EP0380051A2 - Exzentrische Spiralpumpe - Google Patents

Exzentrische Spiralpumpe Download PDF

Info

Publication number
EP0380051A2
EP0380051A2 EP90101299A EP90101299A EP0380051A2 EP 0380051 A2 EP0380051 A2 EP 0380051A2 EP 90101299 A EP90101299 A EP 90101299A EP 90101299 A EP90101299 A EP 90101299A EP 0380051 A2 EP0380051 A2 EP 0380051A2
Authority
EP
European Patent Office
Prior art keywords
stator
membrane
rings
spiral
spiral pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP90101299A
Other languages
English (en)
French (fr)
Other versions
EP0380051A3 (de
Inventor
Akos Dipl.-Ing. Petrik
Antal Nádor
Antal Dipl.-Ing. Nádor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIDROMECHANIKA SZIVATTYU- ES ANYAGMOZGATOGEP- GYARTO KISSZOVETKEZET
Original Assignee
HIDROMECHANIKA SZIVATTYU- ES ANYAGMOZGATOGEP- GYARTO KISSZOVETKEZET
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIDROMECHANIKA SZIVATTYU- ES ANYAGMOZGATOGEP- GYARTO KISSZOVETKEZET filed Critical HIDROMECHANIKA SZIVATTYU- ES ANYAGMOZGATOGEP- GYARTO KISSZOVETKEZET
Publication of EP0380051A2 publication Critical patent/EP0380051A2/de
Publication of EP0380051A3 publication Critical patent/EP0380051A3/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1076Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member orbits or wobbles relative to the other member which rotates around a fixed axis

