EP1944449B1 - Procédé de détermination des effets du vent sur un store - Google Patents

Procédé de détermination des effets du vent sur un store Download PDF

Info

Publication number
EP1944449B1
EP1944449B1 EP08100200A EP08100200A EP1944449B1 EP 1944449 B1 EP1944449 B1 EP 1944449B1 EP 08100200 A EP08100200 A EP 08100200A EP 08100200 A EP08100200 A EP 08100200A EP 1944449 B1 EP1944449 B1 EP 1944449B1
Authority
EP
European Patent Office
Prior art keywords
wind
sensor means
effects
blind
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08100200A
Other languages
German (de)
English (en)
Other versions
EP1944449A1 (fr
Inventor
Stéphane Lapierre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somfy SA
Original Assignee
Somfy SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somfy SA filed Critical Somfy SA
Publication of EP1944449A1 publication Critical patent/EP1944449A1/fr
Application granted granted Critical
Publication of EP1944449B1 publication Critical patent/EP1944449B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • E04F10/02Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins
    • E04F10/06Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building
    • E04F10/0644Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building with mechanisms for unrolling or balancing the blind
    • E04F10/0659Control systems therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • E04F10/02Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins
    • E04F10/06Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building
    • E04F10/0692Front bars
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • E04F10/02Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins
    • E04F10/06Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building
    • E04F10/0611Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building with articulated arms supporting the movable end of the blind for deployment of the blind
    • E04F10/0618Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building with articulated arms supporting the movable end of the blind for deployment of the blind whereby the pivot axis of the articulation is perpendicular to the roller
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/71Power-operated mechanisms for wings with automatic actuation responsive to temperature changes, rain, wind or noise
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2800/00Details, accessories and auxiliary operations not otherwise provided for
    • E05Y2800/40Physical or chemical protection
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/10Application of doors, windows, wings or fittings thereof for buildings or parts thereof
    • E05Y2900/106Application of doors, windows, wings or fittings thereof for buildings or parts thereof for garages
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/56Operating, guiding or securing devices or arrangements for roll-type closures; Spring drums; Tape drums; Counterweighting arrangements therefor
    • E06B9/68Operating devices or mechanisms, e.g. with electric drive
    • E06B2009/6809Control
    • E06B2009/6818Control using sensors
    • E06B2009/6863Control using sensors sensing wind speed

Definitions

  • the invention relates to a method for determining the effects of wind on a blind or the like and a device for protecting against the effects of wind for a blind or the like.
  • a known solution is to measure the vibration of the moving elements namely the arms or, more commonly, the load bar. As soon as the measured vibration exceeds a certain threshold, set by the installer, a fallback order is transmitted to the actuator controlling the blind. The actuator then causes the winding of the fabric around the winding tube and the folding of the arms.
  • the vibration is generally measured by the acceleration of the movable element in one direction.
  • the demand US 2006/0113936 describes a unidirectional piezoelectric vibration sensor.
  • Such a sensor will therefore have a preferential detection sensitivity.
  • the orientation of the sensor affects the detection sensitivity of the system. Therefore, if the detection direction is parallel to the surface of the deployed canvas, a stress on the structure caused by the wind in a perpendicular direction will be little or not detected while it may be damaging to the blind.
  • a low detection threshold can be defined. In this case, when the structure is biased in the direction of the detection direction of the sensor, it may cause unnecessary withdrawal of the fabric.
  • Document is known DE 198 40 418 a particular blind structure in which a screen is guided circularly.
  • the awning structure is equipped with a sensor to determine the wind actions on the screen.
  • the sensor comprises means for measuring accelerations in a tangential direction and in a radial direction. The signals obtained are then processed by filtering.
  • Patent is known US 3,956,932 a sensor to determine the direction of the wind. It comprises elements heated on the one hand by a heating means and cooled on the other hand by the wind. By determining their temperatures, we deduce those who are most exposed to the wind and therefore the direction of the wind.
  • Patent is known US 4,615,214 an anemometer with piezoelectric elements. It includes several piezoelectric elements distributed in space. Depending on the output signals of these elements, we deduce those who are most exposed to the wind and therefore the direction of the wind.
  • the object of the invention is to provide a method for determining the effects of wind overcoming the aforementioned drawbacks and improving the methods known from the prior art.
