EP0377378B1 - Méthode et dispositif de télécommande d'équipement de train de tiges par séquences d'informations - Google Patents

Méthode et dispositif de télécommande d'équipement de train de tiges par séquences d'informations

Info

Publication number
EP0377378B1
EP0377378B1 EP89403647A EP89403647A EP0377378B1 EP 0377378 B1 EP0377378 B1 EP 0377378B1 EP 89403647 A EP89403647 A EP 89403647A EP 89403647 A EP89403647 A EP 89403647A EP 0377378 B1 EP0377378 B1 EP 0377378B1
Authority
EP
European Patent Office
Prior art keywords
flow rate
flow
equipment
sequence
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89403647A
Other languages
German (de)
English (en)
Other versions
EP0377378A1 (fr
Inventor
Christian Bardin
Guy Pignard
Jean Boulet
Pierre Morin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0377378A1 publication Critical patent/EP0377378A1/fr
Application granted granted Critical
Publication of EP0377378B1 publication Critical patent/EP0377378B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes

Definitions

  • the present invention relates to a method and a device for remotely controlling drilling equipment.
  • the present invention avoids these drawbacks and untimely tripping is no longer possible because, according to the present invention, the detection of a predetermined sequence of events relating to one or more quantities detectable at the bottom of the well is required (sequence which may also be qualified as information sequence) before triggering the desired action.
  • Such quantities can be in particular quantities linked to the fluid flowing in the drill string or to the mechanical connection that constitutes the drill string.
  • the sequences relate to the flow of drilling fluid and include a step of reducing the flow of the value of a flow during drilling to a first level of flow, then a phase of increase in flow of said first level of flow to 'at a second level of flow, said phase having a given duration of time.
  • this other sequence differs from the predetermined sequence transmitted on the surface only to take account of the transformations possibly due to transmission.
  • the sequences may also relate to at least one of the quantities of the following set: speed of rotation of at least part of the drill string, or weight of the tool.
  • the present invention also relates to a device for remote control of at least one drill string equipment from information emitted at the surface.
  • This device comprises means for transmitting information, means for detecting said information, the latter being connected to means for actuating said equipment.
  • the emission means are drilling fluid pumps located on the surface, the detection means include a flow meter and a unit for processing flow measurements, a clock adapted to, at least, measure the duration of a flow rise from a first level to a second level, means for comparing the detected information with predetermined information and the actuation means comprise at least a solenoid valve, controlled when the detected information coincides with said predetermined information.
  • the solenoid valve can put in communication, when it is energized, a reserve of oil under pressure with a chamber whose variation in volume causes the actuation of said equipment.
  • the device according to the invention may comprise a valve mounted on a communication between said chamber and said reserve and the valve is open when the pressure of the oil prevailing in the oil reserve is lower than the pressure prevailing in the chamber.
  • the equipment can be a bent element with variable angle.
  • the equipment can be a stabilizer with variable geometry.
  • Figures 1 and 2 relate to a simple example of a sequence based on a fluid flow rate.
  • actuation is done if the flow of fluid flowing in the drill string changes from one level to another within a given period of time.
  • the flow measurement is made by means of a measurement of the differential pressure Pd between the neck 1 where the pressure is designated P1 and the upstream part 2 where the pressure is designated P2 of a venturi 3, which presents l he advantage of a simple geometry creating little pressure drop and avoids the use of moving parts.
  • Pd P2 - P1
  • the pressure difference between the upstream part 2 and the neck 1 of the venturi 3 is measured by two piezoresistive sensors 4 and 5, the gauge bridges of which are connected in differential mounting.
  • the holding range of the sensors can be from 0 to 750 bars.
  • Their differential measurement range can be from 0 to 40 bars.
  • the accuracy of the measurement may be of the order of 1%.
  • FIG. 2 represents a curve for variation of the flow rate Q as a function of time t.
  • This curve 6 corresponds to a flow sequence effectively giving rise to the actuation of the member to be controlled
  • the dotted horizontal line corresponds to the Qmini flow
  • the upper horizontal line corresponds to the Qact activation or activation flow threshold.
  • Qfor corresponds to the usual flow during drilling.
  • the pumps are then stopped at the surface, so that the flow detected by the electronic assembly is less than Qmini.
  • the portion 7 of the curve corresponds to the drop in flow to the almost zero level, in any case less than Qmini. This level is reached at time t2.
  • the electronic system counts the time, so as to establish whether the time elapsed between the instant t4 and the instant t5 when the flow reached the flow Qact, is less than a predetermined time DT.
  • Figure 1 shows a logic diagram corresponding to what has been described in relation to Figure 2.
  • the flow rate Q passing at a given instant in the venturi 3 is determined from the pressures P1 and P2, in particular by making the difference between these two pressures.
  • a first test is then carried out on the flow rate Q, by comparing it with a flow rate Qmini.
  • the Qmini flow rate is low and may be close to zero.
  • the clock is initialized to zero, otherwise there is no intervention on the clock.
  • a second test is then carried out, comparing the flow rate Q to an actuation flow rate Qact. If the flow Q is lower than the flow Qact, we return again to the first test, but with a new value of flow. Of course, the clock time has been increased.
  • the value of this indication corresponds to the time it took for the flow to go from the Qmini value to the Qact value.
  • the third test compares this indication to a maximum delay DT.
  • the flow sequence is a valid control sequence and there is actuation, for example by opening a solenoid valve.
  • the detection system should be put on standby until the detected flow rate becomes equal to or less than Qmini.
  • FIGS. 3A and 3B represent an embodiment of the device according to the present invention applied to the actuation of a bent element at variable angle.
  • a tubular element has in its upper part a thread 8 allowing the mechanical connection to a drill string or to a drill string and in its lower part a thread 9 allowing the fixing of the continuation of the train rods or drill string.
  • the bent element comprises a shaft 10 which can slide in its upper part in the bore 11 of the body 12 and which can slide in its lower part in the bore 13 of the body 14.
  • This shaft has male grooves 15 meshing in female grooves of the body 12, alternately straight grooves 16 (parallel to the axis of the tubular body 12) and oblique (inclined relative to the axis of the tubular body 12), into which fingers 17 sliding along a perpendicular axis engage to that of the displacement of the shaft 10 and kept in contact with the shaft by springs 18, male splines 19 meshing with female splines of the body 14 only when the shaft 10 is in the high position.
  • the shaft 10 is equipped with a nozzle 20 in the low position, opposite which is a needle 21 coaxial with the movement of the shaft 10.
  • a return spring 22 maintains the shaft 10 in the high position, the grooves 19 meshing in the corresponding female grooves of the body 14.
  • the bodies 12 and 14 are free to rotate at the rotary surface 23, inclined with respect to the axes of the bodies 12 and 14 and composed of rows of cylindrical rollers 74 inserted in their raceways 25 and extractable through the holes 26 by removing the door 27.
  • a reserve of oil 28 is maintained at the pressure of the drilling fluid by means of an annular free piston 29.
  • the oil lubricates the sliding surfaces of the shaft 10 via the passage 30.
  • This passage may include a solenoid valve 31.
  • the bore 20 is carried by a tube 32 which is fixed to the shaft 10 by means of a ball joint 33.
  • This ball joint 33 as well as the ball joint allow during movement of the shaft 10 a deflection of the tube 32. This deflection remains low, since the maximum angle obtained by the bent elements is generally a few degrees.
  • the shaft 10 comprises a second piston 35.
  • This piston 35 defines with the tubular body 13 a chamber 36.
  • the piston 35 slides in the bore 13 made in the tubular body 14.
  • the chamber 36 communicates through the holes 37, 38 with the passage 30 comprising the solenoid valve 31 and therefore with the oil reserve 28 through the holes 39, 40 and 41.
  • the communication of the oil reserve 28 and the chamber 36 is carried out through the solenoid valve 31, when there is a valid control sequence, that is to say effectively corresponding to the actuation of the equipment to be ordered.
  • the reference 42 designates a venturi comprising a neck 43, an upstream zone 44 and a downstream zone 45, a pressure sensor 46 possibly differential, or two pressure sensors 4 and 5 as shown in FIG. 1.
  • This or these sensors are connected by electrical wires 49 to an electronic unit 47 which monitors the flow rates to detect the control sequence and trigger the actuation.
  • the electronic unit 47 is connected by electrical wires 48 to a solenoid valve or to a solenoid valve 31.
  • the reference 50 designates an external connector which makes it possible to communicate on the surface with the electronic unit 47 without dismantling the entire device according to the invention.
  • This connector is connected to the box 47 by electrical wires 51. It is also possible to program the electronic box or to empty the memories without dismantling the connection.
  • the electronic unit sends, possibly after a time delay adjustable in the workshop between 0 and 60 seconds, a control signal, for the opening of the solenoid valve 31, which will take place once the flow sequence detected.
  • This control signal can be maintained until the next stop of the flow or passage of the flow below the Qmini value.
  • the electronic unit can also memorize the hours at which a control signal has been transmitted.
  • the electronic box can be powered by a set of rechargeable or non-rechargeable batteries.
  • the supply voltage can be 24 volts, the power required for the operation of a solenoid valve is 15 watt.
  • the opening of the solenoid valve 31 puts the oil reserve 28 in communication with the chamber 36.
  • the flow of fluid which passes through the device creates a pressure drop which causes a force tending to act on the piston 29 to expel the oil from the reserve 28 towards the chamber 36.
  • the needle 21 includes a bead 52 so that, when the nozzle 20 arrives there, there is a variation in the pressure drop which results, at constant flow rate, in a detectable pressure variation at the surface, which informs the operators that the shaft 10 has reached its low position.
  • the rise of the shaft 10 is done by lowering or canceling the flow rate, so that the forces exerted on the pistons 29 and 35 are low enough for the spring 22 to return the shaft 10 to its high position. .
  • the solenoid valve 31 may include a valve authorizing the flow of oil to the oil reserve when there is a pressure gradient in this direction and blocks flow when the gradient is in the opposite direction.
  • Figure 6 schematically illustrates such an arrangement.
  • Reference 53 designates the oil reserve and its piston. These references correspond to references 29 and 28 in FIG. 3A.
  • the reference 54 designates the chamber for receiving the pressurized fluid and the working piston which correspond substantially to the references 16 and 35 of FIG. 3B.
  • the reference 55 designates a solenoid valve equipped with accessories.
  • Reference 56 designates the solenoid valve itself.
  • the reference 57 designates a manual safety valve
  • the reference 58 a non-return type valve which makes it possible to empty the chamber 59 when the pressure in the reserve 60 is lower than that of the chamber 59.
  • the reference 61 designates a calibrated valve authorizing the flow of the reserve 60 towards the chamber 59, if the pressure difference between these two zones is greater than a critical value which can be fixed at 40 or 50 bars.
  • the present invention can be applied to the actuation of a stabilizer with variable geometry, such as that described in patent FR-2,579,662.
  • the shaft 10 will be coaxial with the tubular bodies 12 and 14 and it will be useless to use the ball joint 33.
  • the present invention makes it possible to control two different pieces of equipment from two different sequences.
  • FIG. 5 represents two curves 62 and 63 corresponding to two different flow sequences.
  • the first curve 62 corresponds, for example, to the triggering of the actuation of a variable angle elbow and the second 63 to the actuation of a stabilizer with variable geometry and that of the elbow element with variable angle.
  • Such a procedure can be implemented by setting end to end a set strictly similar to that of FIGS. 3A and 3B and another derivative of FIGS. 3A and 3B, but which controls a stabilizer with variable geometry.
  • the actuation of the stabilizer is triggered the number of times necessary to put it in the desired position, then the actuation of the elbow element is triggered, without triggering the stabilizer, the number of times desired to put it in the desired position.
  • variable geometry stabilizer and the variable angle bent element are in the desired configurations.
  • Figure 4 shows a trigger sequence that avoids the use of an accurate flow sensor.
  • the debit sequence corresponds to a succession of crossings of two thresholds Q1 and Q2 which must be carried out within a period of less than DT.
  • sequences include a variation of a magnitude of the whole flow rate of the drilling fluid, speed of rotation of at least part of the drill string or weight on the tool in a maximum time, you can impose a minimum time and combine these two time limits.
  • the desired variation should occur in a window in a predetermined time.
  • the detected sequence triggers the command only if the variation of flow rates from Qmini to Qact takes place in a period of time greater than 5 minutes, but less than 10 minutes.