Definitions

  • the invention relates to an eccentric spiral pump which consists of a pump housing and a stator made of elastomeric material and arranged in the pump housing.
  • stator and the spiral piston are intended to perform a double movement in comparison to one another, namely the planetary movement and the rolling movement.
  • the stator is fixed in the pump housing and the spiral piston carries out the planetary and rolling motion.
  • the spiral piston is connected to the drive motor by means of an alternative shaft connection - cardan shaft.
  • the alternative shaft connection is the one critical element that determines the service life of the spiral pump.
  • the aim of the invention is to ensure the planetary movement of the stator in such a way that the tightness of the stator and the spiral piston is uniform over the entire length.
  • the invention is based on the finding that if the stator is suspended at both ends by means of a well deforming and completely sealing element - membrane - the stator will be able to move in parallel with itself.
  • the invention is therefore an eccentric spiral pump, which has a pump housing and a stator made of elastomeric material and which is arranged in the pump housing, and is designed such that a membrane ring made of the same material as the stator and at the edge are provided at the two ends of the stator of the diaphragm ring clamping flange are, the clamping flange is attached to the pump housing, the width of the membrane ring without clamping flange and the distance between the inner surface of the pump housing and the outer jacket of the stator are at least as large as the eccentricity characteristic of the spiral pump.
  • the membrane rings formed at the ends of the stator, with their open parts are half-pipe rings that face each other.
  • ribs are formed in the interior of the semi-ring-shaped membrane rings.
  • the membrane rings formed at the ends of the stator are cones which widen apart from one another.
  • stator and the membrane rings are formed in a single piece.
  • the membrane ring arranged on the pressure side is perforated by means of a bore.
  • stator is surrounded by a metal jacket on its path between the membrane rings.
  • radial projections formed from the own material and arranged on the outer jacket of the stator are arranged, which adapt into the bores formed in the wall of the pump housing.
  • Fig. 1 the actual liquid delivery part of an eccentric spiral pump is shown.
  • the stator 1 is made of elastomeric material, its inner surface is designed in the known manner as a thread with two gates.
  • the cylindrical outer jacket of the stator 1 is formed by a metal jacket 6.
  • a membrane ring 2 and 3 are formed from the own material. These each form such a half-pipe ring, which are turned against each other with their open parts.
  • a clamping flange 4 and 5 is formed on the outer part of the membrane rings 2 and 3, which are clamped in the pump housing 7.
  • the spiral piston 8 Inside the stator 1, the spiral piston 8 is arranged, the eccentricity e of which is characteristic of the spiral pump.
  • the inner surface of the pump housing 7 and the outer jacket of the stator 1 are at a distance t from one another. This distance t is larger than the eccentricity e .
  • the width m of the membrane rings 2 and 3 should be understood to mean the diameter of the meridian circle of the half-tube ring.
  • the width m is also larger than the eccentricity e .
  • the pump housing 7, the stator 1 and the membrane rings 2 and 3 form a closed cavity 10.
  • the membrane ring 3 of the stator 1, which is arranged closer to the pressure side N, is perforated by means of a bore 9. In this way, the cavity 10 is separated from the suction side S, but is connected to the pressure side N.
  • the spiral pump according to the invention works as follows:
  • the spiral piston 8 is rigidly held in the pump housing / in a manner not shown / with bearings, so it cannot carry out any planetary movement. Instead, with its rotation, it forces the stator 1 to carry out the necessary planetary movement.
  • the membrane rings 2 and 3 are suitable for absorbing the radial movements of the stator 1. It is therefore necessary that both the distance t and the width m be larger than the eccentricity e .
  • stator 1 After the stator 1 is gripped at both ends with a membrane ring 2 or 3, which capable of completely the same deformation, the stator will move in parallel with itself due to the rotation of the spiral piston 8. In this way we get the same tightness as with the conventional eccentric spiral pumps.
  • the overpressure liquid leaving the stator 1 through the bore 9 can flow from the pressure side N into the cavity 10, or there is a hydraulic connection between the pressure side N and the cavity 10. In this way, there is also overpressure in the cavity 10, which relieves the membrane rings 2 and 3. If no metal jacket is arranged on the stator 1, the excess pressure also ensures the wear of the stator 1 and the spiral piston 8 is readjusted.
  • the membrane ring 3 with the flange 5 is formed in the manner already described above.
  • a cylindrical connection surface 14 is formed at the end 12 of the stator 1.
  • a sleeve 15 is connected to the inner diameter of the membrane ring 2.
  • the membrane ring 2 is by means of this sleeve 15 on the cylindrical connecting surface 14 of the Stator 1 attached.
  • the material of the membrane ring 2 is the same as the material of the stator 1. The attachment can be done with adhesive, for example.
  • This embodiment has the advantage that the production of the production tool is easier.
  • the membrane rings can easily tear from the great use. Therefore, they are reinforced with the ribs 16 and 17, respectively. These ribs 16 and 17 are - in the manner shown in Fig. 3 / b - arranged radially, but it is also a different one, e.g. mutually crossing tangential arrangement accordingly.
  • 3 / a shows the internal configuration of the membrane rings 2 and 3 according to FIG. 1 for the purpose of comparison.
  • FIG. 2 Another solution shown in FIG. 2 also serves to absorb the torque.
  • projections 11 are formed radially from their own material. These protrude - in a manner not shown - into the corresponding hole in the pump housing. In this way, they support the stator 1 against rotation in the manner of ribs.
  • the membrane ring can not only be in the form of a semi-ring, as previously described. An example of this is shown in FIG. 4. At the ends 12 and 13 of the stator 1 such membrane rings 2 and 3 are connected, which are conical and spread apart from each other. At the edge of the membrane rings 2 and 3, the clamping flange 4 and 5 is formed in the manner previously described.
  • the width m of the membrane rings 2 or 3 is to be understood to mean the distance between the outer surface of the stator and the clamping flange 4 or 5, that is to say it should be greater than the eccentricity e .
  • Fig. 4 it can be seen that neither the membrane ring 2 nor the membrane ring 3 is broken. This is because the prestressing of the stator 1 described above cannot be used when conveying liquid substances or solid contamination containing media in large quantities.
  • the cavity 10 can be filled through the channels through the housing by means of neutral medium and placed under positive pressure.
  • the embodiment according to the invention also has an advantage which is significant from the point of view of the delivery capacity: after the stator 1 can move freely on the path defined by the spiral piston 8, several can be built one after the other Stators multi-stage spiral pumps are put together. The spaces closed by membrane rings are only burdened by the pressure differences brought about by the individual stators, and deviating from previous practice, eccentric spiral pumps suitable for higher pressure ratios can also be designed.
  • the solution according to the invention can also meet such special requirements as heating or cooling the stator.
  • the cavity between the stator and the pump housing can also be formed in such a way that heating or cooling liquid flows therein at the required pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Die Erfindung bezieht sich auf eine Exzentrische Spiralpumpe, die über Pumpengehäuse (7) und über im Pumpengehäuse angeordneten, aus elastomeren Material gefertigten Stator (1) verfügt. An beiden Enden (12, 13) des Stators sind aus eigenem Material je ein Membranring (2, 3), am Rand der Membranringe je ein Spannflansch (4, 5) ausgebildet. Der Spannflansch ist im Pumpengehäuse befestigt, die Breite (m) des Membranrings ohne den Spannflansch und der Abstand (t) zwischen der Innenfläche des Pumpengehäuses (7) und dem Außenmantel des Stators (1) ist mindestens so groß wie die für die Spiralpumpe charakteristische Exzentrizität.