  • the invention proposes a method for determining the effects of wind making it possible to overcome the constraints of installing a sensor, in particular sensor orientation constraints and making it possible to obtain the same detection sensitivity of the sensor. whatever its orientation.
  • the invention also relates to a detection device intended to be mounted on a blind or the like to determine the effects of the wind on it.
  • the determination method according to the invention is defined by claim 1.
  • the detection device according to the invention is defined by claim 8.
  • the device for protecting a blind or the like is defined by claim 10.
  • the arm awning 1 shown in FIG. figure 1 comprises a support 2, mounted on the structure of a building, a winding tube 3 driven by a motor 11 on which a web 4 is wound and a load bar 5 connected to the support 2 via articulated arms.
  • the articulated arms comprise two segments 6, 7, the first segment being articulated at one of its ends to the support 2 around a first axis 8, and at the other of its ends at one end of the second segment 7 around a second axis 9.
  • the other end of the second segment 7 is articulated to the load bar 5 about a third axis 10.
  • the fabric 4 is fixed on one side to the winding tube 3 and on the other side to the load bar 5 so as to allow it to wind on the winding tube 3 or its unwinding from the tube 3 by means actuator, such as for example a motor 11 whose power supply is controlled by an electronic control unit 12.
  • actuator such as for example a motor 11 whose power supply is controlled by an electronic control unit 12.
  • a detection device 13 is disposed on the load bar 5 to determine the effect of the wind on the structure. When the measured quantity exceeds a threshold value, the detection device transmits, by radio, to the electronic control unit 12, a folding order of the fabric 4.
  • sensor means having one or more accelerometers may be used.
  • the figure 2 illustrates the use of such a sensor means, detecting the acceleration in two perpendicular directions X 1 and Y 1 , X 2 and Y 2 or X 3 and Y 3 .
  • This figure shows three examples of attaching sensor means 131 (horizontal), 132 (vertical) or 133 (45 °) on the load bar 5.
  • the sensor means 131 detects or measures acceleration along the X 1 and Y 1 axes. Threshold values Xs and Ys have been defined beforehand for each detection axis.
  • the sensor means 132 detects or measures the accelerations along the axes X 2 and Y 2 .
  • the sensor means 133 detects or measures the accelerations along the axes X 3 and Y 3 .
  • the threshold values Xs and Ys are the same for all the sensor means 131, 132 and 133.
  • the directions X 1 , Y 1 , X 2 , Y 2 , X 3 and Y 3 are intrinsic to the structure of the means. sensors, it is noted that the sensing sensitivity or measurement of the sensor means depends on its orientation on the load bar. Although it is possible to obtain the same sensitivity between the sensor 131 and 132 by inverting the threshold values, it is however not possible to obtain the same sensitivity with the sensor 133, as it is oriented. It is therefore not possible to have an operation of a system equipped with such a sensor means which is independent of the orientation of this sensor means.
  • the detection device 13 shown in FIG. figure 9 , mainly comprises a sensor means 231, a logic processing unit 26 and a radio wave transmitter 27.
  • the sensor means 231 comprises two accelerometers 20 and 21.
  • the first accelerometer 20 is intended for the detection and measurement of accelerations along the Y axis 1 and the second accelerometer 21 is intended for the detection and measurement of accelerations. along the X1 axis. Axes X1 and Y1 are perpendicular. These two accelerometers provide signals attacking the logic processing unit 26.
  • the logic processing unit 26 comprises a means 22 for processing the signals supplied by the sensor means 231. It makes it possible to supply a comparison means 23 with a secondary signal intended to be compared with one or more thresholds stored in a memory 25. This comparison means makes it possible to supply a signal triggering the establishment of a control signal within a means for generating a control signal 24. This control signal is then transmitted to the radio wave transmitter. 27 which transmits it in radio form.
  • the detection device comprises in particular software means for governing the determination method object of the invention, modes of execution of which are described in detail below. In particular, these software means may comprise computer programs that may in particular be implemented in the logical processing unit.
  • the means 22 for processing the signals supplied by the sensor means 231 may also comprise software means such as computer programs for calculating the secondary signal.
  • a first embodiment of the determination method according to the invention is described below with reference to the figure 4 .
