei diesem Kraftstoffzumeßsystem wird während des Schubbetriebes der Brennkraftmaschine, d.h. wenn die Drehzahl bei geschlossener Drosselklappe einen bestimmten Wert übersteigt, die Kraftstoff-Zufuhr ganz abgeschaltet oder zumindest stark gedrosselt. Nach Ende des Schubbetriebes, insbesondere nach Ende eines längeren Schubbetriebes, kann sich die Brennkraftmaschine mit dem Ansaugrohr soweit abgekühlt haben, daß sich ein Teil des Kraftstoffes an der Innenfläche von Ansaugrohr und Zylinder niederschlägt. Dieser Teil des Kraftstoffs geht dem Zündgemisch verloren, das damit zu mager wird. Als Folge davon läuft die Brennkraftmaschine unruhig, die Drehzahl "taucht durch" oder die Brennkraftmaschine geht aus. Außerdem treten im Abgas Kohlenwasserstoff-Emissionsspitzen auf.Such a fuel metering system is known from DE-OS 27 27 804. In this fuel metering system, the fuel supply is completely switched off or at least severely throttled during the overrun operation of the internal combustion engine, ie when the rotational speed exceeds a certain value when the throttle valve is closed. After the overrun operation, in particular after the end of a longer overrun operation, the internal combustion engine with the intake pipe may have cooled down to such an extent that part of the fuel is on the inner surface of the intake pipe and cylinder precipitates. This part of the fuel is lost to the ignition mixture, which makes it too lean. As a result, the internal combustion engine runs unsteadily, the rotational speed "plunges through" or the internal combustion engine stops. In addition, hydrocarbon emission peaks occur in the exhaust gas.
Um den schnellen Aufbau eines Kraftstoff-Wandfilmes nach Schubabschalten ohne Beeinträchtigung der Mengenbalance des zugemessenen Kraftstoffes einerseits und des dem Zylinder zur Verbrennung zugeführten Gemisches andererseits zu erreichen, wird mit Schubabsehalten die entsprechend dem Betriebspunkt der Brennkraftmaschine von der Zumeßeinrichtung zugemessene stationäre Kreftstoffmenge um eine vorgegebene Kraftstoffzusatzmenge anreichert. Die Zusatzmenge kann dabei über eine gewisse Anzahl von Zündimpulsen und damit gekoppelten Zumeßimpulsen hinweg konstant sein oder bei jedem Zumeßimpuls variiert werden.In order to achieve the rapid build-up of a fuel wall film after a fuel cut-off without impairing the quantity balance of the metered fuel on the one hand and the mixture supplied to the cylinder for combustion on the other hand, the steady-state amount of fuel metered by the metering device in accordance with the operating point of the internal combustion engine is enriched by a predetermined fuel add-on quantity . The additional quantity can be constant over a certain number of ignition pulses and the associated metering pulses or can be varied with each metering pulse.
Selbst bei Variation der Zumeßmenge mit jedem Zumeßimpuls kann die insgesamt zugemessene Kraftstoffzusatzmenge aufgrund der komplexen Zusammenhänge von erforderlicher zusätzlicher Wandfilmmenge und der zugehörigen Betriebskollektiv-Vorgeschichte der Brennkraftmaschine immer nur ein unzureichender Kompromiß sein. Die Zusatzmenge kann zu groß oder zu gering sein. Entsprechend sind die Auswirkungen. Überfettung des Gemisches führt zu Kohlenmonoxyd-Abgasspitzen, verbleibende Ausmagerung des Gemisches zu Kohlenwasserstoff-Emissionsspitzen und zum Durchtauchen der Brennkraftmaschine. Vorteile der ErfindungEven if the metered quantity varies with each metering pulse, the total metered fuel additive amount can only ever be an inadequate compromise due to the complex relationships between the required additional wall film amount and the associated operating history of the internal combustion engine. The amount added may be too large or too small. The effects are corresponding. Over-greasing of the mixture leads to carbon monoxide exhaust gas peaks, remaining leaning of the mixture to hydrocarbon emission peaks and immersion of the internal combustion engine. Advantages of the invention
Das erfindungsgemäße Kraftstoffzumeßsystem mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß durch das Vorsehen der Lambda-Sonde die zusätzliche Anreicherung der zugemessenen Kraftstoffmerge dann abgebrochen wird, wenn zuverlässig festgestellt wird, daß "fettes Gemisch" vorliegt. Ausmagerung oder Übersättigung des Gemisches ist damit weitgehend vermeidbar.The fuel metering system according to the invention with the characterizing features of claim 1 has the advantage that the additional enrichment of the metered fuel margin is canceled by the provision of the lambda probe when it is reliably determined that "rich mixture" is present. Leaning or supersaturation of the mixture can thus be largely avoided.