Description

  • Die Erfindung bezieht sich auf eine exzentrische Spiralpumpe, die aus Pumpengehäuse und aus dem im Pumpengehäuse angeordneten, aus elastomerem Material gefertigten Stator besteht.
  • Es ist bekannt, dass bei exzentrischen Spiralpumpen der Stator und der Spiralkolben eine im Vergleich zueinander doppelte Bewegung durch­führen sollen, und zwar die Planetenbewegung und die Abrollbewegung.
  • Bei den bisher erzeugten exzentrischen Spiralpumpen - mit einer Ausnahme - ist der Stator im Pumpengehäuse befestigt, und der Spiralkolben durchführt die Planeten- und Abrollbewegung. Damit diese komplizierte Bewegung zustandekommen kann, ist der Spiralkolben mittels ausweichender Wellen­verbindung - Kardanwelle - mit dem Antriebsmotor verbunden. Bei diesen Ausbildungen ist eben die asuweichende Wellenverbindung das eine, die Lebens­dauer der Spiralpumpe determinierende, kritische Element.
  • Es gaben bereits früher Versuche zur Lösung dieses Problems. Als deren Egebnis ist diejenige, auch unserseits hergestellte - als eine Ausnahme bereits erwähnte - exzentrische Spiralpumpe entwik­kelt worden, bei der der Spiralkolben in der theo­retischen Wellenlinie fix gelagert ist. Hier wurde das Problem der Planetenbewegung so gelöst, dass am Stator bei dem der Saugseite näher liegenden Ende eine den Stator umnehmende äussere flexible Hülse angeschlossen ist, die annähernd so lang ist wie der Stator, und die Hülse verbreitet sich kegelartig gegen die Druckseite und ihr der Druckseite näher lie­gendes Ende ist im Pumpengehäuse befestigt. Diese Hülse gewährleistet dem Stator eine im wesentlichen derart flexible Aufhängung, die die Planetenbewegung zulässt.
  • Diese Lösung macht die Verwendung der Kardan­welle tatsächlich überflüssig, verursacht aber zugleich ein anderes, bisher nicht bekanntes Problem. Der mit­ tels Hülse aufgehängte Stator ist nicht fähig, die Bewegung des Spiralkolbens vollständig zu verfolgen, weil seine Bewegungsfreiheit gegen die Saugseite fortschreitend je mehr abnimmt. Deshalb erleidet der Stator hier eine dermassige Deformation, die zu bedeutender Undichtigkeit führt. Demzufolge fördert der Stator in der Wirklichkeit nur auf einer geringen Strecke.
  • Zielsetzung der Erfindung ist, die Planeten­bewegung des Stators auf diejenige Weise zu sichern, dass die Dichtigkeit des Stators und des Spiralkolbens auf der ganzen Länge gleichmässig sei. Der Erfindung liegt diejenige Erkenntnis zugrunde, dass wenn der Stator an beiden Enden mittels eines sich gut defor­mierenden und vollständig dichtenden Element - Membrane - aufgehängt wird, der Stator fähig sein wird, sich mit sich selbst parallel zu bewegen.
  • Die Erfindung ist also eine exzentrische Spiralpumpe, die über Pumpengehäuse und einen im Pumpengehäuse angeordneten, aus elastomerem Material gefertigten Stator verfügt, und so ausgebildet ist, dass an den zwei Enden des Stators je ein, aus mit dem Stator gleichen Material gefertigter Membranring und am Rand des Membranrings Spannflansch ausgebildet sind, der Spannflansch am Pumpengehäuse befestigt ist, die Breite des Membranrings ohne Spannflansch und der Abstand zwischen der Innenfläche des Pumpen­gehäuses und dem Aussenmantel des Stators mindestens so gross sind wie die für die Spiralpumpe charakte­ristische Exzentrizität.
  • Bei einer vorteilhaften Ausführungsform der erfindungsgemässen Spiralpumpe sind die an den Enden des Stators ausgebildeten Membranringe mit ihren offenen Teilen gegeneinander gewendete Halbrohrringe.
  • Bei einer weiteren vorteilhaften Ausführungs­form der erfindungsgemässen Spiralpumpe sind im Inne­ren der halbrohrringförmigen Membranringe Rippen aus­gebildet.
  • Bei einer dritten vorteilhaften Ausführungs­form der erfindungsgemässen Spiralpumpe sind die an den Enden des Stators ausgebildeten Membranringe sich voneinander entfernend verbreitende Kegel.
  • Bei einer vierten vorteilhaften Ausführungs­form der erfindungsgemässen Spiralpumpe sind der Sta­tor und die Membranringe in einem einzigen Stück aus­gebildet.