  • a threshold value Rs is set at the detection device 13.
  • the adjustment can be done by means of a potentiometer or any other similar means.
  • the threshold value is stored in the memory 25.
  • a second step 220 the detection device is fixed on the load bar.
  • This step can be swapped with the previous step but it is easier to perform the operations in the proposed order.
  • Fixing the detection device is for example such that the sensor means it contains is in one of the positions occupied at the figure 3 , that is to say that the axes X 1 , Y 1 and / or X 2 , Y 2 and / or X 3 , Y 3 of the sensor means 231 and / or 232 and / or 233 are parallel (or at least substantially parallel) to the same plane P in which it is desired to measure the effects of the wind. In the case of figure 3 this plane P is perpendicular to the load bar 5.
  • the sensor means can be oriented in this plane P (around the axis of the load bar) indifferently, as shown by the different positions of the sensors 231, 232 and 233.
  • the sensor means can be oriented angularly with respect to an axis perpendicular to the two measurement directions of the sensor means without affecting the determination of the secondary signal representative of the effects of the wind.
  • This signal is therefore independent of the orientation of the sensor in the plane P that is to say independent of its orientation relative to this perpendicular axis.
  • the sensor can be freely installed on an element of the blind as long as its measuring directions remain in the same plane. It is subsequently assumed that the detection device comprises the sensor means 231.
  • the sensor means 231 provides signals representative of the accelerations experienced by the mobile part of the blind on which is fixed the sensor, in this case the load bar. These signals are in this case representative of the projections of the accelerations undergone by the load bar on the detection axes of the accelerometers composing the sensor means, namely, X 1 and Y 1 .
  • the instantaneous values of the signals obtained are respectively denoted Xa and Ya.
  • a fourth step 240 the instantaneous value of a signal representative of the acceleration experienced by the detection device or the load bar is calculated from the instantaneous values of the signals representative of the projections of this acceleration.
  • A the vector representing this resultant acceleration
  • nA the norm of the vector
  • the instantaneous value of the resulting acceleration constitutes a secondary signal representative of the wind effects and independent of the orientation of the sensor means in the plane P.
  • a fifth step 250 the instantaneous value of the acceleration is compared with the threshold value Rs. If this instantaneous value is greater than the threshold value Rs, then the process proceeds to a sixth step 260. In the opposite case, returns to step 230.
  • a timer can be set up before renewing step 230.
  • an order of execution of a security scenario is transmitted by the detection device to the electronic control unit 12 and this order is executed.
  • the scenario begins with a fallback order of the canvas.
  • the figure 5 illustrates this principle of the processing of the measurements of the sensor means.
  • the acceleration vector A does not trigger any scenario while the acceleration vector A 'controls the winding of the fabric 4, the end of the arrow representing the vector A' coming out of the gray zone.
  • the detection device triggers the security scenario for the same solicitation.
  • a first step 310 the detection device is fixed on the load bar as described in step 220.
  • the configuration of the detection device is identical to that of the figure 3 . However, a learning phase is needed here.
  • a configuration operation for associating a specific reference mark OXY, for example orthogonal, with the sensor means.
  • the setting of this new OXY mark is therefore independent of the detection axes X 1 and Y 1 of the sensor means. It is thus independent of the orientation of the detection device. Taking this mark into account by the detection device results in a relationship between the new OXY mark and a mark OX 1 Y 1 corresponding to the detection axes of the sensor (rotation of an angle ⁇ ).
  • the detection device can detect the vertical using the effect of gravity detected by measurement from its accelerometers 20, 21 (the load bar is for example deployed and at rest). From these measurements, the detection device can define an absolute orientation and deduce an identical specific mark regardless of the orientation of the detection device.
  • the X axis of the specific marker can be parallel to the gravitational field.
  • Another way is to place the detection device in a configuration mode.
  • the installer then solicits the load bar by exerting on it an effort.
  • the axis of stress is determined by analysis of the signals provided by the accelerometers 20 and 21 of the sensor means. This axis of stress can then be the axis X of the specific reference.
  • a third means may include learning the specific marker when deploying the canvas or a movement back and forth of the canvas following a specific order.
  • the X axis would be the deployment axis.
  • Other means can be imagined, including the capture of orientation angles of the detection device relative to the vertical by the installer via a human-machine interface.
  • threshold values Xs and Ys are set. These values are stored in the memory 25. These values Xs and Ys respectively correspond to thresholds that must not be exceeded according to each axis X and Y of the set specific reference point OXY.
  • the adjustment can be done through potentiometers or any other means. Alternatively, a threshold value can be applied to several axes, thus making it possible to simplify the electronics by eliminating adjustment means.
  • the sensor means 231 provides signals representative of the accelerations experienced by the moving part of the blind on which is fixed the detection device, in this case the load bar. These signals are in this case representative of the projections of the accelerations undergone by the load bar on the detection axes of the accelerometers composing the sensor means, namely, X 1 and Y 1 .
  • the instantaneous values of the signals obtained are respectively denoted X 1 a and Y 1 a.
  • the measurement is direct from the accelerometers composing the sensor means.
  • the threshold values Xs and Ys can be transcribed in the direct measurement reference (OX1Y1).
  • the threshold values expressed in the direct reference are not constant. They are interdependent.
  • a finer sensitivity of the detection device can be adjusted by determining a specific reference adapted to the blind.
  • One of its axes may correspond to the most constraining axis of stress for the structure of the awning, it may be the direction perpendicular to the deployment of the fabric. For this axis, a threshold value can thus be lower.
  • a sixth step 360 the component Xa is compared with the threshold value Xs. If this quantity Xa is greater than the threshold value Xs, then a step 380 is proceeded to. In the opposite case, the method proceeds to a step 370.
  • a seventh step 370 the component Ya is compared with the threshold value Ys. If this magnitude Ya is greater than the threshold value Ys, then we go to step 380. In the opposite case, we return to step 340. A timer can be set up before renewing step 340. Of course, steps 360 and 370 can be swapped.
  • an order of execution of a security scenario is transmitted by the detection device to the electronic control unit 12 and this order is executed.
  • the scenario begins with a fallback order of the canvas.
  • the figure 8 illustrates this principle of the processing of the measurements of the sensor means.
  • the acceleration vector A does not trigger any scenario while the acceleration vector A 'controls the winding of the fabric 4, the end of the arrow representing the vector A' coming out of the gray zone.
  • the detection device triggers the security scenario for the same solicitation.
  • the method makes it possible to provide a secondary signal representative of wind effects and independent of the orientation of the sensor means in the plane P.
  • This secondary signal can be in particular the intensity of the resultant of the acceleration measured in the plane. P or the intensity and direction of the resultant of the acceleration measured in the plane P or the components, in a particular reference, of the resultant measured in the plane P.
  • the detection device is based on a magnitude representative of the acceleration of the moving part which can be its absolute acceleration, its acceleration variation, its speed or its variation, its position or its variation or any other information that may reflect the effect of the wind on the canvas.
  • the detection device will preferably have an autonomous power source and will preferentially transmit the security commands to the electronic control unit 12 by radio.
  • the signals and quantities supplied by the sensor means, as described above, are processed at the level of the detection device but may very well be processed at the level of the electronic control unit 12.
  • sensor means detecting the acceleration along three axes, for example orthogonal. In this way, the protection of the blind is increased. The previous operating principle then applies in the same way.
  • the use of a sensor detecting the acceleration along three axes is more advantageous than a sensor using only two directions of measurement because the secondary signal is identical whatever the orientation of the sensor, it is not necessary to place the sensor so as to keep the measurement directions in the same plane.
  • the secondary signal is independent of the orientation in the space of the sensor and the installation of the latter on a blind element is then all the more facilitated.
  • the plan for measuring the wind effects of a sensor with two directions of measurement is linked to the installation of the sensor on a movable element of the blind subjected to the effects of wind.
  • a sensor position it measures the effect of the wind depending on the orientation of its two directions of measurement.
  • This plan is defined by both directions. It is either parallel or coplanar to these two directions. If the two measurement directions are coplanar, the plane formed by these two directions corresponds to the measurement plane of the wind effects of the sensor. If the measurement directions are not coplanar, a plane parallel to these two directions can be defined. It corresponds to the measurement plan of the wind effects of the sensor.
  • sensors with parallel wind measurement plans measure the effects of wind in the same plane.
  • several sensors having different measurement directions can have the same plane of measurement of the effects of the wind.
  • the orientation of the sensor in the measurement plane means that the sensor can take different positions as long as its two measurement directions are always parallel or coplanar with the plane chosen for the measurement.
  • the sensor can take different positions to measure the effects of the wind in the plane. selected.
  • the wind effect measured by the sensor can therefore be independent of its orientation in its measurement plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Operating, Guiding And Securing Of Roll- Type Closing Members (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Blinds (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

  • L'invention concerne un procédé de détermination des effets du vent sur un store ou similaire et un dispositif de protection contre les effets du vent pour un store ou similaire.
  • La protection des stores contre les effets du vent est une fonction recherchée par les fabricants. En effet, en cas de bourrasques, la toile du store offre une grande prise au vent et sollicite fortement la structure du store. Celle-ci peut de ce fait se détériorer. Il est à noter que la détérioration du store est plus importante lorsqu'un effort est appliqué sensiblement perpendiculairement à la surface de la toile déployée. De plus, d'un point de vue sécuritaire, il est primordial que le store reste solidement fixé à la structure du bâtiment qu'il équipe. La norme EN13561 spécifie d'ailleurs les contraintes à respecter.
  • Pour répondre à cette exigence, une solution connue consiste à mesurer la vibration des éléments mobiles à savoir les bras ou, plus communément, la barre de charge. Dès que la vibration mesurée dépasse un certain seuil, réglé par l'installateur, un ordre de repli est transmis à l'actionneur commandant le store. L'actionneur provoque alors l'enroulement de la toile autour du tube d'enroulement et le repli des bras.
  • La vibration est généralement mesurée par l'accélération de l'élément mobile selon une direction. Ainsi, la demande US 2006/0113936 décrit un capteur de vibration unidirectionnel type piézo-électrique. Un tel capteur aura donc une sensibilité de détection préférentielle. Ainsi, l'orientation du capteur influe sur la sensibilité de détection du système. Par conséquent, si la direction de détection est parallèle à la surface de la toile déployée, un effort sur la structure provoqué par le vent dans une direction perpendiculaire sera peu ou pas détecté alors qu'il peut être dommageable pour le store. Pour pallier ce problème, un faible seuil de détection peut être défini. Dans ce cas, lorsque la structure est sollicitée dans le sens de la direction de détection du capteur, celui-ci risque de provoquer le repli non nécessaire de la toile.
  • On connaît du document DE 198 40 418 une structure particulière de store dans laquelle un écran est guidé circulairement. La structure de store est équipée d'un capteur pour déterminer les actions du vent sur l'écran. Le capteur comprend un moyen pour mesurer les accélérations selon une direction tangentielle et selon une direction radiale. Les signaux obtenus sont ensuite traités par filtrage.
  • On connaît du brevet US 3,956,932 un capteur pour déterminer la direction du vent. Il comprend des éléments chauffés d'une part par un moyen de chauffage et refroidis d'autre part par le vent. En déterminant leurs températures, on déduit ceux qui sont les plus exposés au vent et donc la direction du vent.
  • On connaît du brevet US 4,615,214 un anémomètre à éléments piézoélectriques. Il comprend plusieurs éléments piézoélectriques répartis dans l'espace. En fonction des signaux de sortie de ces éléments, on déduit ceux qui sont le plus exposés au vent donc la direction du vent.
  • Enfin, on connaît du document EP 1 077 378 un store comprenant un capteur pour déterminer des conditions de vent. Différentes technologies de capteur utilisables sont listées.
  • Le but de l'invention est de fournir un procédé de détermination des effets du vent palliant aux inconvénients précités et améliorant les procédés connus de l'art antérieur. En particulier, l'invention propose un procédé de détermination des effets du vent permettant de s'affranchir de contraintes d'installation d'un capteur, notamment de contraintes d'orientation du capteur et permettant d'obtenir une même sensibilité de détection du capteur quelle que soit son orientation. L'invention concerne aussi un dispositif de détection destiné à être monté sur un store ou similaire pour déterminer les effets du vent sur celui-ci.
  • Dans un premier mode d'exécution, le procédé de détermination selon l'invention est défini par la revendication 1.
  • Différentes variantes sont définies par les revendications 2 à 7.
  • Le dispositif de détection selon l'invention est défini par la revendication 8.
  • Un mode de réalisation est défini par la revendication 9.
  • Selon l'invention, le dispositif de protection d'un store ou similaire est défini par la revendication 10.
  • Des modes de réalisation sont définis par les revendications 11 et 12.
  • L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés sur lesquels :
    • la figure 1 est un schéma d'un store à bras intégrant un mode de réalisation d'un dispositif de protection selon l'invention,
    • la figure 2 décrit le principe de détection de dispositifs de détection représentatifs de l'état de la technique, une coupe transversale d'un store selon un plan P étant représentée,
    • les figures 3, 4 et 5 décrivent le principe de détection d'un dispositif de détection mettant en oeuvre un premier mode d'exécution du procédé de détermination selon l'invention à travers des schémas de principe et un ordinogramme,
    • les figures 6, 7 et 8 décrivent le principe de détection d'un dispositif de détection mettant en oeuvre un deuxième mode d'exécution du procédé de détermination selon l'invention à travers des schémas de principe et un ordinogramme,
    • la figure 9 est un mode de réalisation d'un dispositif de détection selon l'invention.
  • Le store à bras 1 représenté à la figure 1, comprend un support 2, monté sur la structure d'un bâtiment, un tube d'enroulement 3 entraîné par un moteur 11 sur lequel une toile 4 vient s'enrouler et une barre de charge 5 reliée au support 2 par l'intermédiaire de bras articulés.
  • Les bras articulés comprennent deux segments 6, 7, le premier segment étant articulé à l'une de ses extrémités au support 2 autour d'un premier axe 8, et à l'autre de ses extrémités à l'une des extrémités du deuxième segment 7 autour d'un second axe 9. L'autre extrémité du second segment 7 est quant à elle articulée à la barre de charge 5 autour d'un troisième axe 10.
  • La toile 4 est fixée d'un coté au tube d'enroulement 3 et de l'autre côté à la barre de charge 5 de manière à permettre son enroulement sur le tube d'enroulement 3 ou son déroulement depuis le tube 3 par des moyens d'actionnement, comme par exemple un moteur 11 dont l'alimentation est pilotée par une unité électronique de commande 12. Sur la figure 1, la toile est représentée dans un état déroulé.
  • Un dispositif de détection 13 est disposé sur la barre de charge 5 afin de déterminer l'effet du vent sur la structure. Lorsque la grandeur mesurée dépasse une valeur seuil, le dispositif de détection transmet, par radio, à l'unité électronique de commande 12, un ordre de repli de la toile 4.
  • Il existe différents moyens pour déterminer l'effet du vent. Par exemple, on peut utiliser des moyens capteurs munis d'un ou plusieurs accéléromètres. La figure 2 illustre l'utilisation d'un tel moyen capteur, détectant l'accélération selon deux directions perpendiculaires X1 et Y1, X2 et Y2 ou X3 et Y3. Cette figure représente trois exemples de fixation de moyen capteur 131 (à l'horizontale), 132 (à la verticale) ou 133 (à 45°) sur la barre de charge 5. Dans le premier exemple, le moyen capteur 131 détecte ou mesure les accélérations selon les axes X1 et Y1. Des valeurs seuils Xs et Ys ont été définies préalablement pour chaque axe de détection. Tant que les accélérations ne dépassent pas les seuils précédents, c'est-à-dire, tant que le résultat des mesures se situe dans la zone grise, aucun signal n'est transmis à l'unité électronique de commande 12. Par contre, dès qu'une valeur seuil est dépassée, un ordre de repli de la toile est transmis à l'unité électronique de commande 12. Le principe est le même dans les autres exemples de fixation. Le moyen capteur 132 détecte ou mesure les accélérations selon les axes X2 et Y2. Le moyen capteur 133 détecte ou mesure les accélérations selon les axes X3 et Y3. Dans cette illustration, les valeurs seuils Xs et Ys sont les mêmes pour tous les moyens capteurs 131, 132 et 133. Les directions X1, Y1, X2, Y2, X3 et Y3 étant intrinsèques à la structure des moyens capteurs, on note que la sensibilité de détection ou de mesure du moyen capteur dépend de son orientation sur la barre de charge. