EP0378061A2 - Dispositif et méthode pour la production de radiation lumineuse bleue-verte - Google Patents
Dispositif et méthode pour la production de radiation lumineuse bleue-verte Download PDFInfo
- Publication number
- EP0378061A2 EP0378061A2 EP89850440A EP89850440A EP0378061A2 EP 0378061 A2 EP0378061 A2 EP 0378061A2 EP 89850440 A EP89850440 A EP 89850440A EP 89850440 A EP89850440 A EP 89850440A EP 0378061 A2 EP0378061 A2 EP 0378061A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- essentially
- crystal
- resonator
- laser
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/0683—Stabilisation of laser output parameters by monitoring the optical output parameters
- H01S5/0687—Stabilising the frequency of the laser
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/37—Non-linear optics for second-harmonic generation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/353—Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
- G02F1/3542—Multipass arrangements, i.e. arrangements to make light pass multiple times through the same element, e.g. using an enhancement cavity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
Definitions
- This invention relates to a laser source and method for producing coherent blue-green-light radiation, and more particularly relates to a miniature solid-state laser source and method for producing said radiation by second-harmonic generation of the output of a semiconductor diode laser in a nonlinear crystal that permits noncritical phase matching over a wide range of temperatures, angles and input wavelength, rendering it especially suitable for optical storage applications.
- Blue-green lasers are desirable because they permit a significant enhancement of the storage density of an optical recording system.
- fundamental material fabrication problems are encountered in developing diode lasers operating at wavelengths ⁇ 600 nm (i.e., in the blue-green range).
- a miniature blue-green laser source has been developed that has two key components: (a) a semiconductor diode laser recently developed by others and having a wavelength of essentially 980-1,000 nm; and (b) a crystal of KTP that applicants unexpectedly found to permit noncritical type II phase-matched SHG of essentially 980-1,000 nm radiation over a wide range of temperatures, input wavelengths and angles of the input beam to the crystal.
- the apparatus and method embodying the invention produce coherent blue-green-light radiation having a wavelength of essentially 490-500 nm.
- a diode laser such as a strained-layer InGaAs/GaAs, semiconductor laser, provides an essentially 980-1000 nm beam, and a nonlinear crystal of essentially KTP produces the blue-green radiation by noncritically phase-matched SHG of said beam.
- the beam preferably has a wavelength of 994 nm for generating 497 nm radiation.
- the frequency of the laser is preferably matched and locked to that of an optical resonator within which the crystal is disposed.
- the apparatus embodying the invention comprises two strained-layer InGaAs/GaAs diode lasers 10, 11 with collimation optics and modulated output beams 12, 13, respectively, that each provide essentially 994 nm fundamental radiation.
- Beams 12, 13 are orthogonally polarized and directed to a conventionally coated polarization beamsplitter 14.
- Beamsplitter 14 combines the 994 nm beams 12, 13 into a beam 15 that is directed to a standard beamsplitter 16.
- Beamsplitter 16 passes the 994 nm fundamental radiation via a focussing lens 17 to a passive Fabry-Perot resonator 18.
- Resonator 18 is resonant at a wavelength of 994 nm.
- resonator 18 may be formed by placing a crystal 19 consisting of essentially KTP between two mirrors 20, 21 which are highly reflective at 994 nm; or, if preferred, resonator 18 may be formed by polishing spherical and/or flat surfaces at opposite ends of the crystal and depositing highly reflective coatings thereon.
- Mirrors 20, 21 have facing surfaces that reflect the 994 nm; and mirror 21 transmits the 497 nm radiation.
- KTP crystal 19 causes the resonator 18 to have two sets of resonant modes.
- Laser diode 10 is linearly polarized along the a-axis of the KTP crystal and is frequency locked, in the manner hereafter described, to the a-axis polarized resonance of the resonator.
- Laser diode 11 is polarized along the c-axis of the crystal and is similarly frequency locked to the c-axis polarized resonator resonance.
- the beam 15 of essentially 994 nm radiation is focussed by lens 17 into, and is propagated along the b-axis of, KTP crystal 19, thereby producing a beam 22 of coherent blue-green-light radiation at essentially 497 nm by noncritically phase-matched SHG of beam 15.
- the frequencies of these two resonances may not be identical; however, as long as they are within the 1.4 nm wide phase-matching bandwidth for SHG, beam 22 will be efficiently produced.
- the diode lasers 10, 11 are frequency locked to the resonances of the resonator 18 by respective feedback loops that comprise a polarization beamsplitter 25 and two detection and feedback circuits 26, 27.
- Beamsplitter 16 directs a beam 28 of 994 nm radiation to beamsplitter 25 which then splits said beam into an a-axis polarized beam 29 and a c-axis polarized beam 30.
- Beam 29 is directed to detection/feedback circuit 26 which may, for sake of illustration, be of the type disclosed in the April 1987 issue of "IEEE Journal of Lightwave Technology" at pp. 485 et seq.
- This circuit 26 comprises briefly means (not shown) for generating a signal indicative of deviations in the frequency of the beam 12 from the frequency of the resonator 18 and for adjusting the injection current to diode laser 10 and/or its temperature to maintain the laser frequency at the resonator frequency.
- Beam 30 is directed to detection/feedback circuit 27 which comprises similar means (not shown) to adjust the injection current to diode laser 11 and/or its temperature.
- the apparatus embodying the invention comprises a single strained-layer InGaAs/GaAs diode laser 60 with collimation optics and output beam 61 to provide essentially 994 nm fundamental radiation of linear polarization.
- Crystal 64 of essentially KTP is part of a passive resonator 65.
- Mirrors 66, 67 at opposite ends of crystal 64 are highly reflective at 994 nm.
- Mirror 67 is highly transmissive at 497 nm.
- the nonlinear crystal 64 is oriented such that its a- and c- axes are at an angle of 45 degrees to the polarization of the essentially 994 nm beam 61 for Type II noncritically phasematched second harmonic generation.
- the phaseplate 69 is oriented such that it corrects the polarization of the 994 nm radiation emerging from the crystal 64 so that the 994 nm radiation has a polarization direction of 45 degrees with respect to the a- and c- axes of the KTP crystal 64 when it re-enters the crystal after a round-trip pass through the resonator.
- the diode laser 60 is frequency locked to the resonance of the resonator 65 by a feedback loop which comprises a beam splitter 62 and the detection and feedback circuitry 71.
- the feedback circuitry 71 adjusts the injection current to diode laser 60 and/or its temperature.
- the apparatus embodying the invention comprises a single strained-layer InGaAs/GaAs diode laser 40 with collimation optics and modulated output beam 41 to provide essentially 994 nm fundamental radiation.
- Beam 41 is directed through a dichroic beamsplitter 42 and a focussing lens 43 into a crystal 44 of essentially KTP that forms part of a passive resonator 45.
- Mirrors 46, 47 (or highly reflective coatings) at opposite ends of crystal 44 are highly reflective at 497 nm; but mirror 47 has a residual small transmission at 497 nm adjusted for maximum blue-green output power for the characteristics of the particular KTP crystal used.
- Beam 41 is polarized at 45° to the a- and c- axes of the crystal 44.
- Resonator 45 is designed to be resonant at the second-harmonic wavelength of essentially 497 nm. Since the second-harmonic radiation is linearly polarized along the a-axis of crystal 44, the second-harmonic radiation generated within the crystal can excite a similar a-axis polarized resonant mode of resonator 45.
- a beam 48 of coherent blue-green-light radiation at essentially 497 nm is produced by noncritically phased-matched SHG of beam 41 as focussed by lens 43.
- the wavelength of the generated second-harmonic radiation can be controlled by tuning the fundamental diode laser wavelength so that the essentially 497 nm radiation generated is frequency locked to match the resonant wavelength of resonator 45 by directing beam 49 to detection/feedback circuitry 50 which, as in the earlier described embodiment, adjusts the injection current to diode laser 40 and/or its temperature.
- the efficiency obtained with the configuration of Figs. 1 and 2 are essentially equivalent to the square of the finesse of their passive resonators 18, 65, respectively.
- the efficiency enhancement for the Fig. 3 configuration is essentially equal to the finesse of its resonator 45.
- the efficiency enhancement is thus less for the Fig. 3 configuration, but that configuration is simpler than that of Fig. 1 wherein only one diode laser needs to be frequency locked to a resonant mode of the resonator.
- the resonator 18 or 45 may, if desired, be replaced by a ring resonator comprising three or more reflecting surfaces. These surfaces may be provided by external mirrors or by polished crystal surfaces, such as described in the June 1988 issue of the "IEEE Journal of Quantum Electronics" at pp. 913 et seq.
- an optical waveguide 50 may be applied to an edge of a KTP crystal 51.
- a diode laser 52 with collimation optics and modulated output beam 53 provides essentially 994 nm fundamental radiation. Beam 53 is directed through a focussing lens 54 into the waveguide to enhance the SHG efficiency in producing a beam 55 of coherent blue-green-light radiation at essentially 497 nm. Note that with this embodiment, no locking of laser frequency to resonator frequency is needed.
- phase matching of the type II laser herein described is achieved by tuning the frequency of the diode laser source to that of a passive resonator by fine adjustment of the laser injection current. This is in contrast to the prior art method wherein the resonator frequency is tuned to that of the laser source by applying fields to the resonator.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Semiconductor Lasers (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29746189A | 1989-01-13 | 1989-01-13 | |
US297461 | 1989-01-13 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0378061A2 true EP0378061A2 (fr) | 1990-07-18 |
EP0378061A3 EP0378061A3 (fr) | 1991-08-14 |
EP0378061B1 EP0378061B1 (fr) | 1996-02-28 |
Family
ID=23146413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89850440A Expired - Lifetime EP0378061B1 (fr) | 1989-01-13 | 1989-12-18 | Dispositif et méthode pour la production de radiation lumineuse bleue-verte |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0378061B1 (fr) |
JP (1) | JPH02239238A (fr) |
KR (1) | KR930006854B1 (fr) |
CN (1) | CN1025394C (fr) |
AU (1) | AU626964B2 (fr) |
BR (1) | BR9000115A (fr) |
DE (1) | DE68925810T2 (fr) |
HK (1) | HK203896A (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0486192A2 (fr) * | 1990-11-13 | 1992-05-20 | International Business Machines Corporation | Système laser à semi-conducteur avec cavité à cristal non-linéaire |
EP0520813A2 (fr) * | 1991-06-27 | 1992-12-30 | Mitsubishi Denki Kabushiki Kaisha | Appareil magnétooptique d'enregistrement/de reproduction |
EP0585758A1 (fr) * | 1992-08-26 | 1994-03-09 | Sony Corporation | Dispositif de conversion de longueur d'onde optique |
CN1058194C (zh) * | 1995-06-10 | 2000-11-08 | 中科院长春光学精密机械研究所 | 蓝绿激光血管内照射治疗仪 |
WO2010004477A2 (fr) * | 2008-07-07 | 2010-01-14 | Koninklijke Philips Electronics N. V. | Eclairage à base laser ne présentant aucun danger pour les yeux |
WO2019222260A1 (fr) * | 2018-05-15 | 2019-11-21 | Femtometrix, Inc. | Conceptions de système d'inspection optique de génération de seconde harmonique (shg) |
US10591525B2 (en) | 2014-04-17 | 2020-03-17 | Femtometrix, Inc. | Wafer metrology technologies |
US10989664B2 (en) | 2015-09-03 | 2021-04-27 | California Institute Of Technology | Optical systems and methods of characterizing high-k dielectrics |
US11199507B2 (en) | 2014-11-12 | 2021-12-14 | Femtometrix, Inc. | Systems for parsing material properties from within SHG signals |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2738155B2 (ja) * | 1991-02-07 | 1998-04-08 | 日本電気株式会社 | 導波路型波長変換素子 |
EP1772771A4 (fr) * | 2004-07-15 | 2008-06-25 | Matsushita Electric Ind Co Ltd | Source de lumière cohérente et appareil optique l'utilisant |
CN104795717B (zh) * | 2015-04-21 | 2017-09-12 | 中国科学院上海光学精密机械研究所 | 蓝绿波段脉冲全固态激光器 |
US9859676B2 (en) * | 2015-12-18 | 2018-01-02 | Sharp Kabushiki Kaisha | Light source configured for stabilization relative to external operating conditions |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1281402C (fr) * | 1986-04-30 | 1991-03-12 | William L. Austin | Laser a semiconducteur a faisceau de sortie continu stabilise a frequence doublee |
JPS63301582A (ja) * | 1987-06-01 | 1988-12-08 | Seiko Epson Corp | レ−ザ−光源装置 |
US4791631A (en) * | 1987-08-31 | 1988-12-13 | International Business Machines Corporation | Wide tolerance, modulated blue laser source |
-
1989
- 1989-12-18 DE DE68925810T patent/DE68925810T2/de not_active Expired - Fee Related
- 1989-12-18 EP EP89850440A patent/EP0378061B1/fr not_active Expired - Lifetime
-
1990
- 1990-01-08 AU AU47786/90A patent/AU626964B2/en not_active Ceased
- 1990-01-10 KR KR1019900000203A patent/KR930006854B1/ko not_active IP Right Cessation
- 1990-01-12 BR BR909000115A patent/BR9000115A/pt not_active Application Discontinuation
- 1990-01-12 CN CN90100168A patent/CN1025394C/zh not_active Expired - Fee Related
- 1990-01-12 JP JP2003653A patent/JPH02239238A/ja active Pending
-
1996
- 1996-11-07 HK HK203896A patent/HK203896A/xx not_active IP Right Cessation
Non-Patent Citations (4)
Title |
---|
APPL. PHYS. LETT., vol. 49, no. 24, 15th December 1986, pages 1659-1660, American Institute of Physics; D. FEKETA et al.: "Graded-index separate-confinement InGaAs/GaAs strained-layer quantum well laser grown by metalorganic chemical vapor deposition" * |
APPLIED OPTICS, vol. 26, no. 12, 15th June 1987, pages 2390-2394; T.Y. FAN et al.: "Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4" * |
APPLIED PHYSICS LETTERS, vol. 55, no. 12, 18th September 1989, pages 1179-1181; W.P. RISK et al.: "Noncritically phase-matched frequency doubling using 994 nm dye and diode laser radiation in KTiOPO4" * |
NOV. J. QUANTUM ELECTRON., vol. 15, no. 7, July 1985, pages 885-886, American Institute of Physics; A.L. ALEKSANDROVSKII et al.: "Efficient nonlinear optical converters made of potassium titanyl phosphate crystals" * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0486192A2 (fr) * | 1990-11-13 | 1992-05-20 | International Business Machines Corporation | Système laser à semi-conducteur avec cavité à cristal non-linéaire |
EP0486192A3 (en) * | 1990-11-13 | 1992-07-08 | International Business Machines Corporation | A laser system with a non linear crystal resonator |
US5511048A (en) * | 1991-01-04 | 1996-04-23 | Mitsubishi Denki Kabushiki Kaisha | Magneto-optical recording and reproducing apparatus |
EP0520813A2 (fr) * | 1991-06-27 | 1992-12-30 | Mitsubishi Denki Kabushiki Kaisha | Appareil magnétooptique d'enregistrement/de reproduction |
EP0520813A3 (en) * | 1991-06-27 | 1993-06-16 | Mitsubishi Denki Kabushiki Kaisha | Magneto-optical recording and reproducing apparatus |
EP0585758A1 (fr) * | 1992-08-26 | 1994-03-09 | Sony Corporation | Dispositif de conversion de longueur d'onde optique |
US5410561A (en) * | 1992-08-26 | 1995-04-25 | Sony Corporation | Optical wavelength converter for obtaining wavelength conversion efficiency |
CN1058194C (zh) * | 1995-06-10 | 2000-11-08 | 中科院长春光学精密机械研究所 | 蓝绿激光血管内照射治疗仪 |
WO2010004477A2 (fr) * | 2008-07-07 | 2010-01-14 | Koninklijke Philips Electronics N. V. | Eclairage à base laser ne présentant aucun danger pour les yeux |
WO2010004477A3 (fr) * | 2008-07-07 | 2010-02-25 | Koninklijke Philips Electronics N. V. | Eclairage à base laser ne présentant aucun danger pour les yeux |
US11549651B2 (en) | 2008-07-07 | 2023-01-10 | Signify Holding B.V. | Eye-safe laser-based lighting |
US10613131B2 (en) | 2014-04-17 | 2020-04-07 | Femtometrix, Inc. | Pump and probe type second harmonic generation metrology |
US10591525B2 (en) | 2014-04-17 | 2020-03-17 | Femtometrix, Inc. | Wafer metrology technologies |
US10663504B2 (en) | 2014-04-17 | 2020-05-26 | Femtometrix, Inc. | Field-biased second harmonic generation metrology |
US11150287B2 (en) | 2014-04-17 | 2021-10-19 | Femtometrix, Inc. | Pump and probe type second harmonic generation metrology |
US11293965B2 (en) | 2014-04-17 | 2022-04-05 | Femtometrix, Inc. | Wafer metrology technologies |
US11415617B2 (en) | 2014-04-17 | 2022-08-16 | Femtometrix, Inc. | Field-biased second harmonic generation metrology |
US11199507B2 (en) | 2014-11-12 | 2021-12-14 | Femtometrix, Inc. | Systems for parsing material properties from within SHG signals |
US11988611B2 (en) | 2014-11-12 | 2024-05-21 | Femtometrix, Inc. | Systems for parsing material properties from within SHG signals |
US10989664B2 (en) | 2015-09-03 | 2021-04-27 | California Institute Of Technology | Optical systems and methods of characterizing high-k dielectrics |
US11808706B2 (en) | 2015-09-03 | 2023-11-07 | California Institute Of Technology | Optical systems and methods of characterizing high-k dielectrics |
CN113167741A (zh) * | 2018-05-15 | 2021-07-23 | 菲拓梅里克斯公司 | 二次谐波产生(shg)光学检查系统设计 |
WO2019222260A1 (fr) * | 2018-05-15 | 2019-11-21 | Femtometrix, Inc. | Conceptions de système d'inspection optique de génération de seconde harmonique (shg) |
US11946863B2 (en) | 2018-05-15 | 2024-04-02 | Femtometrix, Inc. | Second Harmonic Generation (SHG) optical inspection system designs |
Also Published As
Publication number | Publication date |
---|---|
HK203896A (en) | 1996-11-15 |
KR900012312A (ko) | 1990-08-03 |
AU626964B2 (en) | 1992-08-13 |
EP0378061A3 (fr) | 1991-08-14 |
CN1025394C (zh) | 1994-07-06 |
KR930006854B1 (ko) | 1993-07-24 |
AU4778690A (en) | 1990-07-19 |
CN1044193A (zh) | 1990-07-25 |
EP0378061B1 (fr) | 1996-02-28 |
DE68925810T2 (de) | 1996-09-26 |
DE68925810D1 (de) | 1996-04-04 |
BR9000115A (pt) | 1990-10-23 |
JPH02239238A (ja) | 1990-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1288156C (fr) | Laser bleu module a grande insensibilite | |
CA1288851C (fr) | Generation de radiations lumineuses coherentes par melange optique | |
US5060233A (en) | Miniature blue-green laser source using second-harmonic generation | |
US5027361A (en) | Efficient laser harmonic generation employing a low-loss external optical resonator | |
US4809291A (en) | Diode pumped laser and doubling to obtain blue light | |
US5644584A (en) | Tunable blue laser diode | |
US6763042B2 (en) | Apparatus and method for frequency conversion and mixing of laser light | |
US5430754A (en) | Solid state laser apparatus | |
EP1037338B1 (fr) | Laser accordable à haute puissance | |
US5095491A (en) | Laser system and method | |
JP2002528921A (ja) | キャビティー内の周波数変換された光学的ポンプ半導体レーザー | |
EP0378061B1 (fr) | Dispositif et méthode pour la production de radiation lumineuse bleue-verte | |
US5671232A (en) | Second harmonic generation method and apparatus | |
US5585962A (en) | External resonant frequency mixers based on degenerate and half-degenerate resonators | |
Beier et al. | Second harmonic generation of the output of an AlGaAs diode oscillator amplifier system in critically phase matched LiB3O5 and β-BaB2O4 | |
US3675039A (en) | Coherent optical devices employing zinc germanium phosphide | |
US5502738A (en) | Polarization control element and solid-state laser system | |
EP0572201B1 (fr) | Laser à puissance moyenne élevée générant radiation à longeur d'onde de près de 530 NM | |
JPH08116121A (ja) | 波長変換レーザー | |
US5757827A (en) | Second harmonic generating apparatus and apparatus employing laser | |
US7460570B2 (en) | Green coherent light generating device using even nonlinear crystals | |
JPH0595144A (ja) | 半導体レーザ励起固体レーザ | |
JPH0927648A (ja) | 和周波レーザ装置 | |
Kmeda et al. | CW 355 nm generation by doubly-resonant sum-frequency mixing in an external resonator | |
Kane et al. | Coherent communication link using diode-pumped lasers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE FR GB LI |
|
17P | Request for examination filed |
Effective date: 19901113 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): CH DE FR GB LI |
|
17Q | First examination report despatched |
Effective date: 19930916 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19960228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: CARL O. BARTH C/O IBM CORPORATION ZURICH INTELLECT |
|
REF | Corresponds to: |
Ref document number: 68925810 Country of ref document: DE Date of ref document: 19960404 |
|
EN | Fr: translation not filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: MEDIATEK INC. Free format text: INTERNATIONAL BUSINESS MACHINES CORPORATION#OLD ORCHARD ROAD#ARMONK, N.Y. 10504 (US) -TRANSFER TO- MEDIATEK INC.#5F, NO 1-2 INNOVATION ROAD 1 SCIENCE-BASED INDUSTRIAL PARK#HSIN-CHU 300 (TW) Ref country code: CH Ref legal event code: NV Representative=s name: MICHELI & CIE INGENIEURS-CONSEILS |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20061213 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20061214 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20061227 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20071218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080701 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071218 |