Bei Brennkraftmaschinen mit Lambda-Regeleinrichtung (DE-OS 32 07 787) kann vorteilhaft die in dieser Regeleinrichtung bereits vorhandene Lambda-Sonde verwendet werden. Dabei kann auch in Zuständen des Lambda-Regelungsverbotes, und damit bei offenem Regelkreis, das Sondensignal der Lambda-Sonde für den Anreicherungsabbruch ausgewertet werden.In internal combustion engines with a lambda control device (DE-OS 32 07 787), the lambda probe already present in this control device can advantageously be used. The probe signal of the lambda probe can also be evaluated for the termination of the enrichment even in states of the lambda regulation prohibition, and thus with the control loop open.
Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Kraftstoffzumeßsystems möglich.Advantageous further developments and improvements of the fuel metering system specified in claim 1 are possible through the measures listed in the further claims.
Zeichnungdrawing
Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels in der nachfolgenden Beschreibung näher erläutert. Dabei zeigt die Zeichnung ein Blockschaltbild eines Kraftstoffzumeßsystems. Beschreibung des AusführungsbeispielsThe invention is explained in more detail in the following description with reference to an embodiment shown in the drawing. The drawing shows a block diagram of a fuel metering system. Description of the embodiment
In der Zeichnung ist mit 10 ein Impulsgeber bezeichnet, der die Zündsignale für die Brennkraftmaschine auslöst und dessen Impulsfolgefrequenz von der Drehzahl der Brennkraftmaschine abhängig ist. Die Impulse sind einer Kraftstoff-Zumeßeinheit 11 zugeführt, die aus einer Zumeßzeit-Einstellvorrichtung 12 und elektromagnetischen Einspritzventilen besteht, die in einem Block 13 zusammengefaßt sind. Die elektromagnetischen Einspritzventile bewirken während der von der Zumeßzeit-Einstellvorrichtung vorgegeben Zumeßzeit eine Einspritzung von Kraftstoff in ein Luftansaugrohr der Brennkraftmaschine.In the drawing, 10 denotes a pulse generator, which triggers the ignition signals for the internal combustion engine and whose pulse repetition frequency is dependent on the speed of the internal combustion engine. The pulses are fed to a fuel metering unit 11, which consists of a metering time setting device 12 and electromagnetic injection valves, which are combined in a block 13. The electromagnetic injection valves cause fuel to be injected into an air intake pipe of the internal combustion engine during the metering time specified by the metering time setting device.
Die Zumeßzeit-Einstellvorrichtung 12 weist ein erstes Zeitglied 14 und ein zweites Zeitglied 15 auf. Das erste Zeitglied 14 bestimmt abhängig von der Drehzahl und einem von der angesaugten Luftmenge abhängigen Luftmengensignal Q ein Zumeßzeit-Grundintervall tp. Das zweite Zeitglied 15 dient als Korrekturstufe für das im ersten Zeitglied 14 bestimmte Zumeßzeit-Grundintervall tp und gibt an die elektromagnetischen Einspritzventile ein in Abhängigkeit von weiteren Betriebskenngrößen, z.B. einem Temperatursignal , korrigiertes Zumeßzeit-Zeitintervall ti.The metering time setting device 12 has a first timer 14 and a second timer 15. The first timing element 14 determines a metering time basic interval t p as a function of the rotational speed and an air quantity signal Q which is dependent on the air quantity drawn in. The second timing element 15 serves as a correction stage for the metering time basic interval t p determined in the first timing element 14 and supplies the electromagnetic injection valves as a function of further operating parameters, for example a temperature signal , corrected metering time interval t i .
Mit 16 ist eine Schuberkennungsstufe gekennzeichnet, die mit einem Drosselklappenschalter 17 verbunden ist. Die Schuberkennungsstufe 16 erzeugt während des Schubbetriebes, d.h. wenn bei geschlossener Drosselklappe und damit geschlossenem Drosselklappenschalter 17 die Drehzahl der Brennkraftmaschine einen bestimmten Wert überschreitet, ein Ausgangsgangssignal. Die Drehzahl der Brennkraftmaschine ist von der Impulsfolgefrequenz des Impulsgebers 10 abgenommen. Der Ausgang der Schuberkennungsstufe 16 ist mit der Zumeßzeit-Einstellvorrichtung 12 und dort mit dem zweiten Zeitglied 15 verbunden. Das Ausgangssignal bewirkt hier die Blockierung der Zumeßzeit-Einstellung oder eine extreme Reduzierung der eingestellten Zumeßzeit, so daß über die elektromagnetischen Einspritzventile im Block 13 die Kraftstoffzufuhr zum Luftansaugrohr für die Dauer des Schubbetriebes abgesperrt oder doch zumindest weitgehend gedrosselt wird. Die Vorderflanke des16 is a thrust detection stage, which is connected to a throttle valve switch 17. The thrust detection stage 16 generates an output gear signal during the coasting operation, that is to say when the rotational speed of the internal combustion engine exceeds a certain value when the throttle valve is closed and the throttle valve switch 17 is closed. The speed of the internal combustion engine is from the pulse repetition frequency the pulse generator 10 removed. The output of the thrust detection stage 16 is connected to the metering time setting device 12 and there to the second timing element 15. The output signal causes the metering time setting to be blocked or an extreme reduction in the metering time set so that the fuel supply to the air intake pipe is blocked or at least largely throttled for the duration of the overrun operation via the electromagnetic injection valves in block 13. The leading edge of the
Ausgangssignals der Schuberkennungsstufe 16 kennzeichnet dabei den Beginn des Schubbetriebes der Brennkraftmaschine, und die hintere oder Rückflanke des Ausgangssignals der Schuberkennungsstufe 16 kennzeichnet das Ende des Schubbetriebes. Die Rückflanke des Ausgangssignals der Schuberkennungsstufe 16 wird im folgenden mit Schubendesignal bezeichnet.Output signal of the thrust detection stage 16 denotes the start of the overrun operation of the internal combustion engine, and the rear or trailing edge of the output signal of the thrust detection stage 16 denotes the end of the overrun operation. The trailing edge of the output signal of the thrust detection stage 16 is referred to below as the thrust end signal.
Die Schuberkennungsstufe 16 ist ausgangsseitig mit einer Anreicherungseinrichtung 18 verbunden, die auf das Schubendesignal hin die zugemessene Kraftstoffmenge um eine vorgegebene Kraftstoff-Zusatzmenge anreichert und hierzu die Zumeßzeit-Einstellvorrichtung 12 derart steuert, daß das korrigierte Zumeßzeit-Zeitintervall ti um ein vorgegebenes Zeitintervall verlängert wird. Die Größe des Verlängerungszeitintervalls wird dabei bei jedem Zumeßzeit-Zeitintervall ti verändert, und zwar in der Weise, daß die Größe der Verlängerungsintervalle in aufeinanderfolgenden korrigierten Zeitintervallen ti stetig abnimmt, z.B. nach einer linearen oder exponentiellen Funktion.The thrust detection stage 16 is connected on the output side to an enrichment device 18 which, in response to the end of the thrust signal, enriches the metered fuel quantity by a predetermined additional fuel quantity and for this purpose controls the metering time setting device 12 such that the corrected metering time time interval t i is extended by a predetermined time interval . The size of the extension time interval is changed at each metering time interval t i in such a way that the size of the extension intervals decreases continuously in successive corrected time intervals t i , for example according to a linear or exponential function.
Die Anreicherungseinrichtung 18 weist einen digitalen Abwärts- oder Rückwärtszähler 19 (down-counter) auf, dessen Takteingang mit dem Ausgang des ersten Zeitglie des 14 verbunden ist und damit mit Zählimpulsen belegt wird, deren Frequenz der Impulsfolgefrequenz des Impulsgebers 10 und damit der Drehzahl der Brennkraftmaschine entspricht. Die parallelen Zählausgänge des Abwärtszählers 19 sind mit einer Decodierstufe 20 verbunden. Die Decodierstufe 20 decodiert den momentanen Zählinhalt des Abwärtszählers 19 und gibt ein dem Zählerstand proportionales Zeitverlängerungssignal an das zweite Zeitglied 15, das seinerseits das korrigierte Zumeßzeit-Zeitintervall ti um ein dem Zeitverlängerungssignal entsprechendes Verlängerungszeitintervall vergrößert. Über den Setzeingang (set) ist der Abwärtszähler 19 mit dem Ausgang der Schuberkennungsstufe 16 derart verbunden, daß das Schubendesignal, also die Rückflanke des Ausgangssignals der Schuberkennungsstufe 16, den Abwärtszähler 19 auf einen vorgegebenen Zählerstand einstellt, von dem aus der Abwärtszähler 19 mit jedem Zählimpuls an seinem Takteingang abwärts zählt.The enrichment device 18 has a digital down-counter 19, the clock input of which corresponds to the output of the first timer of the 14 is connected and thus occupied with counting pulses, the frequency of which corresponds to the pulse repetition frequency of the pulse generator 10 and thus the speed of the internal combustion engine. The parallel count outputs of the down counter 19 are connected to a decoding stage 20. The decoding stage 20 decodes the current count content of the down counter 19 and sends a time extension signal proportional to the counter reading to the second timer 15, which in turn increases the corrected metering time interval t i by an extension time interval corresponding to the time extension signal. The down counter 19 is connected via the set input (set) to the output of the slip detection stage 16 in such a way that the end of the push signal, i.e. the trailing edge of the output signal of the slip detection stage 16, sets the down counter 19 to a predetermined counter reading, from which the down counter 19 with each count pulse counts down at its clock input.
Mit dem Reset-Eingang des Abwärtszählers 19 ist derWith the reset input of the down counter 19 is the
Ausgang einer Lambda-Sonde 21 verbunden, die üblicherweise im Abgasstrom der Brennkraftmaschine angeordnet ist und zur Regelung der Zusammensetzung des Kraftstoff-Luft-Gemisches im Ansaugrohr dient. Diese LambdaSonde 21 gibt in bekannter Weise Steuersignale an ein elektronisches Steuergerät, wenn die Gemisch-Zusammensetzung eine Überfettung oder eine Ausmagerung zeigt,wenn also der Kraftstoffanteil zu groß oder zu gering ist. Diese Steuersignale führen zu entsprechender Korrektur der Gemischzusammensetzung durch das elektronischeOutput of a lambda probe 21 connected, which is usually arranged in the exhaust gas flow of the internal combustion engine and is used to regulate the composition of the fuel-air mixture in the intake pipe. This lambda probe 21 sends control signals to an electronic control unit in a known manner if the mixture composition shows over-richness or leanness, ie if the fuel content is too large or too low. These control signals lead to a corresponding correction of the mixture composition by the electronic
Steuergerät. An den Reset-Eingang des Abwärtszählers 19 ist ein Steuerimpuls geführt, der von dem für "fettes Gemisch", also erhöhten Kraftstoffanteil im Gemisch, charakteristischen Kennsignal der Lambda-Sonde 21 abgeleitet ist. Dieser Steuerimpuls erzwingt ein Rücksetzen des Abwärtszählers 19 auf seinen "Nullstand", und zwar unabhängig von den momentanen Zählerstand. Diesen "Nullzählerstand" erfaßt ebenfalls die Decodierstufe 20 und macht entsprechend das an das zweite Zeitglied 15 gelangende Zeitverlängerungssignal zu Null. Damit ist die von der Anreicherungseinrichtung 18 bewirkte Beeinflussung des von der Zumeßzeit-Einstellvorrichtung 12 in Abhängigkeit von dem momentanen Betriebspunkt der Brennkraftmaschine eingestellten Zumeßzeit-Zeitintervalls ti aufgehoben.Control unit. A control pulse is sent to the reset input of the down counter 19, which is derived from that for "rich mixture", ie increased fuel content in the mixture, characteristic signal of the lambda probe 21 is derived. This control pulse forces the down counter 19 to be reset to its "zero level", regardless of the current counter status. This "zero counter reading" is also detected by the decoding stage 20 and accordingly makes the time extension signal reaching the second timing element 15 zero. The influence of the enrichment device 18 on the metering time interval t i set by the metering time setting device 12 as a function of the instantaneous operating point of the internal combustion engine is thus eliminated.
Zusammenfassend ist die Arbeitsweise des vorstehend beschriebenen Kraftstoffzumeßsystems kurz wie folgt zu beschreiben:In summary, the operation of the fuel metering system described above can be briefly described as follows:
Das erste Zeitglied 14 bestimmt ein Zumeßzeit-Grundintervall tp in Abhängig-keit von Signslen der Drehzahl und des Luftdurchsatzes im Luftansaugrohr. Dieses Grundintervall wird im zweiten Zeitglied 15 abhängig von weiteren Betriebskenngrößen. wie z.B. der Temperatur, korrigiert und gelangt als korrigiertes Zumeßzeit-Zeitintervall ti zu den elektromagnetischen Einspritzventilen des Blocks 13. In der Schuberkennungsstufe 16 entsteht dann ein Ausgangssignal, wenn bei geschlossenem Drosselklappenschalter 17 die Drehzahl einen bestimmten Wert überschreitet. Mit der Vorderflanke des Ausgangssignals, dem sog. Schubbeginnsignal, wird das zweite Zeitglied 15 blockiert und damit die Einspritzung von Kraftstoff in das Luftansaugrohr der Brennkraftmaschine durch die elektromagnetischen Einspritzventile 13 gestoppt. Die Rückflanke des Ausgangssignals, das sog. Schubenαesignal, hebt die Einspritzblockierung wieder auf und setzt den Abwärtszähler 19 auf einen vorgegebenenThe first timing element 14 determines a metering time basic interval tp as a function of signals of the speed and the air throughput in the air intake pipe. This basic interval becomes dependent on further operating parameters in the second timing element 15. such as, for example, the temperature, corrects and reaches the electromagnetic injection valves of the block 13 as a corrected metering time interval t i . In the thrust detection stage 16, an output signal is produced when the rotational speed exceeds a certain value when the throttle valve switch 17 is closed. The second timing element 15 is blocked with the leading edge of the output signal, the so-called overrun start signal, and thus the injection of fuel into the air intake pipe of the internal combustion engine is stopped by the electromagnetic injection valves 13. The trailing edge of the output signal, the so-called Schubenαesignal, removes the injection blockage and sets the down counter 19 to a predetermined one
Zählerstand. Der Abwärtszähler 19 beginnt nun seinenCount. The down counter 19 now begins its
Zählinhalt mit jedem Zählimpuls kontinuierlich zu verringern, wobei die Zumeßzeit-Grundintervalle tp die Zählimpulse bilden. Die Decodierstufe 20 setzt den momentanen Zählinhalt des Abwärtszählers 19 in ein Zeitverlängerungssignal um, dessen Größe proportional dem jeweiligen Zählerinhalt ist. Das Zeitverlängerungssignal wird dem zweiten Zeitglied 15 zugeführt und bewirkt hier eine Vergrößerung des korrigierten Zumeßzeit-Zeitintervall ti Damit wird die Öffnungszeit der elektromagnetischen Einspritzventile des Blockes 13 vergrößert und die in das Luftansaugrohr eingespritzte Kraftstoffmenge erhöht. Sobald die Lambda-Sonde 21 "fettes Gemisch" erkennt, wird durch das Ausgangssignal der Lambda-Sonde 21 der Abwärtszähler 19 zurückgesetzt. Der Zählinhalt des Zählers wird damit zu Null, so daß die den Zählinhalt umsetzende Decodierstufe 20 an das zweite Zeitglied 15 kein Zeitverlängerungssignal gibt. Damit ist wieder auf Normalbetrieb umgeschaltet, in welchem über die elektromagnetischen Einspritzventile im Block 13 nur noch eine solche Kraftstoffmenge eingespritzt wird, welche die Brennkraftmaschine entsprechend den momentanen Betriebskenngrößen benötigt.To continuously reduce the counting content with each counting pulse, the metering time basic intervals t p forming the counting pulses. The decoding stage 20 converts the current counting content of the down counter 19 into a time extension signal, the size of which is proportional to the respective counter content. The time extension signal is supplied to the second timer 15 and here causes an increase in the corrected metering time interval t i. This increases the opening time of the electromagnetic injectors of the block 13 and increases the amount of fuel injected into the air intake pipe. As soon as the lambda probe 21 detects "rich mixture", the down counter 19 is reset by the output signal of the lambda probe 21. The counting content of the counter thus becomes zero, so that the decoding stage 20 implementing the counting content does not give a time extension signal to the second timing element 15. This switches back to normal operation, in which only the amount of fuel that the internal combustion engine requires in accordance with the current operating parameters is injected via the electromagnetic injection valves in block 13.
Die Erfindung ist nicht auf das vorstehend beschriebene Ausführungsbeispiel beschränkt. So können die Zählimpulse für den Abwärtszähler 19 unmittelbar von dem Impulsgeber 10 abgenommen sein. Zur Drehzahlerfassung durch die Schuberkennungsstufe 16 können auch die Ausgangsimpulse des Impulsgebers 10 anstelle der ZumeßzeitGrundintervalle tp an die Schuberkennung-sstufe 16 gelegt werden. Die Anreicherungseinrichtung 18 kann in viel faltiger Weise ausgebildet werden. Dabei kann anstelle der linearen Abnahme der Verlangerungszeitintervalle in aufeinanderfolgenden Zumeß-Zeitmtervallen ti eine exponentielle Verkürzung der Verlängerungszeitintervalle vorgesehen werden.The invention is not restricted to the exemplary embodiment described above. The counting pulses for the down counter 19 can be taken directly from the pulse generator 10. For speed detection by the thrust detection stage 16, the output pulses of the pulse generator 10 can also be applied to the thrust detection stage 16 instead of the metering time basic intervals t p . Enrichment device 18 can be many are wrinkled. Instead of the linear decrease in the extension time intervals in successive metering time intervals t i, an exponential shortening of the extension time intervals can be provided.
Die Unterteilung des Kraftstoffzumeßsystems in separate Funktionseinheiten mit klar zugeordneten Aufgaben, wie Zumeßeinnchtunc 11, Zumeßzeit-Emstellvorrichtung 12, Schuoerkennungsstufe 16 und Anreicheruncseinrichtung 18, ist nicht zwingend und dient nur dem besseren Verständnis Die Aufgaben dieser Funktionseinheiten werden heute üblicherweise von einer. Mikroprozessor oder Mikrocomputer wahrgenommen, in welchem bestimmte Teile und Baugruppen an der Abwicklung verschiedener Funktionen Gleichzeitig oder aufeinanderfolgend beteiligt sind, so daß sich hier eine solche klare Auftrennung nicht nachvoll ziehen läßt. The subdivision of the fuel metering system into separate functional units with clearly assigned tasks, such as metering device 11, metering time setting device 12, protection detection stage 16 and enrichment device 18, is not mandatory and is only for better understanding. The tasks of these functional units are usually performed by one today. Perceived microprocessor or microcomputer, in which certain parts and assemblies are involved in the execution of various functions simultaneously or in succession, so that such a clear separation can not be understood here.

Claims

Ansprüche Expectations
1. Kraftstoffzumeßsystem für Brennkraftmaschinen, bei welchem die pro Zündintervall zuzumessende Kraftstoffmenge in Abhängigkeit von Betriebskenngrößen der Brennkraftmaschine, wie Drehzahl, Luftansaugmenge, Temperatur, festgelegt wird und bei welchem die Kraftstoffzumessung mit Schubbeginn gesperrt oder zumindest reduziert und mit Schubende wieder freigegeben und dabei die zuzumessende Kraftstoffmenge um eine vorgebbare Zusatzmenge angereichert wird, d a d u r c h g e k e n n z e i c h n e t, daß eine Lambda-Sonde (21) vorgesehen ist, die zumindest ein für erhöhten Kraftstoffanteil im Kraftstoff-Luft-Gemisch ("fettes Gemisch") charakterist-isches Kennsignal generiert, und daß auf das Kennsignal der Lambda-Sonde (21) hin die Anreichcherung der zugemessenen Kraftstoffmenge abgebrochen wird.1.Fuel metering system for internal combustion engines, in which the amount of fuel to be metered per ignition interval is determined as a function of operating parameters of the internal combustion engine, such as rotational speed, air intake amount, temperature, and in which the metering of fuel is blocked or at least reduced at the start of the overrun and released again at the end of the push and thereby the amount of fuel to be metered is enriched by a predeterminable additional quantity, characterized in that a lambda probe (21) is provided which generates at least one characteristic signal which is characteristic of an increased fuel content in the fuel-air mixture ("rich mixture"), and that the characteristic signal of Lambda probe (21) towards the enrichment of the metered fuel quantity is stopped.
2. System nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die Kraftstoffzumessung durch Festlegen der Kraftstoffzumeßzeit in Abhängigkeit von den Betriebskenngrößen der Brennkraftmaschine erfolgt und daß zur Anreicherung der zuzumessenden Kraftstoffmenge die Kraftstoffzumeßzeit um ein vorgegebenes Zeitintervall verlängert wird.2. System according to claim 1, characterized in that the fuel metering by setting the fuel metering time as a function of the operating parameters of the Internal combustion engine takes place and that in order to enrich the amount of fuel to be metered, the fuel metering time is extended by a predetermined time interval.
3. System nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß die Größe der mit jedem Zündintervall aufeinanderfolgenden Verlängerungszeitintervalle stetig, z.B. linear oder exponentiell, abnimmt.3. System according to claim 2, d a d u r c h g e k e n n z e i c h n e t that the size of the successive extension time intervals with each ignition interval continuously, e.g. linear or exponential, decreasing.
4. System nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, daß zur Bestimmung der Verlängerungszeitintervalle ein mit Zündfrequenz getakteter digitaler Zähler (19) und eine an dessen parallelen Zählausgängen angeschlossene Decodierstufe (20) vorgesehen sind, deren Ausgangssignal ein Maß für die Größe der Verlängerungszeitintervalle ist.4. System according to claim 3, so that a digital counter (19) clocked at the ignition frequency and a decoding stage (20) connected to its parallel counting outputs (20) are provided for determining the extension time intervals, the output signal of which is a measure of the size of the extension time intervals.
5. System nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, daß der Zähler als Abwärtszähler (19) ausgebildet ist, der durch ein für das Schubende charakteristisches Signal auf einen vorgegebenen Zählerstand einstellbar ist, und daß die Decodierstufe (20) derart ausgebildet ist, daß die Größe des Verlängerungszeitintervalls proportional dem momentanen Zählerstand ist.5. System according to claim 4, characterized in that the counter is designed as a down counter (19) which can be set to a predetermined counter reading by a signal characteristic of the pushing end, and that the decoding stage (20) is designed such that the size of the Extension time interval is proportional to the current meter reading.
6. System nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, daß der Abwärtszähler (19) einen Rücksetzeingang (reset) aufweist, der mit dem Kennsignalausgang der Lambda-Sonde (21) verbunden ist, und daß das Kennsignal der Lambda-Sonde (21) ein Zählerrücksetzsignal bildet.6. System according to claim 5, characterized in that the down counter (19) has a reset input (reset) which is connected to the identification signal output of the lambda probe (21), and that the identification signal of the lambda probe (21) forms a counter reset signal.
7. System nach einem der Ansprüche 4 - 6, d a d u r c h g e k e n n z e i c h n e t, daß zur Festlegung der Kraftstoffzumeßzeit ein erstes Zeitglied (14) zur Bildung eines Zumeßzeit-Grundintervalls (tp) und ein dem ersten Zeitglied (14) nachgeschaltetes zweites Zeitglied (15) zur Korrektur des Zumeßzeit-Grundintervalls (tp) vorgesehen sind und daß der Ausgang der Decodierstufe (20) mit dem zweiten Zeitglied (15) verbunden ist. 7. System according to any one of claims 4-6, characterized in that for determining the fuel metering time, a first timer (14) for forming a metering time basic interval (t p ) and a second timer (15) connected downstream of the first timer (14) for correction of the metering time basic interval (t p ) are provided and that the output of the decoding stage (20) is connected to the second timing element (15).
EP19880901229 1987-04-04 1988-02-02 Fuel metering system for internal combustion engines Expired - Lifetime EP0383753B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873711398 DE3711398A1 (en) 1987-04-04 1987-04-04 FUEL METERING SYSTEM FOR INTERNAL COMBUSTION ENGINES
DE3711398 1987-04-04

Publications (2)

Publication Number Publication Date
EP0383753A1 true EP0383753A1 (en) 1990-08-29
EP0383753B1 EP0383753B1 (en) 1991-08-28

Family

ID=6324880

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880901229 Expired - Lifetime EP0383753B1 (en) 1987-04-04 1988-02-02 Fuel metering system for internal combustion engines

Country Status (6)

Country Link
US (1) US5020495A (en)
EP (1) EP0383753B1 (en)
JP (1) JP2604840B2 (en)
KR (1) KR0121323B1 (en)
DE (2) DE3711398A1 (en)
WO (1) WO1988008077A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4236922C2 (en) * 1992-10-31 2003-05-08 Bosch Gmbh Robert Method for setting the fuel / air mixture for an internal combustion engine after a coasting phase
EP0766783B1 (en) * 1994-06-24 1998-08-26 Siemens Aktiengesellschaft Method of controlling the fuel supply to an internal-combustion engine with a selective cylinder cut-off capability
DE19548054C1 (en) * 1995-12-21 1997-06-05 Siemens Ag IC engine ignition control method
DE19954608B4 (en) * 1999-11-12 2007-05-16 Volkswagen Ag Method for detecting the actual power of an internal combustion engine of a vehicle in overrun mode
JP3966014B2 (en) 2002-02-25 2007-08-29 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP4334367B2 (en) * 2004-02-09 2009-09-30 本田技研工業株式会社 Fuel injection control device
CN103328793B (en) * 2011-01-20 2017-09-01 丰田自动车株式会社 The control device of internal combustion engine
US9599052B2 (en) 2014-01-09 2017-03-21 Ford Global Technologies, Llc Methods and system for catalyst reactivation
DE102015226138B3 (en) 2015-12-21 2016-12-29 Continental Automotive Gmbh Method for determining the composition of the fuel used to operate an internal combustion engine
DE102015226446B4 (en) * 2015-12-22 2017-08-31 Continental Automotive Gmbh Method for determining the composition of the fuel used to operate an internal combustion engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2736307C2 (en) * 1976-08-18 1986-07-31 Nippondenso Co., Ltd., Kariya, Aichi Method and device for a fuel supply system of an internal combustion engine with external ignition
JPS561937Y2 (en) * 1976-08-31 1981-01-17
DE2727804A1 (en) * 1977-06-21 1979-01-18 Bosch Gmbh Robert PROCEDURE FOR OPERATING AND SETTING UP AN INJECTION SYSTEM IN COMBUSTION MACHINES
JPS57124033A (en) * 1981-01-26 1982-08-02 Nissan Motor Co Ltd Fuel controller for internal combustion engine
JPS57191426A (en) * 1981-05-20 1982-11-25 Honda Motor Co Ltd Fuel supply cutting device for reducing speed of internal combustion engine
JPS5825524A (en) * 1981-08-07 1983-02-15 Toyota Motor Corp Fuel injection method of electronically controlled fuel injection engine
DE3207787A1 (en) * 1982-03-04 1983-09-08 Robert Bosch Gmbh, 7000 Stuttgart FUEL FEEDING SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
JPS58214626A (en) * 1982-06-08 1983-12-13 Toyota Motor Corp Air-fuel ratio control method for fuel injection internal-combustion engine
JPS58217736A (en) * 1982-06-09 1983-12-17 Honda Motor Co Ltd Fuel supply controlling method for internal-combustion engine
JPS5965537A (en) * 1982-10-08 1984-04-13 Hitachi Ltd Air-fuel ratio control device for engine
JPS59185833A (en) * 1983-04-06 1984-10-22 Honda Motor Co Ltd Fuel feed control method of internal-combustion engine
JPS6030446A (en) * 1983-07-28 1985-02-16 Toyota Motor Corp Fuel injection control method
JPH0674765B2 (en) * 1984-11-30 1994-09-21 スズキ株式会社 Air-fuel ratio control method for internal combustion engine
JPH08222928A (en) * 1995-02-15 1996-08-30 Casio Comput Co Ltd Antenna system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8808077A1 *

Also Published As

Publication number Publication date
DE3711398A1 (en) 1988-10-20
JP2604840B2 (en) 1997-04-30
JPH02502934A (en) 1990-09-13
DE3864521D1 (en) 1991-10-02
WO1988008077A1 (en) 1988-10-20
KR890700748A (en) 1989-04-27
US5020495A (en) 1991-06-04
EP0383753B1 (en) 1991-08-28
KR0121323B1 (en) 1997-11-24

Similar Documents

Publication Publication Date Title
DE2742763C3 (en) Electronic fuel injection system for an internal combustion engine
DE3226537C2 (en) Method for regulating the air / fuel mixture ratio in an internal combustion engine
DE2647517C2 (en)
DE3219021C3 (en)
DE3024933C2 (en) Method for regulating the fuel-air ratio in internal combustion engines
DE3108601C2 (en) Method for controlling fuel injection in an internal combustion engine
DE3311029C2 (en) Method and device for regulating the idling speed of an internal combustion engine
DE3531868C2 (en)
DE3221641C2 (en)
DE2847794A1 (en) FUEL INJECTION SYSTEM
DE2929516A1 (en) FUEL SUPPLY CONTROL ARRANGEMENT FOR MULTI-CYLINDER INTERNAL COMBUSTION ENGINE
DE3135148C2 (en)
EP0383753B1 (en) Fuel metering system for internal combustion engines
DE4234982C2 (en) Method and device for controlling the supply of auxiliary air to an internal combustion engine
DE2247656A1 (en) METHOD AND DEVICE FOR EXHAUST GAS DETOXIFICATION FROM INTERNAL COMBUSTION MACHINERY
DE2929797C2 (en) Method and arrangement for controlling the fuel supply, in particular the fuel injection, to an internal combustion engine
DE2637693C2 (en) Fuel injection system for internal combustion engines
DE2736306A1 (en) FUEL SUPPLY SYSTEM FOR A COMBUSTION ENGINE WITH EXTERNAL IGNITION
DE3433042C2 (en)
DE4120062C2 (en) Device for detecting fuel which is difficult to evaporate
DE3628527C2 (en) Fuel injection control device for an internal combustion engine
DE3243456C2 (en) Electronic fuel injection control system for an internal combustion engine
DE3732039A1 (en) FUEL INJECTION CONTROL SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
DE4121561C2 (en) Ignition control system for an internal combustion engine with fuel injection
DE2652725C2 (en) Control system for setting an air / fuel ratio of the air / fuel mixture fed to an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19910206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3864521

Country of ref document: DE

Date of ref document: 19911002

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070418

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070531

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070216

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080201