Description

  • La présente invention concerne une méthode et un dispositif pour commander à distance un équipement de train de forage.
  • Généralement, la commande d'un tel équipement se fait par un câble électrique. Or, l'utilisation d'un câble représente une gène considérable pour le foreur du fait de la présence même du câble soit à l'intérieur du train de tiges, soit dans l'espace annulaire entre le train de tiges et les parois du puits.
  • Il a été proposé d'effectuer de telles commandes par la détection d'un seuil de débit ou débit d'activation d'un fluide incompressible, comme décrit dans le brevet FR-2.575.793. De tels dispositifs peuvent présenter des déclenchements intempestifs de l'organe à commander, du fait de l'instabilité des écoulements dans le train de tige de forage.
  • La présente invention évite ces inconvénients et les déclenchements intempestifs ne sont plus possibles car selon la présente invention, on impose la détection d'une séquence prédéterminée d'événements concernant une ou plusieurs grandeurs détectables en fond de puits (séquence qui pourra être également qualifiée de séquence d'information) avant le déclenchement de l'action souhaitée.
  • De telles grandeurs peuvent être notamment des grandeurs liées au fluide s'écoulant dans le train de tiges ou à la liaison mécanique que constitue le train de tiges.
  • On pourra ainsi utiliser le débit de fluides circulant dans le train de tiges, le poids sur l'outil et/ou la vitesse de rotation de l'outil.
  • D'une manière plus générale la présente invention concerne une méthode de télécommande d'au moins un équipement de train de tiges de forage à partir d'une instruction émise depuis la surface, caractérisée en ce qu'elle comporte les étapes suivantes :
    • émission à partir de la surface d'une première séquence d'informations conforme à une séquence prédéterminée,
    • détection d'une deuxième séquence résultant de la transmission de la première séquence et en comparaison de cette deuxième séquence à une autre séquence prédéterminée,
    • commande dudit équipement seulement dans le cas où il y a similitude entre ces deux dernières séquences.
  • Les séquences concernent le débit de fluide de forage et comportent une étape de diminution de débit de la valeur d'un débit en cours de forage jusqu'à un premier niveau de débit, puis une phase de montée en débit dudit premier niveau de débit jusqu'à un deuxième niveau de débit, ladite phase ayant une durée de temps donnée.
  • Il est bien certain que cette autre séquence ne diffère de la séquence prédéterminée émise en surface que pour tenir compte des transformations dues éventuellement à la transmission.
  • Les séquences peuvent concerner en outre, au moins l'une des grandeurs de l'ensemble suivant : vitesse de rotation d'une partie au moins du train de tiges, ou poids de l'outil.
  • La présente invention concerne aussi un dispositif de télécommande d'au moins un équipement de train de tiges de forage à partir d'informations émises en surface.
  • Ce dispositif comporte des moyens d'émission de l'information, des moyens de détection de ladite information, ces derniers étant reliés à des moyens d'actionnement dudit équipement.
  • Les moyens d'émission sont des pompes de fluide de forage situées en surface, les moyens de détection comportent un débimètre et un boîtier de traitement des mesures de débit, une horloge adaptée à, au moins, mesurer la durée d'une montée de débit d'un premier niveau à un deuxième niveau, des moyens de comparaison des informations détectées avec des informations prédéterminées et les moyens d'actionnement comportent au moins une électrovanne, commandée lorsque les informations détectées coïncident avec lesdites informations prédéterminées.
  • L'électrovanne peut mettre en communication, lorqu'elle est excitée, une réserve d'huile sous pression avec une chambre dont la variation de volume entraîne l'actionnement dudit équipement.
  • Le dispositif selon l'invention peut comporter un clapet monté sur une communication entre ladite chambre et ladite réserve et le clapet est ouvert lorsque la pression de l'huile régnant dans la réserve d'huile est inférieure à la pression régnant dans la chambre.
  • L'équipement peut être un élément coudé à angle variable.
  • L'équipement peut être un stabilisateur à géométrie variable.
  • La présente invention sera mieux comprise et ses avantages apparaîtront plus clairement à la description qui suit d'exemples particuliers, nullement limitatifs, illustrés par les figures ci-annexées parmi lesquelles :
    • la figure 1 représente un diagramme logique correspondant à une séquence d'informations concernant une grandeur liée au débit, en l'occurence la différence de pressions entre un point amont d'un venturi et la pression au col de ce venturi,
    • la figure 2 illustre un exemple de variation de la différence de pression en fonction du temps, dans le cas de la séquence de la figure 1,
    • les figures 3A et 3B montrent un dispositif permettant la mise en oeuvre de la méthode selon l'invention,
    • les figures 4 et 5 représentent d'autres types de séquences, et
    • la figure 6 illustre schématiquement un dispositif selon l'invention.
  • Les figures 1 et 2 concernent un exemple simple de séquence fondée sur un débit de fluide. Selon cet exemple, l'actionnement ce fait si le débit de fluide circulant dans le train de tiges passe d'un niveau à un autre dans un laps de temps donné.
  • La mesure de débit se fait par l'intermédiaire d'une mesure de la pression différentielle Pd entre le col 1 où la pression est désignée P₁ et la partie amont 2 où la pression est désignée P₂ d'un venturi 3, ce qui présente l'avantage d'une géométrie simple créant peu de pertes de charge et évite l'utilisation de pièces en mouvement.

    Pd = P₂ - P₁
    Figure imgb0001

  • La mesure de l'écart de pression entre la partie amont 2 et le col 1 du venturi 3 est réalisée par deux capteurs piézorésistifs 4 et 5 dont les ponts de jauges sont connectés en montage différentiel.
  • La plage de tenue des capteurs pourra être de 0 à 750 bars.
  • Leur plage de mesure différentielle pourra être de 0 à 40 bars.
  • La précision de la mesure pourra être de l'ordre de 1 %.
  • Le dispositif selon l'invention pourra comporter un ensemble électronique ayant pour fonctions, dans le cas de l'exemple de la figure 1 :
    • l'alimentation des capteurs 4 et 5 et la réalisation de la mesure ;
    • la détection d'une séquence de débit débutant par un débit nul, ou considéré comme tel Qmini, suivi par le dépassement d'une valeur-seuil Qact, réglable en surface avant la descente dans le puits. Ce dépassement de la valeur-seuil Qact devra se faire dans un laps de temps DT donné qui suit le redémarrage du débit, ce délai DT peut être de 5 à 10 minutes. Ce laps de temps DT écoulé, si la séquence n'a pas été complétée de la manière prévue, l'électronique peut être mise en veille jusqu'à la prochaine coupure de débit. Toute commande d'actionnement est alors impossible ;
    • le réglage de la valeur-seuil de débit qui peut se faire sur la base de 16 positions, l'incrément entre les positions étant de 100 litres par minute pour de l'eau.
  • La figure 2 représente une courbe de variation du débit Q en fonction du temps t.
  • Cette courbe 6 correspond à une séquence de débit donnant lieu, effectivement, à l'actionnement de l'organe à commander
  • Le trait horizontal pointillé correspond au débit Qmini, le trait horizontal supérieur correspond au seuil de débit d'activation ou d'actionnement Qact.
  • Sur ce diagramme, Qfor correspond au débit habituel en cours de forage.
  • On décide de commander à l'instant t₁ le dispositif à actionner.
  • On stoppe alors les pompes en surface, de manière à ce que le débit détecté par l'ensemble électronique soit inférieur à Qmini.
  • La portion 7 de la courbe correspond à la baisse de débit jusqu'au niveau presque nul, en tout cas inférieur à Qmini. Ce niveau est atteint à l'instant t₂.
  • A l'instant t₃, on redémarre les pompes et à t₄ on franchit le seuil Qmini.
  • A partir de cet instant, le système électronique comptabilise le temps, de manière à établir si le délai écoulé entre l'instant t₄ et l'instant t₅ où le débit a atteint le débit Qact, est inférieur à un délai prédéterminé DT.
  • Dans le cas de la figure 2, il a été supposé que la réponse est oui. Après un retard r = t₇ - t₅
    Figure imgb0002
    , il y a actionnement de l'organe à commander jusqu'à l'instant t₈. A partir de ce moment, il est possible de commander l'arrêt des pompes.
  • La partie inférieure de la figure 1 montre un diagramme logique correspondant à ce qui a été décrit en relation avec la figure 2.
  • Le débit Q passant à un instant donné dans le venturi 3 est déterminé à partir des pressions P₁ et P₂, notamment en faisant la différence de ces deux pressions.
  • On effectue ensuite un premier test sur le débit Q, en le comparant à un débit Qmini. Le débit Qmini est faible et peut être voisin de zéro.
  • Dans le cas où le débit Q est inférieur ou égal à Qmini, on initialise l'horloge à zéro, dans le cas contraire on n'intervient pas sur l'horloge.
  • On effectue ensuite un deuxième test, comparant le débit Q à un débit d'actionnement Qact. Si le débit Q est inférieur au débit Qact, on revient à nouveau au premier test, mais avec une nouvelle valeur de débit. Bien entendu, le temps de l'horloge a été incrémenté.
  • Si au deuxième test le débit Q est supérieur au débit Qact, on effectue alors un troisième test sur le temps indiqué par l'horloge.
  • La valeur de cette indication correspond au temps qu'il a fallu au débit pour passer de la valeur Qmini à la valeur Qact.
  • Le troisième test compare cette indication à un délai maximum DT.
  • Si le temps indiqué par l'horloge est inférieur à DT, alors c'est que la séquence de débit est une séquence de commande valide et il y a actionnement, par exemple par l'ouverture d'une électrovanne.
  • Dans le cas contraire, il convient de mettre le système de détection en veille jusqu'à ce que le débit détecté redevienne égal ou inférieur à Qmini.
  • Ceci peut être obtenu comme représenté à la figure 1, c'est-à-dire en revenant au début du premier test et en laissant s'incrémenter le temps de l'horloge.
  • Ainsi, il apparait clairement que, si en cours de phase de forage (ayant déjà duré pendant au moins un temps DT) avec un débit de liquide Qfor il y avait accidentellement une augmentation du débit de forage jusqu'au débit d'actionnement, l'actionnement en lui-même ne sera pas réalisé, car le délai pour passer de Qmini à Qact sera supérieur à DT.
  • Les figures 3A et 3B représentent un mode de réalisation du dispositif selon la présente invention appliqué à l'actionnement d'un élément coudé à angle variable.
  • Selon ce mode de réalisation, un élément de forme tubulaire comporte dans sa partie supérieure un taraudage 8 permettant la liaison mécanique à un train de tiges ou à une garniture de forage et dans sa partie inférieure un filetage 9 permettant la fixation de la suite du train de tiges ou de la garniture de forage.
  • L'élément coudé comporte un arbre 10 pouvant coulisser dans sa partie supérieure dans l'alésage 11 du corps 12 et pouvant coulisser dans sa partie inférieure dans l'alésage 13 du corps 14. Cet arbre comporte des cannelures mâles 15 engrenant dans des cannelures femelles du corps 12, des rainures 16 alternativement droites (parallèles à l'axe du corps tubulaire 12) et obliques (inclinées par rapport à l'axe du corps tubulaire 12), dans lesquelles viennent s'engager des doigts 17 coulissant suivant un axe perpendiculaire à celui du déplacement de l'arbre 10 et maintenus en contact avec l'arbre par des ressorts 18, des cannelures mâles 19 engrenant avec des cannelures femelles du corps 14 uniquement lorsque l'arbre 10 est en position haute.
  • L'arbre 10 est équipé d'un dusage 20 en position basse, en face duquel se trouve une aiguille 21 coaxiale au déplacement de l'arbre 10. Un ressort de rappel 22 maintient l'arbre 10 en position haute, les cannelures 19 engrenant dans les cannelures femelles correspondantes du corps 14. Les corps 12 et 14 sont libres en rotation au niveau de la portée tournante 23, inclinée par rapport aux axes des corps 12 et 14 et composée de rangées de galets cylindriques 74 insérés dans leurs chemins de roulement 25 et extractibles à travers les orifices 26 en démontant la porte 27.
  • Une réserve d'huile 28 est maintenue à la pression du fluide de forage par l'intermédiaire d'un piston libre annulaire 29. L'huile vient lubrifier les surfaces coulissantes de l'arbre 10 par l'intermédiaire du passage 30. Ce passage peut comporter une électrovanne 31.
  • Le dusage 20 est porté par un tube 32 qui est fixé à l'arbre 10 par l'intermédiaire d'une rotule 33. Cette rotule 33 ainsi que la rotule 34 permettent lors du déplacement de l'arbre 10 un fléchissement du tube 32. Ce fléchissement reste faible, puisque l'angle maximum obtenu par les éléments coudés est généralement de quelques degrés.
  • L'arbre 10 comporte un deuxième piston 35. Ce piston 35 définit avec le corps tubulaire 13 une chambre 36. Le piston 35 coulisse dans l'alésage 13 réalisé dans le corps tubulaire 14. La chambre 36 communique par les perçages 37, 38 avec le passage 30 comportant l'électrovanne 31 et donc avec la réserve à huile 28 à travers les perçages 39, 40 et 41.
  • La mise en communication de la réserve à huile 28 et de la chambre 36 s'effectue à travers l'électrovanne 31, lorsqu'il y a une séquence de commande valide, c'est-à-dire correspondant effectivement à l'actionnement de l'équipement à commander.
  • La référence 42 désigne un venturi comportant un col 43, une zone amont 44 et une zone aval 45, un capteur de pression 46 éventuellement différentiel, ou deux capteurs de pression 4 et 5 comme représenté à la figure 1.
  • Ce ou ces capteurs sont connectés par des fils électriques 49 à un boîtier électronique 47 qui réalise la surveillance des débits pour détecter la séquence de commande et déclencher l'actionnement. Pour ce faire, le boîtier électronique 47 est relié par des fils électriques 48 à une électrovanne ou à un électrodistributeur 31.
  • La référence 50 désigne un connecteur extérieur qui permet de communiquer en surface avec le boîtier électronique 47 sans démonter l'ensemble du dispositif selon l'invention. Ce connecteur est relié au boîtier 47 par des fils électriques 51. Il est aussi possible de programmer le boîtier électronique ou d'en vider les mémoires sans démonter le raccord.
  • Lors d'une détection d'une séquence de débit, le boîtier électronique envoie, éventuellement après une temporisation réglable en atelier entre 0 et 60 secondes, un signal de commande, pour l'ouverture de l'électrodistributeur 31, qui aura lieu une fois la séquence de débit détectée. Ce signal de commande peut être maintenu jusqu'au prochain arrêt du débit ou passage du débit au dessous de la valeur Qmini.
  • Le boîtier électronique peut également mémoriser les heures auxquelles un signal de commande aura été transmis.
  • L'alimentation du boîtier électronique pourra se faire par un ensemble de piles rechargeables ou non. La tension d'alimentation peut être de 24 volts, la puissance nécessaire pour le fonctionnement d'un électrodistributeur est de 15 watt.
  • L'ouverture de l'électrovanne 31 met en communication la réserve d'huile 28 avec la chambre 36.
  • Le débit de fluide qui passe à travers le dispositif crée une perte de charge qui provoque un effort tendant à agir sur le piston 29 pour expulser l'huile de la réserve 28 vers la chambre 36.
  • Tant que l'électrovanne 31 est fermée, ceci n'est pas possible et l'équipement n'est donc pas activé.
  • Dès l'instant où l'électrovanne 31 est ouverte, il y a déplacement de l'arbre 10 vers le bas et actionnement du coude à angle variable. La descente de l'arbre 10 vers le bas se fait de manière franche, du fait du système duse 20 - aiguille 21 qui, dès qu'ils coopèrent l'un avec l'autre, provoquent l'augmentation de la perte de charge et par là, accroissent les efforts tendant à faire descendre l'arbre 20.
  • L'aiguille 21 comporte un bourrelet 52 de manière à ce que, lorsque la duse 20 y arrive, il y ait une variation de la perte de charge qui se traduit, à débit constant, par une variation de pression détectable en surface, ce qui informe les opérateurs de ce que l'arbre 10 a atteint sa position basse.
  • La remontée de l'arbre 10 se fait par la baisse ou l'annulation du débit, de telle sorte que les efforts exercés sur les pistons 29 et 35 soient suffisamment faibles pour que le ressort 22 puisse ramener l'arbre 10 dans sa position haute.
  • Afin de limiter le temps d'excitation de l'électrovanne 31 et donc d'économiser de l'énergie électrique, l'électrovanne 31 pourra comporter un clapet autorisant l'écoulement de l'huile vers la réserve d'huile lorsqu'il existe un gradient de pression dans ce sens et bloque l'écoulement lorsque le gradient est dans l'autre sens.
  • La figure 6 illustre schématiquement un tel montage.
  • La référence 53 désigne la réserve d'huile et son piston. Ces références correspondent aux références 29 et 28 de la figure 3A.
  • La référence 54 désigne la chambre de réception du fluide sous pression et le piston de travail qui correspondent sensiblement aux références 16 et 35 de la figure 3B.
  • La référence 55 désigne une électrovanne équipée d'accessoires.
  • La référence 56 désigne l'électrovanne en elle-même.
  • La référence 57 désigne une vanne de sécurité manuelle, la référence 58 un clapet de type anti-retour qui permet de vider la chambre 59 lorsque la pression dans la réserve 60 est plus faible que celle de la chambre 59.
  • La référence 61 désigne un clapet taré autorisant l'écoulement de la réserve 60 vers la chambre 59, si la différence de pression entre ces deux zones est supérieure à une valeur critique qui peut être fixée à 40 ou 50 bars.
  • Bien entendu, on ne sortira pas du cadre de la présente invention en appliquant le dispositif selon la présente invention à un équipement autre qu'un élément coudé à angle variable. Ainsi, la présente invention peut être appliquée à l'actionnement d'un stabilisateur à géométrie variable, tel que celui décrit dans le brevet FR-2.579.662. Dans ce cas, l'arbre 10 sera coaxial aux corps tubulaires 12 et 14 et il sera inutile d'utiliser la rotule 33.
  • On ne sortira pas du cadre de la présente invention en utilisant d'autres types de séquences combinant ou non plusieurs paramètres.
  • Il est donné ci-après des exemples de combinaison de paramètres :
    • 1) débit de fluide supérieur à un seuil donné et poids sur l'outil inférieur à un seuil donné, ou alternativement supérieur à un seuil donné,
    • 2) débit de fluide supérieur à un seuil donné et vitesse de rotation de la garniture comprise dans une plage donnée,
    • 3) la séquence de commande peut être uniquement basée sur des variations du poids exercé sur l'outil de forage,
    • 4) la séquence de commande peut être basée sur les variations du poids exercé sur l'outil de forage, mais à condition que le débit de fluide de forage soit inférieur à un débit donné qui peut être relativement faible ou nul.
  • La présente invention permet de commander deux équipements différents à partir de deux séquences différentes.
  • La figure 5 représente deux courbes 62 et 63 correspondant à deux séquences de débit différentes.
  • La première courbe 62 correspond, par exemple, au déclenchement de l'actionnement d'un coude à angle variable et la deuxième 63 à l'actionnement d'un stabilisateur à géométrie variable et à celle de l'élément coudé à angle variable.
  • Dans cet exemple, on peut considérer que pour déclencher la commande de l'élément coudé à angle variable, il est nécessaire que le débit passe d'un débit Qmini à un débit supérieur à un débit donné Qactcou en un laps de temps inférieur à DT. De même que pour déclencher la commande du stabilisateur à géométrie variable, il est nécessaire que le débit de fluide de forage passe d'un débit Qmini1 à un débit supérieur à un débit donné Qactstab en un laps de temps inférieur à DT1.
  • Sur la figure, on a considéré pour simplifier l'exemple, que :

    Qmini = Qmini1
    Figure imgb0003
    , que DT = DT1
    Figure imgb0004
    et que Qactstab > Qactcou
  • Dans ces conditions, on voit que la séquence de débit correspondant à la courbe 62 qui a dépassé le débit Qactcou dans un délai inférieur à DT sans dépasser le débit Qactstab déclenche l'actionnement de l'élément coudé à angle variable. Alors que la courbe 63 qui a dépassé Qactstab dans un délai inférieur à DT déclenche l'actionnement du stabilisateur à géométrie variable et de l'élément coudé à angle variable.
  • Une telle procédure peut être mise en oeuvre en fixant bout à bout un ensemble strictement similaire à celui des figures 3A et 3B et un autre dérivé des figures 3A et 3B, mais qui commande un stabilisateur à géométrie variable.
  • L'utilisation de la procédure décrite à la figure 5 peut être faite de la manière indiquée ci-dessous.
  • On déclenche l'actionnement du stabilisateur le nombre de fois nécessaire pour le mettre dans la position souhaitée, puis on déclenche l'actionnement de l'élément coudé, sans déclencher le stabilisateur, le nombre de fois souhaité pour le mettre dans la position souhaitée.
  • Ainsi, au terme de ces opérations, le stabilisateur à géométrie variable et l'élément coudé à angle variable sont dans les configurations souhaitées.
  • La figure 4 montre une séquence de déclenchement qui évite l'utilisation d'un capteur de débit précis.
  • La séquence de débit correspond à une succession de franchissements de deux seuils Q₁ et Q₂ qui doivent s'effectuer dans un délai inférieur à DT.
  • Par exemple, dans un laps de temps de 10 mn, il faudrait partir de Q = 0, en fait Q < Q₁, puis avoir Q > Q₂, puis Q < Q₁, puis Q > Q₂, puis Q < Q₁, et enfin Q > Q₂, ceci correspondant à la courbe 64.
  • On peut avoir Q₁ = Q₂
    Figure imgb0005
    .
  • Dans des exemples précédents, il est parfois nécessaire que les séquences comportent une variation d'une grandeur de l'ensemble débit du fluide de forage, vitesse de rotation d'une partie au moins du train de tiges ou poids sur l'outil dans un laps de temps maximum, on peut imposer un laps de temps minimum et combiner ces deux limites en temps.
  • Ainsi, il convient que la variation souhaitée se produise dans une fenêtre en temps prédéterminé.
  • Par exemple, si l'on considère comme grandeur le débit, il peut être convenu que la séquence détectée déclenche la commande que si la variation de débits de Qmini à Qact s'effectue dans un laps de temps supérieur à 5 minutes, mais inférieur à 10 minutes.

Claims (7)

  1. Méthode de télécommande d'au moins un équipement de train de tiges de forage à partir d'une instruction émise depuis la surface comportant les étapes suivantes :
    - émission à partir de la surface d'une première séquence d'informations conforme à une séquence prédéterminée (6, 62, 63),
    - détection d'une deuxième séquence résultant de la transmission de la première séquence et comparaison de cette deuxième séquence à une autre séquence prédéterminée,
    - dans le cas où il y a similitude entre ces deux dernière séquences, on effectue la commande dudit équipement.
    caractérisée en ce que lesdites séquences concernent le débit de fluide de forage et en ce qu'elles comportent une étape de diminution du débit de la valeur d'un débit en cours de forage jusqu'à un premier niveau de débit, puis une phase de montée en débit dudit premier niveau de débit jusqu'à un deuxième niveau de débit, ladite phase ayant une durée de temps (DT) donnée.
  2. Méthode selon la revendication 1, caractérisée en ce que lesdites séquences concernent, outre le débit de forage, au moins l'une des grandeurs de l'ensemble suivant : vitesse de rotation d'une partie au moins du train de tiges, ou poids sur l'outil.
  3. Dispositif de télécommande d'au moins un équipement de train de tiges de forage à partir d'informations émises en surface, comportant des moyens d'émission de ladite information, des moyens de détection de ladite information, ces derniers étant reliés à des moyens d'actionnement dudit équipement, caractérisé en ce que lesdits moyens d'émission sont des moyens de pompage du fluide de forage situés en surface, en ce que les moyens de détection comportent un débimètre (42, 43) et un boîtier de traitement des mesures de débit (47), une horloge adaptée à, au moins, mesurer la durée d'une montée de débit d'un premier niveau à un deuxième niveau, des moyens de comparaison des informations détectées avec des informations prédéterminées et en ce que les moyens d'actionnement comportent au moins une électrovanne (31, 56) commandée lorsque les informations détectées coïncident avec lesdites informations prédéterminées.
  4. Dispositif selon la revendication 3, caractérisée en ce que ladite électrovanne (31, 56) met en communication, lorsqu'elle est excitée, une réserve d'huile sous pression (28, 60) avec une chambre (36, 59) dont la variation de volume entraîne l'actionnement dudit équipement.
  5. Dispositif selon la revendication 4, caractérisé en ce qu'il comporte un clapet (58) monté sur une communication entre ladite chambre et ladite réserve et en ce que le clapet est ouvert lorsque la pression d'huile règnant dans la réserve d'huile est inférieure à la pression règnant dans la chambre.
  6. Dispositif selon l'une des revendications 3 à 5, caractérisé en ce que ledit équipement est un élément coudé à angle variable.
  7. Dispositif selon l'une des revendications 3 à 5, caractérisé en ce que ledit équipement est un stabilisateur à géométrie variable.
EP89403647A 1988-12-30 1989-12-21 Méthode et dispositif de télécommande d'équipement de train de tiges par séquences d'informations Expired - Lifetime EP0377378B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8817604A FR2641387B1 (fr) 1988-12-30 1988-12-30 Methode et dispositif de telecommande d'equipement de train de tiges par sequence d'information
FR8817604 1988-12-30

Publications (2)

Publication Number Publication Date
EP0377378A1 EP0377378A1 (fr) 1990-07-11
EP0377378B1 true EP0377378B1 (fr) 1993-12-29

Family

ID=9373727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403647A Expired - Lifetime EP0377378B1 (fr) 1988-12-30 1989-12-21 Méthode et dispositif de télécommande d'équipement de train de tiges par séquences d'informations

Country Status (5)

Country Link
US (1) US5065825A (fr)
EP (1) EP0377378B1 (fr)
CA (1) CA2006938A1 (fr)
FR (1) FR2641387B1 (fr)
NO (1) NO300393B1 (fr)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2223251A (en) * 1988-07-06 1990-04-04 James D Base Downhole drilling tool system
FR2641320B1 (fr) * 1988-12-30 1991-05-03 Inst Francais Du Petrole Dispositif d'actionnement a distance d'equipement comportant un systeme duse-aiguille
FR2659383B1 (fr) * 1990-03-07 1992-07-10 Inst Francais Du Petrole Dispositif de forage rotary comportant des moyens de reglage en azimut de la trajectoire de l'outil de forage et procede de forage correspondant.
FR2670824B1 (fr) * 1990-12-21 1997-01-24 Inst Francais Du Petrole Dispositif d'actionnement a distance d'un equipement comportant un systeme duse/aiguille et son application a une garniture de forage .
US5283768A (en) * 1991-06-14 1994-02-01 Baker Hughes Incorporated Borehole liquid acoustic wave transducer
FR2679293B1 (fr) * 1991-07-16 1999-01-22 Inst Francais Du Petrole Dispositif d'actionnement associe a une garniture de forage et comportant un circuit hydrostatique en fluide de forage, methode d'actionnement et leur application.
US5318138A (en) * 1992-10-23 1994-06-07 Halliburton Company Adjustable stabilizer
US5332048A (en) * 1992-10-23 1994-07-26 Halliburton Company Method and apparatus for automatic closed loop drilling system
US5318137A (en) * 1992-10-23 1994-06-07 Halliburton Company Method and apparatus for adjusting the position of stabilizer blades
FR2699222B1 (fr) * 1992-12-14 1995-02-24 Inst Francais Du Petrole Dispositif et méthode d'actionnement à distance d'un équipement comportant des moyens de temporisation - Application à une garniture de forage.
US5273113A (en) * 1992-12-18 1993-12-28 Halliburton Company Controlling multiple tool positions with a single repeated remote command signal
DE59509406D1 (de) * 1995-05-23 2001-08-16 Baker Hughes Inc Verfahren und Vorrichtung zur Übertragung von Informationen an einen untertägigen Informationsempfänger
GB2348030B (en) 1995-10-20 2001-01-03 Baker Hughes Inc Communication in a wellbore utilizing acoustic signals
AU6672198A (en) 1997-02-21 1998-09-22 Pes, Inc. Integrated power and control system
US6567013B1 (en) * 1998-08-13 2003-05-20 Halliburton Energy Services, Inc. Digital hydraulic well control system
US6179052B1 (en) 1998-08-13 2001-01-30 Halliburton Energy Services, Inc. Digital-hydraulic well control system
CA2474232C (fr) * 1999-07-12 2007-06-19 Halliburton Energy Services, Inc. Dispositif anti-rotatif pour dispositif de forage rotatif orientable
US6308137B1 (en) 1999-10-29 2001-10-23 Schlumberger Technology Corporation Method and apparatus for communication with a downhole tool
GB2355739B (en) * 1999-10-29 2001-12-19 Schlumberger Holdings Method and apparatus for communication with a downhole tool
EP1163419B1 (fr) 1999-11-10 2004-06-16 Schlumberger Holdings Limited Procede de commande pour systeme de forage orientable
US6871712B2 (en) * 2001-07-18 2005-03-29 The Charles Machine Works, Inc. Remote control for a drilling machine
NO313430B1 (no) * 2000-10-02 2002-09-30 Bernt Reinhardt Pedersen Anordning ved nedihullsventil
GB2406344B (en) * 2003-07-01 2007-01-03 Pathfinder Energy Services Inc Drill string rotation encoding
US20050030036A1 (en) * 2003-08-06 2005-02-10 Baker Hughes Incorporated Side entry leak protection for sondes
US7832500B2 (en) * 2004-03-01 2010-11-16 Schlumberger Technology Corporation Wellbore drilling method
GB2421744A (en) 2005-01-04 2006-07-05 Cutting & Wear Resistant Dev Under-reamer or stabiliser with hollow, extendable arms and inclined ribs
US7222681B2 (en) * 2005-02-18 2007-05-29 Pathfinder Energy Services, Inc. Programming method for controlling a downhole steering tool
US7983113B2 (en) 2005-03-29 2011-07-19 Baker Hughes Incorporated Method and apparatus for downlink communication using dynamic threshold values for detecting transmitted signals
US7518950B2 (en) 2005-03-29 2009-04-14 Baker Hughes Incorporated Method and apparatus for downlink communication
US8408331B2 (en) * 2010-01-08 2013-04-02 Schlumberger Technology Corporation Downhole downlinking system employing a differential pressure transducer
US8570833B2 (en) 2010-05-24 2013-10-29 Schlumberger Technology Corporation Downlinking communication system and method
US8792304B2 (en) * 2010-05-24 2014-07-29 Schlumberger Technology Corporation Downlinking communication system and method using signal transition detection
US9341027B2 (en) 2013-03-04 2016-05-17 Baker Hughes Incorporated Expandable reamer assemblies, bottom-hole assemblies, and related methods
US9284816B2 (en) 2013-03-04 2016-03-15 Baker Hughes Incorporated Actuation assemblies, hydraulically actuated tools for use in subterranean boreholes including actuation assemblies and related methods
US10174560B2 (en) 2015-08-14 2019-01-08 Baker Hughes Incorporated Modular earth-boring tools, modules for such tools and related methods
US9863197B2 (en) * 2016-06-06 2018-01-09 Bench Tree Group, Llc Downhole valve spanning a tool joint and methods of making and using same
US11047208B2 (en) * 2017-08-15 2021-06-29 Schlumberger Technology Corporation Chemical injection system
US11732550B2 (en) 2021-01-26 2023-08-22 Halliburton Energy Services, Inc. Low power consumption electro-hydraulic system with pilot cartridge

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485299A (en) * 1965-10-24 1969-12-23 Schlumberger Technology Corp Methods for controlling well tools in well bores
US4354233A (en) * 1972-05-03 1982-10-12 Zhukovsky Alexei A Rotary drill automatic control system
US3967680A (en) * 1974-08-01 1976-07-06 Texas Dynamatics, Inc. Method and apparatus for actuating a downhole device carried by a pipe string
US4100528A (en) * 1976-09-29 1978-07-11 Schlumberger Technology Corporation Measuring-while-drilling method and system having a digital motor control
US4454598A (en) * 1980-01-21 1984-06-12 Dresser Industries, Inc. Drilling orientation tool
DE3325962A1 (de) * 1983-07-19 1985-01-31 Bergwerksverband Gmbh, 4300 Essen Zielbohrstange fuer drehendes bohrgestaenge mit spuelkanal fuer den untertagebetrieb
DE3428931C1 (de) * 1984-08-06 1985-06-05 Norton Christensen, Inc., Salt Lake City, Utah Vorrichtung zur Fernuebertragung von Informationen aus einem Bohrloch zur Erdoberflaeche waehrend des Betriebs eines Bohrgeraetes
FR2579662B1 (fr) * 1985-04-02 1989-11-10 Smf Int Dispositif de forage a trajectoire controlee
FR2575793B1 (fr) * 1985-01-07 1987-02-27 Smf Int Dispositif d'actionnement a distance d'un equipement associe a un conduit dans lequel circule un fluide incompressible
US4655299A (en) * 1985-10-04 1987-04-07 Petro-Design, Inc. Angle deviation tool
US4734893A (en) * 1986-10-06 1988-03-29 Navigator Mwd, Inc. Apparatus and method for transmitting downhole conditions to the surface
US4811798A (en) * 1986-10-30 1989-03-14 Team Construction And Fabrication, Inc. Drilling motor deviation tool
DE8633905U1 (fr) * 1986-12-18 1988-11-10 Salzgitter Maschinenbau
US4796699A (en) * 1988-05-26 1989-01-10 Schlumberger Technology Corporation Well tool control system and method
US4854397A (en) * 1988-09-15 1989-08-08 Amoco Corporation System for directional drilling and related method of use

Also Published As

Publication number Publication date
FR2641387B1 (fr) 1991-05-31
US5065825A (en) 1991-11-19
CA2006938A1 (fr) 1990-06-30
NO895306L (no) 1990-07-02
NO895306D0 (no) 1989-12-28
NO300393B1 (no) 1997-05-20
EP0377378A1 (fr) 1990-07-11
FR2641387A1 (fr) 1990-07-06

Similar Documents

Publication Publication Date Title
EP0377378B1 (fr) Méthode et dispositif de télécommande d&#39;équipement de train de tiges par séquences d&#39;informations
CA2314831C (fr) Procede de controle du bon fonctionnement du systeme de recuperation de vapeur emise dans une installation de distribution de carburant ainsi qu&#39;installation permettant la mise enoeuvre de ce procede
EP0544560B1 (fr) Système d&#39;actionnement du vérin de manoeuvre d&#39;un train d&#39;atterrissage d&#39;avion
EP1944449B1 (fr) Procédé de détermination des effets du vent sur un store
CA2169895C (fr) Procede et dispositif de regulation d&#39;un ensemble de pompage polyphasique
CA3037781C (fr) Procede d&#39;engagement de deux elements engrenage et dispositif d&#39;entrainement mettant en oeuvre un tel procede
FR3008528A1 (fr) Dispositif de detection de chute pour une ligne de vie ; installation de ligne de vie equipee d&#39;un tel dispositif; methode de detection de chute associee
EP0527678A1 (fr) Procédé de mesure de débit de poudre fluidisée et dispositif de mesure de débit mettant en oeuvre un tel procédé
CA1155390A (fr) Dispositif assurant le deplacement d&#39;un element dans un conduit rempli d&#39;un liquide
EP0270443B1 (fr) Dispositif de commande d&#39;une vanne de démarrage de turbomachine d&#39;aviation
EP0724504B1 (fr) Procede et dispositif de commande d&#39;un verin a double effet actionne par un fluide sous pression
EP3546792B1 (fr) Procede d&#39;engagement de deux elements engrenage et dispositif d&#39;entrainement mettant en oeuvre un tel procede
CH627247A5 (fr)
EP0519794A1 (fr) Dispositif de commande d&#39;emplissage, et d&#39;arrêt automatique à un niveau déterminé, de réservoirs de gaz de pétrole liquéfié (GPL)
FR2764591A1 (fr) Dispositif de compensation de charge d&#39;un engin de manutention
EP0604332A1 (fr) Procédé et dispositif pour la mise en mouvement ou l&#39;arrêt d&#39;un moteur hydraulique entraînant un ensemble présentant une grande inertie
EP2218827A1 (fr) Dispositif permettant de mettre en pression une partie de la paroi d&#39;un puits
EP1411177B1 (fr) Procédé et dispositif pour la détermination de la force portante d&#39;un objet enfoncé dans le sol par vibrofoncage
EP0148690A1 (fr) Dispositif de détection de particules, notamment des particules solides dans un fluide gazeux s&#39;écoulant dans une conduite
EP0818255B1 (fr) Installation de rivetage de garnitures de friction sur leur disque de support
FR2706951A1 (fr)
FR3051205A1 (fr) Realisation de pieux avec un dispositif de forage a outil telescopable.
FR2657140A1 (fr) Limiteur de debit d&#39;un fluide.
FR3139616A3 (fr) Dispositif de pompage d’un lubrifiant
FR2736689A1 (fr) Procedes de mesure de debit ou de commande d&#39;une pompe, pompe et installation de projection de produit de revetement comprenant une telle pompe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): GB IT NL

17Q First examination report despatched

Effective date: 19920129

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: ST. ASSOC. MARIETTI & P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991122

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991231

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001221

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051221