EP0381547B1 - Procédé de réalisation d'un conduit enterré - Google Patents

Procédé de réalisation d'un conduit enterré Download PDF

Info

Publication number
EP0381547B1
EP0381547B1 EP90400144A EP90400144A EP0381547B1 EP 0381547 B1 EP0381547 B1 EP 0381547B1 EP 90400144 A EP90400144 A EP 90400144A EP 90400144 A EP90400144 A EP 90400144A EP 0381547 B1 EP0381547 B1 EP 0381547B1
Authority
EP
European Patent Office
Prior art keywords
elements
series
section
base
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90400144A
Other languages
German (de)
English (en)
Other versions
EP0381547A1 (fr
Inventor
Marcel Matière
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP93115365A priority Critical patent/EP0585959B1/fr
Publication of EP0381547A1 publication Critical patent/EP0381547A1/fr
Application granted granted Critical
Publication of EP0381547B1 publication Critical patent/EP0381547B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F5/00Draining the sub-base, i.e. subgrade or ground-work, e.g. embankment of roads or of the ballastway of railways or draining-off road surface or ballastway drainage by trenches, culverts, or conduits or other specially adapted means
    • E01F5/005Culverts ; Head-structures for culverts, or for drainage-conduit outlets in slopes

Definitions

  • the subject of the invention is a system for producing buried conduits of various shapes and sizes each made up of a plurality of prefabricated elements by assembly on site, along a longitudinal axis and also covers the elements. prefabricated and the way they are presented.
  • Each tubular section may consist, for example, of a single element of circular section.
  • the tubular sections are generally provided at their ends with parts, respectively, projecting and recessed, which fit into one another when the elements are installed and allow the latter to be joined.
  • the circular section sections For a large passage section, the circular section sections have very high weights and are difficult to handle, transport and set up.
  • a duct comprising, in cross section, only two elements, respectively a lower element forming a raft and an upper element in shape curved vault in an arc of a circle and resting, by means of its two parallel longitudinal edges, on support members formed along the two sides of the raft.
  • the longitudinal support members formed on both sides of the slab consist of grooves with a curved hollow bottom in which engage the longitudinal edges of the arch element which have each a rounded convex profile of curvature slightly more marked than that of the groove so as to leave a slight clearance.
  • Each longitudinal support thus presents a certain possibility of articulation around an axis parallel to the longitudinal axis of the conduit, each element arch can be deformed very slightly under the load transmitted by the terrain which surmounts it. This is transmitted to the two lateral sides of the raft which is made up of a massive rectangular panel resting on the ground by means of a fund rigid allowing to distribute well all the applied loads.
  • conduits of medium section which, until now, usually consist of tubular sections of circular section.
  • the invention which applies to conduits with two elements, respectively a raft and a vault, gives, in fact, very wide possibilities of choice, thanks to an original system allowing to realize on demand and in a particularly fast way and economical, conduits having various shapes and dimensions and whose constitution and, in general, many characteristics can be determined as required with great flexibility of adaptation.
  • the system according to the invention applies to the production of buried conduits of the type described in particular in patent FR 84.16811 and each consisting of a series of contiguous sections placed one after the other, along a longitudinal axis , on the bottom of a trench, each section comprising, in cross section, a base element resting on the laying surface and an upper element forming an arch and resting on the base element by means of longitudinal support members parallel to the longitudinal axis and formed respectively on the lateral sides of the base element and of the upper element, said elements, respectively basic and superior which can have different shapes.
  • the system comprises an assortment of basic elements and superior elements immediately available from stock or capable of being immediately manufactured in a desired number, and whose dimensional and structural characteristics have been defined in advance, said elements being distributed in a certain number of series of basic elements each corresponding to a width between supports and in the same number of series of upper elements corresponding to the same widths between supports, each series comprising a certain number of basic elements or of superior elements differing from the earss, in each series, by the shape and by at least one of the parameters determining the resistance of the element, such as the cross-sectional profile, the thickness and the constitution, the elements base and the upper elements compatible with each other, which can be combined in pairs so as to form, for each width between supports, a certain number of standard sections each corresponding to a passage section and to a maximum admissible load, the number of series and widths between supports being determined so as to cover, almost continuously, thanks to the choice of profile, a wide range of passage sections.
  • the invention also covers a method of making a buried pipe from prefabricated elements of the system.
  • a standard section is chosen having an admissible load greater than the load to be applied to the duct and whose profile, taking into account the width between supports, makes it possible to optimally respect the passage section and the space required, and elements are taken from stock or manufactured in a desired number and upper sections presenting the profile, dimensions and structural characteristics of the element of the lower part and of the upper part of the selected standard section, then we co nstruct the conduit by assembling said elements.
  • the upper elements and the basic elements chosen from said series are produced in full size corresponding respectively to the different seat widths, each element of a series being produced , for each width, in a number corresponding to the possibilities of combination with the elements of another series and the base elements and the upper elements are associated in pairs so as to produce the standard sections envisaged, then subject each standard section thus formed in a load test applied to the key until the section ruins to deduce therefrom, by application of safety coefficients, the maximum distributed load admissible by the section considered.
  • the invention also covers the prefabricated elements distributed in several series and the profiles of the standard sections produced from said elements.
  • the height of the longitudinal support is varied in each series relative to the bottom of the element, each longitudinal support being provided, ie at the level of the upper face of the raft, or the upper part of a pedestal extending along each lateral side of the base element, perpendicular to the bottom and over a variable height.
  • the bottom of the raft must have a sufficient bearing surface to collect the load supported but is not necessarily flat and, for example, it can provide an axial wedge projecting from the underside and engaging in a corresponding recess in the laying surface.
  • each series of arch elements corresponding to a determined width between supports it is possible to vary the curvature of the element and in particular the ratio between the arrow and the width between supports; for example, it is possible to produce, for each width between supports, arch elements having a semicircular curvature, lowered elements having a basket handle curvature and raised elements having an ovoid curvature.
  • the invention also covers such a presentation of the construction possibilities.
  • FIG. 1 represents a first embodiment of a semicircular vault duct.
  • FIG. 2 represents a duct with a lowered vault in the basket handle.
  • FIG. 3 represents a duct with raised supports.
  • FIG. 4 shows by way of example two series of elements for implementing the method.
  • Figure 5 shows some examples of typical achievable sections.
  • Figure 6 schematically shows a failure test.
  • Figure 7 is a partial side view showing a particular embodiment of the longitudinal support between an upper element and a raft element.
  • Figure 8 is a partial top view showing, in a particular embodiment, a transverse joint interlocking between two consecutive raft elements.
  • Figure 9 shows, in cross section an alternative embodiment of a conduit according to the invention.
  • Figure 10 is a longitudinal section of the conduit of Figure 9 at its end opening into an embankment.
  • FIG 11 and Figure 12 are detail views showing two embodiments of the connection between two consecutive support elements.
  • FIG. 13 represents, by way of example, two series III, III ′ of support elements.
  • Figure 14 is a cross-sectional view of another embodiment.
  • FIG. 15 is a schematic perspective view of the conduit of FIG. 14.
  • Figure 1 there is shown in cross section to the axis, a first example of a pipe section consisting of two types of elements, respectively a basic element 1 forming a raft placed on the ground and an upper element 2 in form of curved arch resting on the raft element 1.
  • the elements 1 and 2 are made by molding, normally in reinforced or prestressed concrete, or in fiber concrete but other moldable materials can be used.
  • the conduit is placed in the bottom of a trench B which is open up to a leveled and compacted laying surface A placed at the desired level, the conduit being, after installation, covered with an embankment C.
  • the conduit thus buried is therefore subject on the one hand to the load of the embankment which essentially depends on the height of the latter and, on the other hand, to loads applied, for example, on a roadway D fitted on the embankment.
  • the basic element 1 comprises a bottom 10 consisting of a solid reinforced concrete panel of rectangular shape provided, along its two lateral sides 11, with two longitudinal supports which, in the example shown, consist of grooves with curved bottom 72 placed substantially at the level of the upper face of the bottom 10.
  • the arch element 2 has a semicircular cylindrical shape, centered on a longitudinal axis (O), which can be placed either in the horizontal plane of the grooves 72, or at a height h above the upper face 13 of the strike off 1.
  • the arch element 2 is provided with two plane sides 21 tangent to the circular part 20 which make it possible to raise the axis O by the same height.
  • Each end 22 of the upper arch element 2 is provided with a convex rounded edge 71 which engages in the corresponding concave groove 72 at the level of the upper face 12 of the base element 1.
  • the rounded edge 71 a a slightly greater curvature than that of the groove 72 so as to provide a slight clearance allowing the lower parts 25 of the arch element to pivot very slightly on either side of the vertical plane P passing through the bottom of each groove 72.
  • the arch element 2 can deform very slightly, thanks to its articulated supports 7.7 ′, under the action of the loads applied and it results therefrom a certain reduction in the stresses to the key, part of the load being taken up laterally by the embankment 32.
  • each groove 72 is limited by raised edges 14 which, in the case shown in FIG. 1, where the grooves are placed at the level of the upper face 13 of the raft, have a height not exceeding 5 cm, this which allows the raised edges 14 to be produced when the concrete is poured without using a particular mold.
  • the raft elements 13 can therefore be molded quickly and economically.
  • a box-shaped radiating element comprising, along the two lateral sides, two sides 15 extending vertically over a variable height h1.
  • Such an embodiment makes it possible to raise the level of the longitudinal supports 7 relative to the bottom 13 and will be suitable, for example when, the conduit is used for the passage of a height of water not exceeding, in normal service, the height of the supports 7.
  • Figures 1,2 and 3 therefore show how one can choose the dimensions and the profile of the prefabricated elements to vary the passage section and the size, in particular the width L and the height H of the duct, according to the circumstances, including the conditions of use and the construction site.
  • the dimensional and structural characteristics of elements such as the thickness of the roof, the nature of the concrete and the structure of the reinforcement must be determined according to the constraints applied by the embankment and by the operating costs.
  • FIG. 1 the support members 7 are placed substantially at the level of the upper face 13 of the base element 1.
  • FIG. 2 on the contrary, the support members 7 are slightly raised and placed at the upper part of the sides 15 whose internal face 15 ′ is rounded so as to facilitate the flow of the transported liquid and to avoid deposits.
  • the sides 15 are still raised and the base element 1 has a box or shell shape of rectangular section, the upper element 2 having a semicircular shape. But we could also give the upper element 2 the same box shape, as shown in Example 205 of Figure 4, the entire duct then having a rectangular section.
  • FIG 1 there is shown a basic element 1 having a flat bottom 15 which allows the installation on a surface A simply flattened and packed.
  • FIG. 2 another example of a basic element 1 has been shown, the bottom 10 of which is provided, in its central part, with a wedge 17 formed in the axis and projecting from the underside 16
  • the laying surface A is provided with a recess A1 of section corresponding to that of the cunette, the two parts of the lower face 16 placed on either side of the cunette 17 obviously having to have a width sufficient for the transmission applied forces on the ground.
  • the basic element 1 can be provided on its sides with piers 15 making it possible to raise the longitudinal supports 7 by a variable height.
  • This figure also shows , for example, a bottom 16 on which have been provided protruding parts 18 which form asperities for anchoring the raft 1 in the ground, for example to oppose side shifting effects.
  • the roof elements 2 can also be subject to variants, some of which have already been described.
  • each profile it is also possible to vary the parameters determining the strength of the concrete, such as the thickness of the vault, the nature of the concrete used and the construction of the reinforcement, the reinforcements possibly being prestressed.
  • Such channels 19 could also be used for example for the passage of pipes or electrical or telephone cables.
  • a longitudinal shifting effect can also appear, for example when the structure is produced on a surface inclined relative to the horizontal.
  • each longitudinal support member 7 has a slot profile.
  • the convex profiled part 71 formed on each lower edge 22 of the upper element 2 in fact extends alternately on two different levels so as to include, for example, a projecting central part 71 framed by two recessed parts 73 which s 'engage in inverted parts formed in hollow 74 and projecting 75 on the upper edge of the raft element 1 and which are provided with a longitudinal groove 72.
  • Such a niche profile ensures the longitudinal maintenance of each upper element 2 with respect to the corresponding base element 1.
  • the first series I of basic elements 1 therefore comprises a certain number of elements of the same width between supports L1 but having different profiles, dimensions, reinforcements, etc..
  • the series I of basic elements comprises an element 101 in which the support members 4 are in the plane of the upper face 13 of the raft and one or more elements 102, 103 wherein the support members 4 are formed at the upper part of the corners 15 whose height h1, but also the shape, can vary.
  • the element 104 is provided with internal faces 105 which are curved so as to be tangentially connected to the bottom.
  • these basic elements can also be provided with accessory members such as, longitudinal conduits 19 or else notches 18 for anchoring formed on the underside 16 of the raft.
  • accessory members such as, longitudinal conduits 19 or else notches 18 for anchoring formed on the underside 16 of the raft.
  • Such accessories have been shown by way of example on the element 104 but could be provided on the other elements.
  • the series II of upper elements 2 may include, for example, an element 202 lowered into a basket handle, an element 203 raised on flat side walls, an element 204 raised in ovoid shape, an element 205 in rectangular shell, element 206 in the form of a slab, etc.
  • thickness e the nature of the concrete or the reinforcement may vary.
  • a second series I ′ of basic elements will be produced in which a certain number of characteristics are varied such as the profile, the height of the longitudinal supports with respect to the bottom, the thickness, etc., and a second series II ′, of arch elements having different profiles, thicknesses or reinforcements.
  • the upper and base elements thus defined are all made in full size and in sufficient number to be able to be associated two by two in all possible and desirable ways, by forming a certain number of standard sections of the same width and whose profiles and passage section are significantly different.
  • All the sections T 1 , T 2, etc. are thus subjected to a rupture test, which it is possible to constitute, for each width between supports, from the elements of the two series I of basic elements and II of upper elements and it is possible to draw up a table indicating for each width between supports and for each experimental section the passage section S and the maximum admissible load.
  • the necessary elements are not in stock, they can however be made very quickly because all their dimensional and structural characteristics are already defined and we normally have the molds that were used to make the elements subjected to the preliminary tests.
  • the customer orders elements having other accessory characteristics, such as internal pipes or anchoring members, or even slight variations in dimensions due to implantation requirements, the mold is simply adapted to obtain the casting, of these additional characteristics, all the other characteristics remaining well fixed.
  • the prefabricated elements are then produced in a desired number either in a factory or on the site and they are assembled to build the conduit.
  • the lower part 1 consisted of one-piece prefabricated elements forming a continuous raft. It is possible, however, to replace each base element 1 with two spaced support elements 30 so as to constitute two support lines 3 separated by a free space.
  • the support elements 30 form insulated soles whose width can be provided to provide a sufficient support surface.
  • the width of the sole 32 could be reduced.
  • Such elements which are identical and can be stacked easily, are lighter and less bulky than one-piece elements covering the entire width of the duct.
  • each upper element 20 has the shape of a curved arch resting on the support elements 30 by its lower lateral edges, the latter having a rounded convex profile and fitting each in a groove 31 in the form of a concave chute formed on the upper face of each support element 20.
  • the upper elements 2 and the basic elements 1 it is possible to produce at least a series III of support elements inside which a certain number of dimensional characteristics are varied. and structural such as, for example, the width of the seat surface, the height of the element, the shape of the support members 31, the nature of the concrete used and the constitution of the reinforcement, etc ....
  • FIG 13 there is shown schematically two series III, III ′ of support elements each corresponding to a width L ′ 1 and L ′ 2 of the seat surface and in which we have varies the shapes of the elements.
  • the space existing between the two separate support elements 30 may, as the case may be, be left free or else closed in any suitable manner corresponding to the use of the conduit.
  • the lower part 4 of the duct consists of a base layer 41 of compacted aggregates, placed between the internal lateral sides 33 of the support elements 30 and covered with a slab 42 which can be made up of prefabricated elements or else cast in place by covering the upper faces 34 of the support elements 30.
  • the planes of the transverse joints 23 between two consecutive arch elements 20 can be offset longitudinally relative to the plane of the transverse joints 35 between the support elements 30. In this way, the load applied by each upper element 20 is distributed on two consecutive support elements, on either side of the joint plane.
  • the transverse joints between two consecutive elements 30 can be made in different ways.
  • FIG 11 for example, there is shown a sealed joint 5 between two consecutive elements 30, 30 ′.
  • the latter are provided, on their front faces opposite, waiting frames 51 which intersect in a space 50 left between the two elements 30 and 30 ′ and which are associated with transverse irons 52, the assembly being embedded in a sealing mortar 53.
  • the sealing joint 5 thus produced between the two consecutive elements 30 and 30 ′ constitutes a real keying in the longitudinal direction.
  • connecting members 54, 54 ′ which fit one into the other and can be connected by a pin 55.
  • the two consecutive elements 30 and 30 ′ are thus connected to each other by an articulated connection giving each element a slight possibility of deviation from the elements which surround it.
  • the dimensions of the support elements 30 and in particular the width L ′ of their seating surface and their height H ′ will be chosen according to the circumstances of use, and in particular the loads supported and the bearing capacity of the ground.
  • At least one of the support lines 3 could consist of elements 30 shaped so as to have an upper face 34 ′ substantially horizontal and placed above the level of the pavement 4 so as to create a pedestrian traffic sidewalk.
  • the internal side of the elements 30 could be provided with parts arranged to constitute or receive circulation rails of a trolley or gantry facilitating the assembly and / or maintenance of the structure.
  • the conduit is provided for the passage of liquid, for example from a river.
  • the bottom 6 of the duct may advantageously consist of a series of plates 61 of cast iron, sheet metal or plastic, having a width equal to that of the duct and covering the space between the two elements 30, in going up on the upper faces 34 of these, up to the joints 31.
  • the plates 61 can limit a hollow profile, for example for the passage of a channel and the height H ′ support elements 30 can be increased so as to raise the level of the seals 31 to above the average water level, the bottom 6 thus limiting a sufficient section for average flow rates.
  • Seals can be placed between the upper parts 31 of the support elements 30 and the upper edges 62 of each plate 6 so as to allow the water level to rise above the level of the edges 62 by filling more or less the conduit, in case of flood.
  • the duct can even be pressurized if the lower edges 21 of the roof 2 are applied to the bottom of the grooves 31 by tensioned tie rods.
  • the plates 61 can advantageously overlap each other in the manner of a covering, the transverse end 63 of a plate facing downstream, in the direction of flow of the liquid, covering the front end 64 of the next plate 69, with the interposition of a sealing bead.
  • the seat faces 16 of the base elements 1 or 32 of the support elements 30 could form steps, the laying surface A constituting steps of corresponding widths.
  • the elements 30 can be anchored in the ground by transverse beams forming keys.
  • the conduit is buried under an embankment C and opens at each end in a slope C ′ which must be maintained by the two lateral sides.
  • head pieces are advantageously used, each comprising a vertical wall 9 of triangular or trapezoidal shape, associated with a flange 90.
  • the sole 90 consists of one or more support elements 39 identical to those 30 which support the arch elements 20.
  • Each head piece then consists of a plate 9 comprising a horizontal side 91 which rests on the upper part 31 of the corresponding support element 39, a vertical side 92 placed in the extension of the side 24 of the last upper element 25 of the duct, and an inclined side 93 whose inclination corresponds at the natural angle of slope C ′.
  • the wall 9 can be held in place by sealing between the vertical sides 92 and 24 facing each other or by fitting suitable parts sealed in the facing faces of said sides 91, 24.
  • the wall 9 is supported, in the longitudinal direction, on a stop 37 closing the chute 31 in which the horizontal side 91 engages.
  • head pieces each provided with a sole 90 integral with the vertical wall 9, so as to produce a freestanding element could also make head pieces each provided with a sole 90 integral with the vertical wall 9, so as to produce a freestanding element.

Description

  • L'invention a pour objet un système de réalisation de conduits enterrés de formes et de dimensions variées constitués, chacun, par assemblage sur le site, le long d'un axe longitudinal, d'une pluralité d'éléments préfabriqués et couvre également les éléments préfabriqués et la manière dont ils sont présentés.
  • Référence est faite à la Demande Divisionnaire EP 0585.959 publiée le 9 Mars 1994.
  • Il existe différents types de conduits enterrés réalisés par assemblage d'éléments préfabriqués et constitués notamment de tronçons tubulaires alignés bout à bout le long d'un axe longitudinal. Chaque tronçon tubulaire peut être constitué, par exemple, d'un élément unique de section circulaire. Dans ce cas, les tronçons tubulaires sont généralement munis à leurs extrémités de parties, respectivement, en saillie et en retrait, qui s'emboîtent l'une dans l'autre à la pose des éléments et permettent la solidarisation de ces derniers.
  • Pour une section de passage importante, les tronçons de section circulaire ont des poids très élevés et sont difficiles à manipuler, à transporter et à mettre en place.
  • C'est pourquoi, on a également proposé de diviser la paroi du conduit en éléments préfabriqués, chaque tronçon tubulaire étant constitué d'un certain nombre d'éléments s'appuyant les uns sur les autres de façon à constituer une section fermée. Souvent, on utilise des éléments d'un seul type couvrant chacun un arc de cercle de longueur donnée et permettant, donc, de réaliser des tronçons à section circulaire. Mais on a aussi proposé d'utiliser des éléments préfabriqués de formes différentes permettant de réaliser des tronçons à section non circulaire et, par exemple, présentant un fond plan permettant de mieux répartir sur le sol la charge appliquée.
  • En particulier, le déposant a déjà décrit de telles structures, par exemple dans le brevet européen EP 081.402 qui montre différents modes de réalisation et notam ment un conduit comprenant, en section transversale, quatre éléments,respectivement un élément plan formant radier, deux éléments de côtés placés de part et d'autre du radier et munis chacun d'une base leur permettant de se tenir droit sur le sol et un élément de voûte incurvé reposant sur les bords supérieurs des éléments de côté.
  • Dans un autre mode de réalisation qui fait l'objet du brevet français n° 84 16811 du même déposant, on a décrit un conduit comprenant, en section transversale, seulement deux éléments, respectivement un élément inférieur formant un radier et un élément supérieur en forme de voûte incurvée en arc de cercle et reposant, par l'intermédiaire de ses deux bords longitudinaux parallèles, sur des organes d'appui ménagés le long des deux côtés du radier.
  • Selon l'une des caractéristiques décrites dans le brevet FR 84 16811, les organes d'appui longitudinaux ménagés des deux côtés du radier sont constitués de rainures à fond creux incurvé dans lesquelles s'engagent les bords longitudinaux de l'élément de voûte qui ont chacun un profil arrondi convexe de courbure légèrement plus marquée que celle de la rainure de façon à ménager un léger jeu. Chaque appui longitudinal présente ainsi une certaine possibilité d'articulation autour d'un axe parallèle à l'axe longitudinal du conduit, chaque élément de voûte pouvant se déformer très légèrement sous la charge transmise par les terrains qui le surmontent .Celle-ci est transmise aux deux côtés latéraux du radier qui est constitué d'un panneau massif de forme rectangulaire reposant sur le sol par l'intermédiaire d'un fond rigide permettant de bien répartir l'ensemble des charges appliquées.
  • Il est apparu que de telles structures résistent aux charges appliquées de façon active en mobilisant, d' ailleurs, les terrains environnants auxquels une partie de la charge appliquée est transmise par déformation latérale de l'élément supérieur, ce dernier étant ainsi déchargé à la clé.
  • Un article de la revue "TRAVAUX" n° 620 - Avril 1987 - Pages 46-53 (cf. le préambule de la revendication 1), expose les avantages de cette nouvelle technique de réalisation de conduits enterrés et, dans le cas du conduit à quatre éléments décrit dans le brevet EP 081.402, indique la possibilité de réaliser des conduits de formes variées, soit surélevés, soit surbaissés, en combinant des éléments de côté appartenant à un conduit type d'une certaine dimension avec des éléments de base et des éléments de voûte appartenant à un conduit type d'une autre dimension.
  • Il est ainsi possible, en utilisant des moules existants, de modifier le profil général du conduit de façon à mieux s'adapter aux besoins, mais les possibilités d'adaptation restent limitées.
  • Ces particularités ont conduit à étendre les possibilités d'application de tels conduits.
  • En effet, les dispositions décrites dans les brevets précédents, notamment EP N°081 402 et FR 84 16811 étaient prévues essentiellement pour la réalisation de conduits de très grande section, pouvant même aller jusqu'à des gabarits routiers. Dans ce cas, compte-tenu du coût très important de l'ensemble de l'ouvrage, il est rentable de déterminer avec précision , en fonction des besoins, les dimensions et les différentes caractéristiques des éléments, de calculer leur résistance, par exemple en appliquant le procédé décrit dans le brevet EP N° 081 402, et de réaliser des moules spéciaux ou, en tout cas, adaptables aux dimensions souhaitées.
  • On a constaté toutefois que les structures de ce type présentaient de tels avantages qu'il pouvait être intéressant de réaliser de cette façon des conduits de section moyenne, qui, jusqu'à présent, étaient habituellement constitués de tronçons tubulaires de section circulaire.
  • L'invention, qui s'applique à des conduits à deux éléments, respectivement un radier et une voûte, donne, en effet, de très larges possibilités de choix, grâce à un système original permettant de réaliser à la demande et de façon particulièrement rapide et économique, des conduits ayant des formes et des dimensions variées et dont la constitution et, d'une façon générale, de nombreuses caractéristiques peuvent être déterminées en fonction des besoins avec une grande souplesse d'adaptation.
  • Le système selon l'invention s'applique à la réalisation de conduits enterrés du type décrit notamment dans le brevet FR 84.16811 et constitué chacun d'une série de tronçons accolés placés les uns à la suite des autres, le long d'un axe longitudinal, sur le fond d'une tranchée, chaque tronçon comprenant, en section transversale, un élément de base reposant sur la surface de pose et un élément supérieur formant voute et reposant sur l'élément de base par l'intermédiaire d'organes d'appui longitudinaux parallèles à l'axe longitudinal et ménagés respectivement sur les côtés latéraux de l'élément de base et de l'élément supérieur, lesdits éléments, respectivement de base et supérieurs pouvant avoir différentes formes.
  • Conformément à l'invention, le système comprend un assortiment d'éléments de base et d'éléments supérieurs immédiatement disponibles en stock ou pouvant être immédiatement fabriqués en nombre voulu, et dont les caractéristiques dimensionnelles et structurelles ont été définies à l'avance, lesdits éléments étant répartis en un certain nombre de séries d'éléments de base correspondant chacune à une largeur entre appuis et en un même nombre de séries d'éléments supérieurs correspondant aux mêmes largeurs entre appuis, chaque série comprenant un certain nombre d'éléments de base ou d'éléments supérieurs différant les uns des apôtres, dans chaque série, par la forme et par au moins un des paramètres déterminant la résistance de l'élément, tels que le profil en section transversale, l'épaisseur et la constitution, les éléments de base et les éléments supérieurs compatibles entre eux, pouvant être associés deux à deux de façon à former, pour chaque largeur entre appui un certain nombre de tronçons types correspondant chacun à une section de passage et à une charge maximale admissible, le nombre de séries et de largeurs entre appuis étant déterminé de façon à couvrir, de façon presque continue, grâce au choix du profil, une large gamme de sections de passage.
  • L'invention couvre également un procédé de réalisation d'un conduit enterré à partir d'éléments préfabriqués du système.
  • Conformément à l'invention, pour chaque tronçon type que l'on peut former à partir d'un élément de base et d'un élément supérieur du système compatibles entre eux, on a déterminé à l'avance la charge répartie maximale admissible par le tronçon type considéré dans diverses conditions d'utilisation et, pour la réalisation d'un conduit devant présenter une section de passage et un encombrement donné et soumis à une charge donnée, on choisit un tronçon type présentant une charge admissible supérieure à la charge devant être appliquée sur le conduit et dont le profil, compte-tenu de la largeur entre appuis, permet de respecter de façon optimale la section de passage et l'encombrement requis et l'on prend en stock ou l'on fabrique en nombre voulu des éléments de base et supérieurs présentant le profil, les dimensions et les caractéristiques structurelles de l'élément de la partie inférieure et de la partie supérieure du tronçon type choisi, puis l'on construit le conduit par assemblage desdits éléments.
  • De façon particulièrement avantageuse, pour vérifier la charge maximale admissible par chaque tronçon type, on réalise en vraie grandeur les éléments supérieurs et les éléments de base choisis dans lesdites séries correspondant respectivement aux différentes largeurs d'assise, chaque élément d'une série étant réalisé, pour chaque largeur, en un nombre correspondant aux possibilités de combinaison avec les éléments d'une autre série et l'on associe par paires les éléments de base et les éléments supérieurs de façon à réaliser les tronçons types envisagés, puis l'on soumet chaque tronçon type ainsi formé à un essai de charge appliquée à la clé jusqu'à la ruine du tronçon pour en déduire, par application de coefficients de sécurité, la charge répartie maximale admissible par le tronçon considéré.
  • L'invention couvre également les éléments préfabriqués répartis en plusieurs séries et les profils des tronçons types réalisés à partir desdits éléments.
  • Selon une caractéristique avantageuse, pour la détermination des profils en section transversale des éléments de base, on fait varier dans chaque série la hauteur de l'appui longitudinal par rapport au fond de l'élément, chaque appui longitudinal étant ménagé, soit au niveau de la face supérieure du radier, soit à la partie supérieure d'un piédroit s'étendant le long de chaque côté latéral de l'élément de base , perpendiculairement au fond et sur une hauteur variable .
  • Mais on peut aussi, dans une même série d'éléments de base, réaliser des éléments de profils variés présentant diverses caractéristiques utiles telles que, par exemple, des parties en saillie ménagées sur la face inférieure du fond du radier pour assurer l'ancrage de celui-ci dans la surface de pose ou bien des évidements tubulaires ménagés dans l'épaisseur du fond parallèlement à l'axe de façon à réaliser des canaux internes s'étendant sur toute la longueur de la structure et dans lesquels peuvent passer, par exemple des canalisations électriques ou bien des câbles de précontrainte.
  • De plus, le fond du radier doit présenter une surface d'appui suffisante pour encaisser la charge supportée mais n'est pas obligatoirement plan et, par exemple, on peut y ménager une cunette axiale faisant saillie sur la face inférieure et s'engageant dans un évidement correspondant ménagé dans la surface de pose.
  • De même, dans chaque série d'éléments de voûte correspondant à une largeur entre appuis déterminée, on peut faire varier la courbure de l'élément et en particulier le rapport entre la flêche et la largeur entre appuis; par exemple, on peut réaliser ,pour chaque largeur entre appuis, des éléments de voûte présentant une courbure demi-circulaire, des éléments surbaissés présentant une courbure en anse de panier et des éléments surélevés présentant une courbure ovoide.
  • Par ailleurs, il est particulièrement avantageux de regrouper l'ensemble des caractéristiques des tronçons types, dans un catalogue indiquant les largeurs entre appuis des différentes séries d'éléments de radier et de voûte disponibles et, pour chaque largeur entre appuis, les profils des tronçons types avec l'indication de la section de passage et de la charge maximale admissible.
  • L'invention couvre également une telle présentation des possibilités de construction.
  • En outre, l'invention couvre de nombreuses variantes qui seront décrites en détail dans la description qui va suivre, en référence aux dessins annexés.
  • La figure 1 représente un premier mode de réalisation d'un conduit à voûte demi-circulaire .
  • La figure 2 représente un conduit à voûte surbaissée en anse de panier.
  • La figure 3 représente un conduit à appuis surélevés.
  • La figure 4 représente à titre d'exemple deux séries d'éléments pour la mise en oeuvre du procédé .
  • La figure 5 montre certains exemples de tronçons types réalisables.
  • La figure 6 représente schématiquement un essai de rupture.
  • La figure 7 est une vue de côté partielle représentant un mode de réalisation particulier de l'appui longitudinal entre un élément supérieur et un élément de radier.
  • La figure 8 est une vue de dessus partielle représentant, dans un mode de réalisation particulier, un joint transversal à emboîtement entre deux éléments de radier consécutifs.
  • La figure 9 représente, en coupe transversale une variante de réalisation d'un conduit selon l'invention .
  • La figure 10 est une coupe longitudinale du conduit de la figure 9 à son extrémité débouchant dans un talus .
  • La figure 11 et la figure 12 sont des vues de détail représentant deux modes de réalisation de la liaison entre deux éléments d'appui consécutifs.
  • La figure 13 représente, à titre d'exemple, deux séries III, III′ d'éléments d'appui.
  • La figure 14 est une vue en coupe transversale d'un autre mode de réalisation.
  • La figure 15 est une vue schématique,en perspective, du conduit de la figure 14.
  • Sur la figure 1, on a représenté en section transversale à l'axe, un premier exemple de tronçon de conduit constitué de deux types d'éléments , respectivement un élément de base 1 formant un radier posé sur le sol et un élément supérieur 2 en forme de voûte incurvée reposant sur l'élément de radier 1. Les éléments 1 et 2 sont réalisés par moulage, normalement en béton armé ou précontraint, ou bien en béton de fibres mais d'autres matières moulables peuvent être utilisées .
  • Le conduit est placé dans le fond d'une tranchée B qui est ouverte jusqu'à une surface de pose aplanie et tassée A placée au niveau voulu, le conduit étant, après la pose, recouvert d'un remblai C. Le conduit ainsi enterré est donc soumis d'une part à la charge du remblai qui dépend essentiellement de la hauteur de ce dernier et, d'autre part, à des charges d'exploitation appliquées, par exemple, sur une chaussée D aménagée sur le remblai.
  • L'élément de base 1 comprend un fond 10 constitué d'un panneau massif en béton armé de forme rectangulaire muni, le long de ses deux côtés latéraux 11, de deux appuis longitudinaux qui, dans l'exemple représenté, sont constitués par des rainures à fond incurvé 72 placées sensiblement au niveau de la face supérieure du fond 10.
  • L'élément de voûte 2 a une forme cylindrique en plein cintre, centrée sur un axe longitudinal (O) , qui peut être placé soit dans le plan horizontal des rainures 72, soit à une hauteur h au-dessus de la face supérieure 13 du radier 1. Par exemple, dans le mode de réalisation de la figure 1, l'élément de voûte 2 est muni de deux côtés plans 21 tangents à la partie circulaire 20 qui permettent de surélever l'axe O de la même hauteur.
  • En conservant la forme en plein cintre de la voûte, il est ainsi possible de faire varier la hauteur totale H du conduit en modifiant la hauteur des parties planes 21 de l'élément de voûte 1.
  • Chaque extrémité 22 de l'élément supérieur 2 de voûte est munie d'un bord arrondi convexe 71 qui s'engage dans la rainure concave 72 correspondante au niveau de la face supérieure 12 de l'élément de base 1. Le bord arrondi 71 a une courbure un peu plus accentuée que celle de la rainure 72 de façon à ménager un léger jeu permettant aux parties inférieures 25 de l'élément de voûte de pivoter très légèrement de part et d'autre du plan vertical P passant par le fond de chaque rainure 72. On constitue ainsi, sur chaque côté latéral, un organe d'appui 7 articulé autour d'un axe parallèle à l'axe (O) du conduit.
  • De ce fait, comme on l'a décrit dans le brevet FR 84 16811, l'élément de voûte 2 peut se déformer très légèrement, grâce à ses appuis articulés 7,7′ ,sous l'action des charges appliquées et il en résulte une certaine diminution des contraintes à la clé, une partie de la charge étant reprise latéralement par le remblai 32.
  • Chaque appui articulé 7 doit cependant être maintenu latéralement . A cet effet, chaque rainure 72 est limitée par des bords relevés 14 qui, dans le cas représenté sur la figure 1, où les rainures sont placées au niveau de la face supérieure 13 du radier, ont une hauteur ne dépassant pas 5 cm, ce qui permet de réaliser, les bords relevés 14 à la coulée du béton sans utiliser de moule particulier. Les éléments de radier 13 peuvent donc être moulés rapidement et économiquement .
  • Il est possible également, comme on l'a décrit dans le brevet FR 84 16811 d'appliquer les bords 22 de la voûte dans les rainures 72 au moyen de tirants 25 mis sous tension en prenant appui sur des parties 24 de la voûte un joint d'étanchéité étant interposé entre les bords 71, et le fond des rainures 72.
  • En faisant varier la hauteur h des parties inférieures planes 21 de l'élément de voûte, on peut modifier la hauteur totale H de la structure ainsi que la section de passage S à l'intérieur du conduit.
  • Mais pour une même largeur entre appuis, on peut aussi réduire la hauteur H du conduit en donnant à la voûte une forme surbaissée en anse de panier, comme on l'a représenté sur la figure 2. Bien entendu, dans ce cas, la section de passage S est aussi réduite. Si l'on doit respecter une hauteur maximale, on pourra augmenter la largeur du radier et par conséquent la distance entre appuis L de façon à assurer une section de passage déterminée.
  • En outre, sans modifier le profil de la voûte, on peut aussi augmenter la section de passage S du conduit en utilisant, comme on l'a représenté sur la figure 3, un élément de radier en forme de caisson comprenant, le long des deux côtés latéraux, deux piédroits 15 s'étendant verticalement sur une hauteur variable h1. Un tel mode de réalisation permet de surélever le niveau des appuis longitudinaux 7 par rapport au fond 13 et conviendra,par exemple lorsque, le conduit sert au passage d'une hauteur d'eau ne dépassant pas, en service normal, la hauteur des appuis 7. Une telle disposition permet de maintenir hors de l'eau les appuis longitudinaux tant que le débit transporté par le conduit est normal, un débit supérieur, par exemple en cas de crue, étant pris en charge par la totalité du conduit qui peut être mis sous pression si la voûte 2 est reliée au radier 1 par les tirants 25 et s'appuie sur des joints d'étanchéité.
  • Les figures 1,2 et 3 montrent donc comment l'on peut choisir les dimensions et le profil des éléments préfabriqués pour faire varier la section de passage et l'encombrement, en particulier la largeur L et la hauteur H du conduit, en fonction des circonstances, notamment les conditions d'utilisation et le site de construction.
  • En particulier, les caractéristiques dimensionnelles et structurelles des éléments tels que l'épaisseur de la voûte, la nature du béton et la constitution du ferraillage devront être déterminées en fonction des contraintes appliquées par le remblai et par les charges d'exploitation.
  • Mais d'autres caractéristiques pourraient également être modifiées ou ajoutées, selon les besoins.
  • Par exemple, sur les figures 1, 2 et 3, on a représenté trois types de radiers. Sur la figure 1, les organes d'appui 7 sont placés sensiblement au niveau de la face supérieure 13 de l'élément de base 1. Sur la figure 2, au contraire, les organes d'appui 7 sont légèrement surélevés et placés à la partie supérieure de piédroits 15 dont la face interne 15′ est arrondie de façon à faciliter l'écoulement du liquide transporté et à éviter les dépôts.
  • Sur la figure 3, les piédroits 15 sont encore surélevés et l'élément de base 1 a une forme en caisson ou coque de section rectangulaire, l'élément supérieur 2 ayant une forme en plein cintre. Mais on pourrait aussi donner à l'élément supérieur 2 la même forme en caisson, comme on l'a représenté sur l'exemple 205 de la figure 4, l'ensemble du conduit ayant alors une section rectangulaire.
  • Certains accessoires peuvent également être ajoutés aux éléments de base ou aux éléments supérieurs.
  • Ainsi, sur la figure 1, on a représenté un élément de base 1 présentant un fond plan 15 qui permet la pose sur une surface A simplement aplanie et tassée.
  • Sur la figure 2, on a représenté un autre exemple d'élément de base 1 dont le fond 10 est muni,dans sa partie centrale, d'une cunette 17 ménagée dans l'axe et faisant saillie sur la face inférieure 16 Dans ce cas, la surface de pose A est munie d'un évidement A1 de section correspondant à celle de la cunette, les deux parties de la face inférieure 16 placées de part et d'autre de la cunette 17 devant évidemment avoir une largeur suffisante pour la transmission au sol des efforts appliqués.
  • On a déjà indiqué, en se référant à la figure 3, que l'élément de base 1 peut être muni sur ses côtés de piédroits 15 permettant de surélever d'une hauteur variable les appuis longitudinaux 7. Sur cette figure, on a également représenté, à titre d'exemple, un fond 16 sur lequel ont été ménagées des parties en saillie 18 qui forment des aspérités permettant d'ancrer le radier 1 dans le sol, par exemple pour s'opposer à des effets de ripage latéral.
  • Les éléments de voûte 2 peuvent également faire l'objet de variantes dont certaines ont déjà été décrites.
  • On peut donc ainsi déterminer à l'avance différentes formes d'éléments supérieurs 2 et d'éléments de base 1 qui peuvent être combinés de toutes les façons possibles.
  • Par ailleurs, pour chaque profil, on peut aussi faire varier les paramètres déterminant la résistance du béton, comme l'épaisseur de la voûte, la nature du béton employé et la constitution du ferraillage, les armatures pouvant d'ailleurs être précontraintes.
  • A cet égard, il peut également être intéressant, comme on l'a représenté sur la figure 1, de ménager dans l'épaisseur des éléments de base 1 des évidements tubulaires 19 qui se placent dans l'alignement les uns des autres à la pose des éléments 1 de façon à former des canaux longitudinaux dans lesquels on peut faire passer des armatures de précontrainte solidarisées ensuite, de façon classique, en coulant un mortier.
  • De tels canaux 19 pourront aussi être utilisés par exemple pour le passage de canalisations ou de câbles électriques ou téléphoniques.
  • De façon avantageuse, on peut aussi, comme on l'a représenté schématiquement sur la figure 8, ménager le long des deux bords transversaux 8 de chaque élément de base 1 des parties en saillie 81 qui s'engagent dans des parties en retrait 82 ménagées sur le bord transversal en regard de l'élément de radier 1' adjacent.
  • De la sorte, on assure un centrage relatif des éléments consécutifs permettant d'éviter les risques de désalignement, lorsque la structure est soumise à un effet de ripage latéral, par exemple dans des courbes.
  • Un effet de ripage longitudinal peut également apparaître, par exemple lorsque la structure est réalisée sur une surface inclinée par rapport à l'horizontale .
  • Dans ce cas, comme on l'a représenté en vue de côté sur la figure 7, chaque organe d'appui longitudinal 7 présente un profil en créneau . La partie profilée convexe 71 ménagée sur chaque bord inférieur 22 de l'élément supérieur 2 s'étend en effet alternativement sur deux niveaux différents de façon à comprendre, par exemple, une partie centrale en saillie 71 encadrée par deux parties en retrait 73 qui s'engagent dans des parties inversées ménagées en creux 74 et en saillie 75 sur le bord supérieur de l'élément de radier 1 et qui sont munies d'une rainure longitudinale 72.
  • Un tel profil en créneau permet d'assurer le maintien longitudinal de chaque élément supérieur 2 par rapport à l'élément de base 1 correspondant .
  • Bien entendu, d'autres dispositions analogues, comprenant des parties en creux et en saillie décalées longitudinalement, pourraient être utilisées.
  • On a ainsi été amené à définir les caractéristiques d'un certain nombre de profils d'éléments supérieurs et d'éléments de base qui, comme on l'a représenté sur la figure 4 , peuvent être classés en séries correspondant chacune à une largeur entre appui.
  • La première série I d'éléments de base 1 comprend donc un certain nombre d'éléments de même largeur entre appuis L1 mais ayant des profils, des dimensions, des ferraillages, etc..différents.
  • A titre d'exemple, sur la figure 4, la série I d'éléments de base comprend un élément 101 dans lequel les organes d'appui 4 sont dans le plan de la face supérieure 13 du radier et un ou plusieurs éléments 102, 103 dans lequel les organes d'appui 4 sont ménagés à la partie supérieure de piédroits 15 dont la hauteur h1, mais aussi la forme, peuvent varier. Par exemple, l'élément 104 est muni de faces internes 105 incurvées de façon à se raccorder tangentiellement au fond .
  • Par ailleurs, ces éléments de base peuvent également être munis d'organes accessoires tels que, des conduits longitudinaux 19 ou bien des crans 18 d'ancrage ménagés sur la face inférieure 16 du radier. De tels accessoires ont été représentés à titre d'exemple sur l'élément 104 mais pourraient être ménagés sur les autres éléments.
  • De la même façon, la série II d'éléments supérieurs 2 pourra comporter, par exemple, un élément 202 surbaissé en anse de panier, un élément 203 surélevé sur des parois latérales planes, un élément 204 surélevé de forme ovoïde, un élément 205 en coque rectangulaire, un élément 206 en forme de dalle, etc...
  • D'autres caractéristiques comme l'épaisseur e, la nature du béton ou le ferraillage peuvent varier. Par exemple, on peut réaliser des éléments ayant un ferraillage en une ou deux nappes ou bien des éléments en béton armé de fibres ou en une autre matière moulable et résistante.
  • Pour une autre distance entre appuis L2, on réalisera une seconde série I′ d'éléments de base dans lesquels on fait varier un certain nombre de caractéristiques telles que le profil, la hauteur des appuis longitudinaux par rapport au fond, l'épaisseur, etc.. et une seconde série II′, d'éléments de voûte ayant des profils, des épaisseurs ou des ferraillages différents.
  • On peut définir ainsi les caractéristiques d'un certain nombre (a) de série I d'éléments de base et II d'éléments supérieurs, chaque série correspondant à une largeur entre appuis, de façon à couvrir de façon aussi continue que possible mais dans des conditions économiquement rentables, une large gamme de sections de passage permettant de répondre aux besoins de la clientèle. En pratique on pourra, par exemple définir quatre séries d'éléments de base et d'éléments supérieurs dont les largeurs s'échelonnent entre 1 m et 2,50 m ce qui permet, selon le profil adopté, de réaliser des surfaces de passage depuis 0,35 m2 jusqu'à 6 m2 , environ.
  • Les éléments supérieurs et de base ainsi définis sont tous réalisés en vraie grandeur et en nombre suffisant pour pouvoir être associés deux à deux de toutes les façons possibles et souhaitables, en formant un certain nombre de tronçons types de même largeur et dont les profils et la section de passage sont sensiblement différents.
  • Bien entendu, les éléments associés devront être compatibles et, par exemple, on associera ensemble des éléments de voûte et des éléments de base ayant des épaisseurs et des ferraillages leur permettant de supporter des efforts du même ordre.
  • On réalise ainsi, pour chaque largeur entre appuis, différents tronçons types T1,T2, T3.... correspondant à des hauteurs, des sections de passage et des résistances différentes et dont certains ont été représentés, à titre d'exemple, sur la figure 5.
  • Ayant défini les caractéristiques dimensionnelles des éléments dont on pourra disposer, il est possible d'en calculer le ferraillage et la résistance en appliquant des méthodes de calcul connues. Cependant, selon l'une des particularités de l'invention, on préférera, dans certains cas, vérifier la résistance des éléments en soumettant chaque tronçon type ainsi formé à un essai de rupture dans une installation schématisée sur la figure 6 par une presse P, tout autre système pouvant être utilisé dans la mesure où il permet d'appliquer à la clé 23 de l'élément de voûte 2 un effort vertical d'intensité variable.
  • Pour chaque tronçon type , on augmente progressivement la charge appliquée à la clé 23 jusqu'à la ruine de l'élément. On détermine ainsi la charge de rupture du tronçon type considéré.
  • Or, pour un profil et une épaisseur de voûte donnés, il est possible de calculer le rapport entre les moments fléchissants résultant de l'application d'une charge ponctuelle à la clé et d'une charge répartie sur la largeur de l'élément.
  • On peut donc déterminer, à partir de la charge ponctuelle ayant entraîné la rupture, la charge répartie qui aurait eu la même conséquence et, en appliquant un coefficient de pondération facile à définir entre la sollicitation de service et la sollicitation de rupture, on détermine la charge maximale admissible en service pour le tronçon type soumis à l'essai.
  • Bien entendu, toutes les caractéristiques, profil de courbure, épaisseur, ferraillage, etc... des deux éléments de chaque tronçon ont été notées.
  • On soumet ainsi à un essai de rupture tous les tronçons T1,T2... qu'il est possible de constituer, pour chaque largeur entre appuis, à partir des éléments des deux séries I d'éléments de base et II d'éléments supérieurs et l'on peut dresser un tableau indiquant pour chaque largeur entre appuis et pour chaque tronçon expérimental la section de passage S et la charge maximale admissible.
  • Sur ce tableau, on peut ajouter également d'autres caractéristiques permettant de définir chaque élément, par exemple son épaisseur, un dessin du profil etc..
  • Tous ces renseignements sont avantageusement regroupés dans un catalogue montrant d'une part les profils de tous les tronçons types que l'on peut réaliser et qui ont été soumis à un essai de rupture et donnant d'autre part, sous forme de tableau, l'ensemble des caractéristiques utiles et, par exemple, des références permettant de retrouver, pour un tronçon type déterminé, toutes les caractéristiques des éléments qui le constituent.
  • Un tel catalogue peut être présenté au client qui définit tout d'abord ses besoins et les conditions d'utilisation, en particulier la section de passage S souhaitée, l'encombrement en largeur L et en hauteur H que l'on doit respecter et, bien entendu, les caractéristiques du site de construction notamment la hauteur de remblai H1 au-dessus du conduit.
  • On détermine alors, en fonction de la hauteur et de la nature du remblai et des charges d'exploitation, la charge maximale qui sera appliquée en service sur le conduit, ainsi que la largeur entre appuis permettant de répondre au mieux aux conditions d'encombrement à respecter et l'on indique quels sont , dans le catalogue, les différents tronçons types correspondant à une charge admissible supérieure à la charge de service précédemment calculée et permettant d'assurer, dans les meilleures conditions, la section de passage voulue. Le client choisit alors le tronçon type permettant de répondre, de façon optimale,à l'ensemble de ses besoins.
  • On peut disposer en stock d'un certain nombre d'éléments de plusieurs largeurs présentant des caractéristiques sensiblement différentes en ce qui concerne le profil, les épaisseurs et le ferraillage et correspondant aux besoins les plus courants .Si les éléments nécessaires se trouvent en stock, ils peuvent immédiatement être livrés sur le chantier .
  • Si les éléments nécessaires ne se trouvent pas en stock , ils peuvent cependant être réalisés très rapidement car toutes leurs caractéristiques dimensionnelles et structurelles sont déjà définies et on dispose, normalement, des moules qui ont servi à la réalisation des éléments soumis aux essais préalables .Lorsque le client commande des éléments présentant d'autres caractéristiques accessoires, comme des canalisations internes ou des organes d'ancrage, ou bien de légères variations de dimensions dues à des exigences d'implantation, on adapte simplement le moule pour l'obtention, à la coulée, de ces caractéristiques supplémentaires, toutes les autres caractéristiques restant bien fixées .
  • On réalise alors en nombre voulu les éléments préfabriqués soit dans une usine soit sur le chantier et on les assemble pour construire le conduit.
  • Dans ce qui suit, les mentions relatives au remplacement de chaque élément de base par deux éléments d'appui séparés ne font pas partie de l'invention
  • Dans les modes de réalisation décrits jusqu'à présent, la partie inférieure 1 était constituée d'éléments préfabriqués monoblocs formant un radier continu . Il est possible, cependant, de remplacer chaque élément de base 1 par deux éléments d'appui espacés 30 de façon à constituer deux lignes d'appui 3 séparées par un espace libre.
  • Une telle disposition, qui a été représentée sur les Figures 9 et 10, pourraît être utile, par exemple, pour de très grandes sections pour lesquelles des éléments de base monoblocs deviendraient intransportables. En effet, les éléments d'appui 30 forment des semelles isolées dont la largeur peut être prévue pour ménager une surface d'appui suffisante. En particulier, dans le cas de sols présentant une bonne résistance, la largeur de la semelle 32 pourraît être réduite.
  • De tels éléments, qui sont identiques et peuvent être empilés facilement, sont moins lourds et moins encombrants que des éléments monoblocs couvrant toute la largeur du conduit.
  • Dans le mode de réalisation représenté sur les Figures 9 et 10, chaque élément supérieur 20 a la forme d'une voûte incurvée reposant sur les éléments d'appui 30 par ses bords latéraux inférieurs, ces derniers ayant un profil arrondi convexe et s'insérant chacun dans une rainure 31 en forme de goulotte concave ménagée sur la face supérieure de chaque élément d'appui 20. On réalise ainsi deux organes d'appui longitudinaux présentant une certaine possibilité d'articulation de l'élément supérieur 20 par rapport aux deux éléments d'appui 30.
  • Comme on l'a déjà décrit pour les éléments supérieurs 2 et les éléments de base 1, il est possible de réaliser au moins une série III d'éléments d'appui à l'intérieur de laquelle on fait varier un certain nombre de caractéristiques dimensionnelles et structurelles comme, par exemple, la largeur de la surface d'assise, la hauteur de l'élément, la forme des organes d'appui 31, la nature du béton employé et la constitution du ferraillage, etc... .
  • A titre d'exemple, sur la Figure 13, on a représenté schématiquement deux séries III, III′ d'éléments d'appui correspondant chacune à une largeur L′1 et L′2 de la surface d'assise et dans lesquelle on a fait varier les formes des éléments.
  • En plus des séries, I, I′.... d'éléments de base 1 et II, II′.... d'éléments supérieurs 2, on dispose ainsi d'au moins une série supplémentaire III d'éléments de base et, selon les besoins, on pourra donc associer les éléments de voûte 20 choisis dans la série correspondante, soit à des éléments de radier correspondant à la même largeur entre appuis, soit à des éléments d'appui isolés choisis dans une série supplémentaire III, III′ présentant une surface d'assise compatible avec la portance du sol.
  • Le remplacement d'un élément inférieur monobloc par deux éléments d'appui séparés ne change pas sensiblement la charge maximale admissible car celle-ci dépend essentiellement de la résistance de la voûte, le rôle du radier étant essentiellement de transmettre au sol la charge appliquée sur la voûte et d'assurer une étanchéité vers le bas.
  • L'espace existant entre les deux éléments d'appui séparés 30 pourra, selon le cas être laissé libre ou bien fermé de toute façon adéquate correspondant à l'utilisation du conduit.
  • Sur la Figure 9, par exemple, la partie inférieure 4 du conduit est constituée d'une couche de base 41 en agrégats compactés, placée entre les côtés latéraux internes 33 des éléments d'appui 30 et recouverte d'une dalle 42 qui peut être constituée d'éléments préfabriqués ou bien coulée en place en recouvrant les faces supérieures 34 des éléments d'appui 30.
  • On peut ainsi, comme on l'a représenté sur la Figure 10, faire passer entre les deux lignes d'appui 3 une chaussée 43 et l'on voit que l'un des avantages de cette disposition réside dans le fait que la chaussée 43 peut être réalisée sans discontinuité et de façon classique à l'intérieur comme à l'extérieur du conduit alors que des éléments inférieurs en béton imposeraient un raccordement avec la chaussée extérieure avec les risques de décalage dûs aux tassements différentiels et aux dilatations.
  • Par ailleurs, les plans des joints transversaux 23 entre deux éléments de voûte 20 consécutifs peuvent être décalés longitudinalement par rapport au plan des joints transversaux 35 entre les éléments d'appui 30. De la sorte, la charge appliquée par chaque élément supérieur 20 se répartit sur deux éléments d'appui consécutifs, de part et d'autre du plan de joint.
  • Les joints transversaux entre deux éléments 30 consécutifs peuvent être réalisés de différentes façons.
  • Sur la Figure 11, par exemple, on a représenté un joint scellé 5 entre deux éléments consécutifs 30, 30′. Ces derniers sont munis, sur leurs faces frontales en vis à vis, d'armatures en attente 51 qui s'entrecroisent dans un espace 50 laissé entre les deux éléments 30 et 30′ et qui sont associés à des fers transversaux 52, l'ensemble étant noyé dans un mortier de scellement 53. Le joint de scellement 5 ainsi réalisé entre les deux éléments consécutifs 30 et 30′ constitue un véritable clavage dans le sens longitudinal. En solidarisant ainsi un certain nombre d'éléments consécutifs, on réalise, sur une longueur déterminée, une longrine monobloc qui permet de répartir la charge sur le sol et d'éviter les tassements différentiels.
  • Mais il est aussi possible, comme on l'a représenté sur la Figure 4, de placer aux extrémités en vis à vis de deux éléments consécutifs 30 et 30′, des organes de liaison 54, 54′ qui s'emboîtent l'un dans l'autre et peuvent être reliés par une broche 55. Les deux éléments consécutifs 30 et 30′ sont ainsi reliés entre eux par une liaison articulée donnant à chaque élément une légère possibilité de déviation par rapport aux éléments qui l'encadrent.
  • Bien entendu, les dimensions des éléments d'appui 30 et notamment la largeur L′ de leur surface d'assise et leur hauteur H′ seront choisies en fonction des circonstances d'utilisation, et notamment des charges supportées et de la capacité de portance du sol.
  • Différents profils pourront également être prévus. Par exemple, pour la réalisation de chaussées souterraines, au moins l'une des lignes d'appui 3 pourraît être constituée d'éléments 30 conformés de façon à présenter une face supérieure 34′ sensiblement horizontale et placée au-dessus du niveau de la chaussée 4 de façon à réaliser un trottoir de circulation de piétons.
  • D'autres accessoires préfabriqués pourraient d'ailleurs être avantageusement ajoutés à la série d'éléments d'appui 30.
  • Par exemple, le côté interne des éléments 30 pourraît être muni de parties aménagées pour constituer ou recevoir des rails de circulation d'un chariot ou portique facilitant le montage et/ou l'entretien de l'ouvrage.
  • Selon une autre variante représentée sur les Figures 14 et 15, le conduit est prévu pour le passage de liquide, par exemple d'une rivière. Dans ce cas, le fond 6 du conduit peut être avantageusement constitué d'une série de plaques 61 en fonte, en tôle ou en matière plastique, ayant une largeur égale à celle du conduit et recouvrant l'espace entre les deux éléments 30, en remontant sur les faces supérieures 34 de ceux-ci, jusqu'au-dessus des joints 31. Comme indiqué sur la figure, les plaques 61 peuvent limiter un profil en creux, par exemple pour le passage d'un canal et la hauteur H′ des éléments d'appui 30 peut être augmentée de façon à élever le niveau des joints 31 jusqu'au-dessus du niveau moyen de l'eau, le fond 6 limitant ainsi une section suffisante pour les débits moyens. Des joints d'étanchéité peuvent être placés entre les parties supérieures 31 des éléments d'appui 30 et les bords supérieurs 62 de chaque plaque 6 de façon à permettre au niveau de l'eau de monter au-dessus du niveau des bords 62 en remplissant plus ou moins le conduit, en cas de crue. Le conduit peut même être mis sous pression si les bords inférieurs 21 de la voûte 2 sont appliqués dans le fond des rainures 31 par des tirants mis sous tension.
  • De plus, comme on l'a représenté sur la vue en perspective de la Figure 6, les plaques 61 peuvent avantageusement se recouvrir mutuellement à la façon d'un entuilage, l'extrémité transversale 63 d'une plaque tournée vers l'aval, dans le sens de circulation du liquide, recouvrant l'extrémité avant 64 de la plaque suivante 69, avec interposition d'un cordon d'étanchéité.
  • D'autres modes de revêtement du fond pourraîent évidemment être employé. Il est possible dans certains cas, que l'axe longitudinal 10 du conduit soit incliné par rapport à l'horizontale et les éléments d'appui 30 peuvent alors avoir tendance à riper. Pour l'éviter, il sera intéressant de prévoir sur les faces inférieures 32 des éléments 30, des crans d'accrochage 37 qui peuvent être réalisés au bétonnage ou bien, comme on l'a représenté sur la Figure 6, être ménagés sur une plaque en fonte 38 scellée sur la face inférieure de chaque élément d'appui 30.
  • Comme indiqué sur la Figure 15, en cas de forte déclivité, les faces d'assise 16 des éléments de base 1 ou 32 des éléments d'appui 30 pourraient former des gradins, la surface de pose A constituant des marches de largeurs correspondantes.
  • Pour éviter tout danger de ripage, les éléments 30 peuvent être ancrés dans le sol par des poutres transversales formant clavettes. Il en est de même des éléments supérieurs 2 qui peuvent être clavetés par rapport aux éléments de base 1.
  • Selon une autre disposition avantageuse représentée sur les Figures 10 et 15, on adjoint aux éléments supérieurs 2 des pièces de tête 9 placées à chaque extrémité du conduit.
  • En effet, le conduit est enterré sous un remblai C et débouche à chaque extrémité dans un talus C′ qui doit être maintenu par les deux côtés latéraux. Pour éviter de prolonger inutilement le conduit à l'extérieur du remblai C, on utilisera avantageusement des pièces de tête comprenant chacune une paroi verticale 9 de forme triangulaire ou trapézoïdale, associée à une semelle 90.
  • Sur les Figures 2 et 6, par exemple, la semelle 90 est constituée d'un ou plusieurs éléments d'appui 39 identiques à ceux 30 qui supportent les éléments de voûte 20. Chaque pièce de tête est alors constituée d'une plaque 9 comprenant un côté horizontal 91 qui repose sur la partie supérieure 31 de l'élément d'appui 39 correspondant, un côté vertical 92 placé dans le prolongement du côté 24 du dernier élément supérieur 25 du conduit, et un côté incliné 93 dont l'inclinaison correspond à l'angle naturel du talus C′.
  • Le maintien de la paroi 9 peut être assuré par un scellement réalisé entre les côtés verticaux 92 et 24 en vis à vis ou bien par emboîtement de pièces adéquates scellées dans les faces en regard desdits côtés 91, 24.
  • De plus, la paroi 9 prend appui, dans le sens longitudinal, sur une butée 37 fermant la goulotte 31 dans laquelle s'engage le côté horizontal 91.
  • Mais on pourrait aussi réaliser des pièces de tête munie chacune d'une semelle 90 faisant corps avec la paroi verticale 9, de façon à réaliser un élément autostable.
  • Par conséquent, on pourra encore ajouter aux séries III, III′ d'éléments supérieur et inférieur, une série de pièces de tête présentant des épaisseurs, des hauteurs et, éventuellement, des inclinaisons différentes de façon à pouvoir s'adapter aux différents cas de la meilleure façon.
  • D'une façon générale d'ailleurs, on pourraît imaginer d'autres variantes et d'autres dispositions accessoires, par exemple pour réaliser différemment le fond ou la partie supérieure du conduit.

Claims (20)

  1. Système de réalisation de conduits enterrés de formes et de dimensions variées, constitués chacun d'une série de tronçons accolés placés les uns à la suite des autres, le long d'un axe longitudinal (O), sur le fond (A) d'une tranchée (B), chaque tronçon comprenant, en section transversale, un élément de base (1) reposant sur la surface de pose (A) et un élément supérieur (2) formant voûte et reposant sur l'élément de base (1) par l'intermédiaire d'organes d'appui longitudinaux (7, 7') parallèles à l'axe longitudinal (O) et ménagés respectivement sur les côtés latéraux (11) (21) de l'élément de base (1) et de l'élément supérieur (2), lesdits éléments, respectivement de base (1) et supérieurs (2) pouvant avoir différentes formes,
       caractérisé par le fait qu'il comprend un assortiment d'éléments de base (1) et d'éléments supérieurs (2) immédiatement disponibles en stock ou pouvant être immédiatement fabriqués en nombre voulu, et dont les caractéristiques dimensionnelles et structurelles ont été définies à l'avance, lesdits éléments étant répartis en un certain nombre (a) de séries (I, I' ...) d'éléments de base (1) correspondant chacune à une largeur entre appuis (L1, L2...) et en un même nombre (a) de séries (II, II' ...) d'éléments supérieurs (2) correspondant aux mêmes largeurs entre appuis (L1, L2...), chaque série (I, II ...) comprenant un certain nombre d'éléments de base (101, 102 ... ) ou d'éléments supérieurs (201, 202 ...) différant les uns des autres, dans chaque série, par la forme et par au moins un des paramètres déterminant la résistance de l'élément, tels que le profil en section transversale, l'épaisseur et la constitution, les éléments de base (101, 102...) et les éléments supérieurs (201, 202 ...) compatibles entre eux, pouvant être associés deux à deux de façon à former, pour chaque largeur entre appui (L1, L2 ...), un certain nombre de tronçons types (T1, T2, T3...) correspondant chacun à une section de passage et à une charge maximale admissible, le nombre (a) de séries et de largeurs entre appuis (L1, L2 ...) étant déterminé de façon à couvrir, de façon presque continue, grâce au choix du profil, une large gamme de sections de passage.
  2. Système de réalisation de conduits selon la revendication 1,
       caractérisé par le fait que chaque série (I,I') d'éléments de base (1) correspondant à une largeur entre appuis déterminée (L) comprend au moins des éléments constitués d'un panneau rectangulaire formant un fond (10) muni de long de ses côtés latéraux (11) de parties surélevées formant des piedroits (15) munis chacun, à sa partie supérieure, d'une partie d'appui (72) de l'élément supérieur dont le niveau par rapport au fond peut varier d'un élément à l'autre à l'intérieur de chaque série (I) (I').
  3. Système de réalisation de conduits selon l'une des revendications 1 et 2,
       caractérisé par le fait que certains des éléments de base (1) des séries (I) (I') sont munis sur leur face inférieure (16), de parties en saillies (18) d'ancrage de l'élément sur la surface de pose (A).
  4. Système de réalisation de conduits selon l'une des revendications 1 à 3,
       caractérisé par le fait que la surface d'assise (16) des éléments de base (1) forme des gradins étagés susceptibles d'être posés sur des marches ménagées sur la surface de pose A en cas d'inclinaison de l'axe longitudinal (O) du conduit.
  5. Système de réalisation de conduits selon l'une des revendications 1 à 4,
       caractérisé, par le fait que chaque série (I, I') d'éléments de base (1) correspondant à une largeur entre appuis (L) déterminée comprend au moins un élément dont le fond (10) est muni d'une cunette axiale (17).
  6. Système de réalisation de conduits selon la revendication 5,
       caractérisé par le fait que la face inférieure (16) du fond (10) présente une partie centrale en saillie par rapport au niveau inférieur des côtés latéraux (11) de l'élément de base (1) et s'engageant dans un évidement correspondant (A1) ménagé dans la surface de pose (A).
  7. Système de réalisation de conduits selon les revendications 1 à 5,
       caractérisé par le fait que chaque série (I, I') d'éléments de base (1) correspondant à une largeur entre appuis (L) déterminée comprend des éléments de base munis, le long de leurs bords (8, 8') transversaux à l'axe de la structure, de parties de centrage, respectivement en saillie (81) et en creux (82) , les parties en saillie (81) et en creux (82') de deux éléments de base (I, I') consécutifs s'emboîtant l'une dans l'autre à la pose desdits éléments.
  8. Système de réalisation de conduits selon l'une des revendications 1 à 7,
       caractérisé par le fait que au moins certains éléments de base (1) sont munis d'un évidement tubulaire (19) ménagé dans l'épaisseur du fond (10) et parallèle à l'axe (O) de telle sorte que les évidements tubulaires alignés (19) de plusieurs éléments de base (1) consécutifs forment un canal interne s'étendant sur toute la longueur de la structure.
  9. Système de réalisation de conduits selon l'une des revendications 1 à 7,
       caractérisé par le fait que chaque série (II) d'éléments supérieurs (2) correspondant à une largeur entre appuis déterminée comprend des éléments (201, 202) présentant au moins deux profils différents choisis parmi différents types de profils, respectivement un profil (202) surbaissé à courbure en anse de panier, un profil (20) circulaire, un profil (204) surélevé ovoïde, un profil (205) en caisson rectangulaire et un profil (206) en dalle plane.
  10. Système de réalisation de conduits selon l'une des revendications 1 à 9 ,
       caractérisé par le fait que chaque organe d'appui longitudinal articulé (7) comprend deux parties profilées, respectivement convexe (71) et concave (72) ménagées respectivement en saillie et en creux le long des côtés latéraux (21) (11) en vis-à-vis de l'élément supérieur (2) et de l'élément de base (1) de chaque tronçon.
  11. Système de réalisation de conduits selon la revendication 10,
       caractérisé par le fait que les parties profilées, respectivement convexe (71) et concave (72) s'étendent alternativement sur deux niveaux différents de façon à réaliser le long de chaque élément de base (1) et de chaque élément supérieur (2), des profils en créneaux inversés comprenant, sur l'élément de base (1) des parties en creux (74) et en saillie (75) dans lesquelles s'engagent des parties inverses ménagées respectivement en saillie (71) et en creux (73) sur les côtés latéraux (21) de l'élément supérieur (2).
  12. Système de réalisation de conduits selon l'une des revendications précédentes, caractérisé par le fait qu'il comprend au moins une série de plaques (61) ayant, respectivement, des largeurs sensiblement égales à chaque largeur (L1, L2...) entre appuis et susceptibles, lors de la construction d'un conduit, d'être placées les unes à la suite des autres de façon à former le fond (6) du conduit, lesdites plaques étant réalisées en une matière moulable, injectable ou laminée telle que métal, béton ou matières plastiques.
  13. Système de réalisation de conduits selon la revendication 12, caractérisé par le fait que, lors de la construction d'un conduit, les plaques (61) se recouvrent mutuellement à la façon d'un entuilage, l'extrémité aval (63) d'une plaque recouvrant l'extrémité amont (66) de la plaque suivante (61').
  14. Système de réalisation de conduits selon l'une des revendications précédentes, caractérisé par le fait qu'il comprend une pluralité de pièces de tête (9) d'au moins un type susceptibles d'être placées à chaque extrémité (25) d'un conduit débouchant d'un talus (C') dans le prolongement des deux côtés (26) de l'élément supérieur du dernier tronçon du conduit et comprenant chacune un élément de paroi latéral (9) de forme biaise sensiblement trapézoïdale ou triangulaire comprenant un côté horizontal (91) reposant sur une semelle d'appui (90), un côté vertical (92) placé le long du côté correspondant (24) de l'élément supérieur (25) et un côté incliné (93) dont l'inclinaison correspond à l'angle de talus naturel (C') du remblai recouvrant le conduit.
  15. Système de réalisation de conduits selon la revendication 14, caractérisé par le fait qu'il comprend une série de pièces de tête (9) dans laquelle on a fait varier au moins l'un des paramètres tels que l'épaisseur de la paroi (9), la hauteur du côté vertical (92), l'inclinaison du côté incliné (93) et la largeur de la semelle d'appui (90).
  16. Procédé de réalisation d'un conduit enterré à partir d'éléments préfabriqués du système selon l'une des revendications précédentes, caractérisé par le fait que, pour chaque tronçon type (T1, T2 ...) que l'on peut former à partir d'un élément de base (101, 102 ...) et d'un élément supérieur (201, 202 ...) du système, compatibles entre eux, on a déterminé à l'avance la charge maximale admissible par le tronçon type (T1, T2 ...) considéré dans diverses conditions d'utilisation et que, pour la réalisation d'un conduit devant présenter une section de passage (S) et un encombrement donné, et soumis à une charge donnée, on choisit un tronçon type (T1, T2) présentant une charge admissible supérieure à la charge devant être appliquée sur le conduit et dont le profil, compte-tenu de la largeur (L1, L2) entre appuis, permet de respecter de façon optimale la section de passage et l'encombrement requis et l'on prend en stock ou l'on fabrique en nombre voulu des éléments de base (1) et supérieurs (2) présentant le profil, les dimensions et les caractéristiques structurelles de l'élément de la partie inférieure et de la partie supérieure du tronçon type choisi, puis l'on construit le conduit par assemblage desdits éléments.
  17. Procédé selon la revendication 16 caractérisé par le fait que, pour vérifier la charge maximale admissible par chaque tronçon type (T1, T2) on réalise en vraie grandeur les éléments supérieurs (201,202) et les éléments de base (101,102) choisis dans lesdites séries (I, Il ) et correspondant respectivement aux différentes largeurs (L1 , L2 ...), chaque élément d'une série étant réalisé, pour chaque largeur, en un nombre correspondant aux possibilités de combinaisons avec les éléments d'une autre série et l'on associe par paires les éléments de base et les éléments supérieurs de façon à réaliser les tronçons types (T1, T2) envisagés, puis l'on soumet chaque tronçon type (T1, T2) ainsi formé à un essai de charge appliquée à la clé jusqu'à la ruine du tronçon pour en déduire, par application de coefficients de sécurité, la charge répartie maximale admissible par le tronçon (T1), (T2) considéré.
  18. Procédé selon l'une des revendications 16 et 17 caractérisé par le fait que, l'on ménage le long des deux côtés latéraux (11) de chaque élément de base (1), des piédroits 15, perpendiculaire au fond (10) dont on fait varier la hauteur à l'intérieur de la série (I) de façon à disposer de plusieurs niveaux (h1) de la partie d'appui longitudinale (72).
  19. Procédé selon l'une des revendications 16 à 18, caractérisé par le fait que, dans chaque série II d'éléments supérieurs (2) correspondant à une largeur entre appuis (L) déterminée, on fait varier la courbure de l'élément et en particulier le rapport entre la flèche et la largeur entre appuis.
  20. Procédé selon l'une des revendications 16 à 19, caractérisé par le fait que l'on regroupe l'ensemble des caractéristiques des tronçons types (T1, T2...) dans un catalogue indiquant notamment les largeurs entre appuis (L1, L2 ...) et les largeurs et assise des différentes séries (I, I') d'éléments de base (1) et (II, II') d'éléments supérieurs (2) réalisés et, pour chaque largeur entre appuis (L1, L2...) les profils des tronçons types (T1, T2...), avec l'indication de la section de passage et de la charge maximale admissible.
EP90400144A 1989-01-20 1990-01-18 Procédé de réalisation d'un conduit enterré Expired - Lifetime EP0381547B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP93115365A EP0585959B1 (fr) 1989-01-20 1990-01-18 Conduit enterré

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8900700 1989-01-20
FR8900700A FR2642110B1 (fr) 1989-01-20 1989-01-20 Procede de realisation d'un conduit enterre

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP93115365.4 Division-Into 1990-01-18
EP93115365A Division EP0585959B1 (fr) 1989-01-20 1990-01-18 Conduit enterré

Publications (2)

Publication Number Publication Date
EP0381547A1 EP0381547A1 (fr) 1990-08-08
EP0381547B1 true EP0381547B1 (fr) 1996-07-17

Family

ID=9377936

Family Applications (2)

Application Number Title Priority Date Filing Date
EP90400144A Expired - Lifetime EP0381547B1 (fr) 1989-01-20 1990-01-18 Procédé de réalisation d'un conduit enterré
EP93115365A Expired - Lifetime EP0585959B1 (fr) 1989-01-20 1990-01-18 Conduit enterré

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP93115365A Expired - Lifetime EP0585959B1 (fr) 1989-01-20 1990-01-18 Conduit enterré

Country Status (8)

Country Link
EP (2) EP0381547B1 (fr)
AT (2) ATE178378T1 (fr)
CA (1) CA2008123C (fr)
DE (2) DE69033036D1 (fr)
DK (1) DK0381547T3 (fr)
ES (2) ES2091809T3 (fr)
FR (1) FR2642110B1 (fr)
GR (1) GR3021286T3 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2668183A1 (fr) * 1990-10-19 1992-04-24 Bourachot Philippe Procede de construction rapide d'ouvrages d'art voutes.
FR2672937B1 (fr) * 1991-02-18 1997-12-05 Marcel Matiere Structure tubulaire enterree et son procede de realisation.
FR2685304A1 (fr) * 1991-12-24 1993-06-25 Matiere Marcel Enceinte allongee de grande section et son procede de realisation.
FR2684401B1 (fr) * 1991-11-29 1998-10-02 Sogea Procede pour realiser un ouvrage d'art tubulaire et ouvrage s'y rapportant.
FR2775704B1 (fr) 1998-03-09 2000-05-19 Matiere Soc Civ De Brevets Ouvrage de passage sous remblai
FR2850984B1 (fr) * 2003-02-06 2005-11-04 Quille Entreprise Procede, dispositif et ouvrage d'art pour realiser une nouvelle voie de circulation sous une voie existante portee par un talus
EP1596010A1 (fr) * 2004-05-13 2005-11-16 Quille Procédé, dispositif et ouvrage d'art pour réaliser une nouvelle voie de circulation sous une voie existante portée par un talus
CN101837789A (zh) * 2010-05-18 2010-09-22 张耀平 真空管道交通可开启式管道结构与工艺
CN103088843B (zh) * 2013-03-04 2016-03-30 济南城建集团有限公司 综合管廊预埋铁件安装施工方法
US11059201B2 (en) 2016-08-22 2021-07-13 LowSpan LLC Pre-stressed box culvert and methods for assembly thereof
CN109356045A (zh) * 2018-10-30 2019-02-19 中铁第四勘察设计院集团有限公司 一种顶部加宽的预制箱涵结构
CN111364422A (zh) * 2020-04-24 2020-07-03 海南省水利水电勘测设计研究院 一种预制廊道的现场施工方法
CN114411579B (zh) * 2022-02-22 2023-05-26 中铁三局集团有限公司 一种可提升涵洞承载力的预制装配结构
CN116240926B (zh) * 2023-05-09 2023-07-18 四川坚卓装配式建筑科技有限公司 一种拼接式电力工作井

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1412616A (en) * 1921-07-27 1922-04-11 Arthur Henning Culvert
FR1466396A (fr) * 1965-11-18 1967-01-20 Galerie souterraine, en éléments préfabriqués pour la réception des canalisations de viabilité
BE766901A (nl) * 1971-05-10 1971-10-01 Lapere Willy Willem Geprefabriceerde koker voor het in onderbrengen van leidingen van openbaar nut en elementen gebruikt voor het vormen van zulke koker.
SE382482B (sv) * 1973-12-06 1976-02-02 Sabema Material Ab Tunnel.
FR2379653A1 (fr) * 1977-02-03 1978-09-01 Becquet Gerard Caniveau prefabrique en particulier pour la protection de cables
FR2599783B1 (fr) * 1986-06-06 1988-10-21 Matiere Marcel Procede de realisation de structures tubulaires de dimensions variees et elements prefabriques pour la mise en oeuvre du procede
GB2124277B (en) * 1982-06-25 1985-10-30 Nippon Zenith Pipe Arched precast concrete culvert
CH671053A5 (en) * 1986-10-31 1989-07-31 Hatt Haller Heinr Hoch Tiefbau Existing roadway covering method - uses portal truck on tracks either side and lowering prefab sections onto foundations
DE3861826D1 (de) * 1987-06-05 1991-04-04 Marcel Matiere Hohlkonstruktion mit ebener grundplatte.

Also Published As

Publication number Publication date
DE69027791T2 (de) 1997-03-06
EP0381547A1 (fr) 1990-08-08
DE69027791D1 (de) 1996-08-22
CA2008123A1 (fr) 1990-07-20
EP0585959A1 (fr) 1994-03-09
DE69033036D1 (de) 1999-05-06
GR3021286T3 (en) 1997-01-31
DK0381547T3 (da) 1996-12-02
EP0585959B1 (fr) 1999-03-31
ES2129477T3 (es) 1999-06-16
FR2642110B1 (fr) 1991-05-03
ES2091809T3 (es) 1996-11-16
ATE178378T1 (de) 1999-04-15
CA2008123C (fr) 1993-06-01
ATE140502T1 (de) 1996-08-15
FR2642110A1 (fr) 1990-07-27

Similar Documents

Publication Publication Date Title
EP0381547B1 (fr) Procédé de réalisation d'un conduit enterré
EP0081402B1 (fr) Procédé d'obtention de structures creuses, telles que des conduites, silos ou abris.
EP1101871B1 (fr) Tablier de pont métallique et procédé de construction d'un pont comportant un tel tablier
EP0188487B1 (fr) Conduit enterre de grande section
EP0295175B2 (fr) Structure creuse à fond plat
EP0244890B1 (fr) Procédé de réalisation de structures creuses, de grande section, telles que des conduites, silos ou abris, et structures obtenues par ce procédé
EP0245155B1 (fr) Procédé pour la construction d'ouvrages sous des voies ferrées en exploitation
FR2642109A1 (fr) Structure creuse allongee et son procede de fabrication
EP0500444B2 (fr) Structure tubulaire enterrée
EP1660725B1 (fr) Pont metallique et son procede de realisation
EP0767881B1 (fr) Conduite de circulation de fluide
EP1119663B1 (fr) Ouvrage tubulaire
FR2734287A1 (fr) Pont a tablier en beton sans charpente metallique
EP1994231A1 (fr) Passage souterrain
WO1993013344A1 (fr) Enceinte allongee de grande section et son procede de realisation
FR2783536A1 (fr) Ouvrage tubulaire souterrain
FR2783540A1 (fr) Ouvrage tubulaire
FR2632705A1 (fr) Conduit tubulaire
WO1999046450A1 (fr) Ouvrage de passage sous remblai

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901012

17Q First examination report despatched

Effective date: 19911007

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 140502

Country of ref document: AT

Date of ref document: 19960815

Kind code of ref document: T

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 93115365.4 EINGEREICHT AM 18/01/90.

REF Corresponds to:

Ref document number: 69027791

Country of ref document: DE

Date of ref document: 19960822

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961018

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2091809

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3021286

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020124

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020404

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20021213

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030116

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030121

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030131

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

BERE Be: lapsed

Owner name: *MATIERE MARCEL

Effective date: 20040131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040804

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040801

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081210

Year of fee payment: 20

Ref country code: DK

Payment date: 20090123

Year of fee payment: 20

Ref country code: FR

Payment date: 20081205

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090304

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081210

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090114

Year of fee payment: 20

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20100117

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20100119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100118