  • Bei einer fünften vorteilhaften Ausführungs­form der erfindungsgemässen Spiralpumpe ist an einem Ende des Stators eine zylindrische Anschlussfläche ausgebildet, und am Innendurchmesser des Membran­rings ist eine Hülse ausgebildet, und die Hülse des Membranrings passt sich auf die zylindrische An­schlussfläche des Stators an.
  • Bei einer sechsten vorteilhaften Ausführungs­form der erfindungsgemässen Spiralpumpe ist der an der Druckseite angeordnete Membranring mittels einer Bohrung durchbrochen.
  • Bei einer weiteren vorteilhaften Ausführungs­form der erfindungsgemässen Spiralpumpe ist der Stator an seiner Strecke zwischen den Membranringen von einem Metallmantel umnommen.
  • Schliesslich sind bei einer weiteren vorteil­haften Ausführungsform der erfindungsgemässen Spiral­pumpe am Aussenmantel des Stators aus eigenem Material ausgebildete radiale Vorsprünge angeordnet, die sich in die in der Wand des Pumpengehäuses ausgebildeten Bohrungen anpassen.
  • Die Erfindung wird nachstehend anhand eini­ger Ausführungsbeispiele mit Hilfe der beiliegenden Zeichnungen näher erläutert. Es zeigen
    • Fig. 1 - die erfindungsgemässe Spiralpumpe in Längs­schnitt,
    • Fig. 2 - den Stator einer anderen Ausführungsform in Halbschnitt-Halbanschnitt,
    • Figuren 3/a und 3/b - den mit I bzw. II angedeutenden Halbquerschnitt des Stators der vorangehenden zwei Ausführungsforme,
    • Fig. 4 - den Stator einer dritten Ausführungsform in Halbschnitt-Halbansicht.
  • In Fig. 1 ist der eigentliche Flüssigkeitsför­derteil einer exzentrischen Spiralpumpe dargestellt. Der Stator 1 ist aus elastomerem Material gefertigt, seine Innenfläche ist auf die bekannte Weise als Ge­winde mit zwei Anschnitten ausgebildet. Der zylindri­sche Aussenmantel des Stators 1 ist durch einen Me­tallmantel 6 gebildet.
  • An den Enden 12 und 13 des Stators 1 sind aus dem eigenen Material je ein Membranring 2 und 3 ausgebildet. Diese bilden je einen derartigen Halb­rohrring, die mit ihren offenen Teilen gegeneinander gewendet sind. Am Aussenteil der Membranringe 2 und 3 ist je ein Spannflansch 4 und 5 ausgebildet, welche im Pumpengehäuse 7 eingespannt sind.
  • Im Inneren des Stators 1 ist der Spiral­kolben 8 angeordnet, dessen Exzentrizität e für die Spiralpumpe charakteristisch ist.
  • Die Innenfläche des Pumpengehäuses 7 und der Aussenmantel des Stators 1 sind in einem Abstand t voneinander. Dieser Abstand t ist grösser als die Ex­zentrizität e.
  • Unter Breite m der Membranringe 2 und 3 soll bei dieser Ausführungsform der Durchmesser des Meri­diankreises des Halbrohrringes verstanden werden. Die Breite m ist ebenfalls grösser als die Exzentrizität e.
  • Das Pumpengehäuse 7, der Stator 1 und die Mem­branringe 2 und 3 bilden einen geschlossenen Hohlraum 10. Der der Druckseite N näher angeordnete Membranring 3 des Stators 1 ist mittels einer Bohrung 9 durchbro­chen. Auf diese Weise ist der Hohlraum 10 von der Saugseite S getrennt, aber mit der Druckseite N ver­bunden.
  • Die erfindungsgemässe Spiralpumpe funktioniert wie folgt:
  • Der Spiralkolben 8 ist im Pumpengehäuse /auf nicht dargestellte Weise/ mit Lagern starr gefasst, so kann er keine Planetenbewegung durchführen. Anstatt dessen zwingt er mit seiner Drehung den Stator 1, die nötige Planetenbewegung durchzuführen.
  • Die Membranringe 2 und 3 sind geeignet dazu, die radialgerichtete Bewegungen des Stators 1 aufzu­nehmen. Deshalb ist es erforderlich, dass sowohl der Abstand t als auch die Breite m grösser seien als die Exzentrizität e.
  • Nachdem der Stator 1 an seinen beiden Enden mit je einem Membranring 2 bzw. 3 gefasst ist, welche zu vollständig gleicher Deformation fähig sind, wird sich der Stator auf Wirkung der Drehung des Spiralkolbens 8 mit sich selbst parallel bewegen. Auf diese Weise erhalten wir eine gleiche Dichtig­keit wie bei den herkömmlichen exzentrischen Spiral­pumpen.
  • Die den Stator 1 durch die Bohrung 9 ver­lassende Überdruckflüssigkeit kann von der Druck­seite N in den Hohlraum 10 überströmen, beziehungs­weise zwischen der Druckseite N und dem Hohlraum 10 besteht eine hydraulische Verbindung. Auf diese Weise herrscht auch im Hohlraum 10 der Überdruck, der die Membranringe 2 und 3 entlastet. Wenn am Stator 1 kein Metallmantel angeordnet ist, gewährleistet der Überdruck auch die Nachstellung des Verschleisses des Stators 1 und des Spiralkolbens 8.
  • In Fig. 2 ist nur eine weitere Variante des Stators 1 der erfindungsgemässen Spiralpumpe dar­gestellt. Am Ende 13 des Stators 1 ist der Membran­ring 3 mit dem Flansch 5 auf die oben bereits beschrie­bene Weise ausgebildet. Am Ende 12 des Stators 1 ist eine zylindrische Anschlussfläche 14 ausgebildet. Am Innendurchmesser des Membranrings 2 ist eine Hülse 15 angeschlossen. Der Membranring 2 ist mittels dieser Hülse 15 an der zylindrischen Anschlussfläche 14 des Stators 1 befestigt. Das Material des Membranrings 2 ist übrigens mit dem Material des Stators 1 gleich. Die Befestigung kann z.B. mit Klebung erfolgen.
  • Diese Ausführungsform hat den Vorteil, dass die Erzeugung des Fertigungswerkzeuges leichter ist.
  • Wenn die Breite m gross ist, und auch das den Stator 1 belastende Drehmoment gross ist, können die Membranringe von der grossen Inanspruchnahme leicht reissen. Deshalb sind sie mit den Rippen 16 bzw. 17 verstärkt. Diese Rippen 16 bzw. 17 sind - auf die in Fig. 3/b dargestellte Weise - radial angeordnet, aber es ist auch eine andere, z .B. einander querende tangentiale Anordnung entsprechend. In Fig. 3/a ist zwecks Vergleichung die innere Ausbildung der Membran­ringe 2 bzw. 3 nach Fig. 1 dargestellt.
  • Ebenfalls der Aufnahme des Drehmomentes dient eine andere, in Fig. 2 dargestellte Lösung. An der Aussenfläche des Stators 1 sind aus eigenem Material Vorsprünge 11 radial ausgebildet. Diese ragen - auf nicht dargestellte Weise - in die entsprechende Boh­rung des Pumpengehäuses. Auf diese Weise stützen sie rippenartig den Stator 1 gegen Verdrehung.
  • Der Membrangring kann nicht nur wie bisher beschrieben halbrohrringförmig sein. Dafür ist ein Beispiel in Fig. 4 dargestellt. An den Enden 12 und 13 des Stators 1 sind derartige Membranringe 2 bzw. 3 angeschlossen, die kegelförmig sind und sich von­einander entfernend verbreiten. Am Rand der Membran­ringe 2 und 3 ist auf die bisher beschriebene Weise der Spannflansch 4 und 5 ausgebildet.
  • In diesem Fall soll unter Breite m der Mem­branringe 2 bzw. 3 der Abstand zwischen der Aussenfläche des Stators und des Spannflansches 4 bzw. 5 zu verstehen, das heisst dieser soll grösser sein als die Exzentrizität e.
  • In Fig. 4 ist es zu sehen, dass weder der Membranring 2 noch der Membranring 3 durchbrochen ist. Bei der Förderung von dichtflüssigen Stoffen, oder von feste Verschmutzung in hoher Menge enthal­tenden Medien kann nämlich die oben beschriebene Vor­spannung des Stators 1 nicht verwendet werden. In diesem Fall kann der Hohlraum 10 durch die durch das Gehäuse geführten Kanäle mittels neutralem Medium aufgefüllt und unter Überdruck gestellt werden.
  • Die erfindungsgemässe Ausführung hat über die bisher bekanntgemachten Vorteile hinaus auch einen aus dem Gesichtspunkt der Förderleistung be­deutenden Vorteil: Nachdem der Stator 1 auf der durch den Spiralkolben 8 bestimmten Bahn sich frei bewegen kann, können mit dem Nacheinanderbauen von mehreren Statoren mehrstufige Spiralpumpen zusammengestellt werden. Die durch Membranringe geschlossenen Räume sind nur durch die durch die einzelnen Statoren zu­standegebrachten Druckdifferenzen belastet, und von der bisherigen Praxis abweichend können auch für höhere Druckverhältnisse geeignete exzentrische Spi­ralpumpen ausgebildet werden.
  • Mit der erfindungsgemässen Lösung können auch derartige spezielle Ansprüche erfüllt werden, wie die Heizung oder Kühlung des Stators. Der Hohlraum zwi­schen dem Stator und dem Pumpengehäuse kann auch so ausgebildet werden, dass darin auf dem erforderlichen Druck Heiz- oder Kühlflüssigkeit strömt.
  • Schliesslich kann als allgemeiner Vorteil erwähnt werden, dass die für die Spiralpumpe charak­teristische, nachteilige Vibration bedeutendermassen abnimmt, weil die ausserhalb der Wellenlinie eine zu­sammengesetzte Bewegung durchführende unausgeglichenen Massen bedeutendermassen vermindert wurden. Das bedeu­tet sowohl in der allgemeinen Lebensdauer als auch auf dem Gebiet des für die Umwelt schadhaften Ge­räuschniveaus eine Verbesserung.

Claims (9)

1. Exzentrische Spiralpumpe, die über Pumpengehäuse /7/ und über im Pumpengehäuse /7/ an­geordneten, aus elastomerem Material gefertigten Stator /1/ verfügt, dadurch gekennzeich­net, dass an beiden Enden /12, 13/ des Stators /1/ aus eigenem Material je ein Membranring /2, 3/, am Rand der Membranringe /2, 3/ je ein Spannflansch /4, 5/ ausgebildet sind, der Spannflansch /4, 5/ im Pumpen­gehäuse /7/ befestigt ist, die Breite /m/ des Mem­branrings /2, 3/ ohne den Spannflansch /4, 5/ und der Abstand /t/ zwischen der Innenfläche des Pumpen­gehäuses /7/ und dem Aussenmantel des Stators /1/ min­destens so gross ist wie die für die Spiralpumpe cha­rakteristische Exzentrizität /e/.
2. Spiralpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die an den Enden /12, 13/ des Stators /1/ ausgebildeten Membranringe /2, 3/ mit ihrem offenen Teil gegeneinander gewendete Halbrohr­ringe sind.
3. Spiralpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Inneren der halbrohrringförmigen Membranringe /2, 3/ Rippen /16/ ausgebildet sind.
4. Spiralpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die an den Enden /12, 13/ des Stators /1/ ausgebildeten Membranringe /2, 3/ sich voneinander entfernend verbreitende Kegel sind.
5. Spiralpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Stator /1/ und die Membranringe /2, 3/ aus einem einzigen Stück ausgebildet sind.
6. Spiralpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass an einem Ende /12/ des Stators /1/ eine zylindrische Anschlussfläche /14/ ausgebildet ist, am Innendurch­messer des Membranrings /2/ eine Hülse /15/ ausgebil­det ist und die Hülse /15/ des Membranrings /2/ sich auf die zylindrische Anschlussfläche /14/ des Stators /1/ anpasst.
7. Spiralpumpe nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der an der Druckseite /N/ befindliche Membranring /3/ mittels einer Bohrung /9/ durchbrochen ist.
8. Spiralpumpe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Stator /1/ an seiner Strecke zwischen den Membran­ringen /2, 3/ von einem Metallmantel /6/ umnommen ist.
9. Spiralpumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass am Aussenmantel des Stators /1/ aus eigenem Material ausgebildete radiale Vorsprünge /11/ ausgebildet sind, die sich in die in der Wand des Pumpengehäuses /7/ ausgebildeten Bohrungen einpassen.
EP19900101299 1989-01-23 1990-01-23 Exzentrische Spiralpumpe Ceased EP0380051A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
HU25289 1989-01-23
HU25289A HU202631B (en) 1989-01-23 1989-01-23 Eccentric scroll pump

Publications (2)

Publication Number Publication Date
EP0380051A2 true EP0380051A2 (de) 1990-08-01
EP0380051A3 EP0380051A3 (de) 1991-03-06

Family

ID=10948742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900101299 Ceased EP0380051A3 (de) 1989-01-23 1990-01-23 Exzentrische Spiralpumpe

Country Status (4)

Country Link
EP (1) EP0380051A3 (de)
CS (1) CS22990A3 (de)
DD (1) DD294066A5 (de)
HU (1) HU202631B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19842754A1 (de) * 1998-09-18 2000-04-06 Seepex Seeberger Gmbh & Co Exzenterschneckenpumpe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012008761B4 (de) * 2012-05-05 2016-01-21 Netzsch Pumpen & Systeme Gmbh Geteilter Statormantel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE647172C (de) * 1936-01-18 1937-06-29 Harry Sauveur Dipl Ing Einrichtung zur Entlastung der zur Abdichtung dienenden Biegehaeute an stopfbuchsenlosen Pumpen oder Antriebsmaschinen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE647172C (de) * 1936-01-18 1937-06-29 Harry Sauveur Dipl Ing Einrichtung zur Entlastung der zur Abdichtung dienenden Biegehaeute an stopfbuchsenlosen Pumpen oder Antriebsmaschinen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19842754A1 (de) * 1998-09-18 2000-04-06 Seepex Seeberger Gmbh & Co Exzenterschneckenpumpe
DE19842754C2 (de) * 1998-09-18 2001-04-26 Seepex Seeberger Gmbh & Co Exzenterschneckenpumpe

Also Published As

Publication number Publication date
CS22990A3 (en) 1992-02-19
EP0380051A3 (de) 1991-03-06
DD294066A5 (de) 1991-09-19
HU202631B (en) 1991-03-28
HUT53198A (en) 1990-09-28

Similar Documents

Publication Publication Date Title
DE3015628A1 (de) Drucklager/kopplungseinrichtung und damit ausgeruestete schneckenmaschine
DE3815252A1 (de) Ringmembranpumpe
DE1937072B2 (de) Pumpenaggregat mit Radialkolbenpumpe
DE1553186A1 (de) Pumpe
EP0949419B1 (de) Innenzahnradmaschine
DE1934779C3 (de) Rotations-Verdrängerpumpe
DE1653921C3 (de) Rotationskolbenpumpe
DE3040359A1 (de) Als waermetauscher dienende walze
DE2550366B2 (de) Durchbiegungsausgleichwalze
EP0380051A2 (de) Exzentrische Spiralpumpe
DE2649130B2 (de) Zahnradpumpe
DE1653810B2 (de) Zahnradpumpe
DE522341C (de) Drehkolben-Pumpe mit sichelfoermigem Arbeitsraum und in der Kolbentrommel verschiebbaren Kolben mit radialen Rippen, die Beanspruchungen der Kolben aufnehmen
DE3420523A1 (de) Radialwellendichtring
DE2418164C3 (de) Innenbeströmte Radialkolbenmaschine
DE2162408C3 (de) Hydro-radialkolbenmotor
CH632057A5 (en) Piston pump
DE2334304A1 (de) Ventilatorschaufel fuer tangentiale geblaeselueftung
DE2421160A1 (de) Pumpe
DE2935294A1 (de) Umlauf-laufradpumpe oder -motor
DE2736590A1 (de) Exzenterschneckenpumpe mit konischer schneckenwelle und gehaeuse-einsatz
EP0380050A2 (de) Anordnung des Stators von exzentrischen Spiralpumpen
DE4438931C2 (de) Hydrolager
DE3014795C2 (de) Flügelzellenpumpe
DE1032280B (de) Siebeinsatz fuer Trockner von Kuehlanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB IT

17P Request for examination filed

Effective date: 19910226

17Q First examination report despatched

Effective date: 19920107

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19920703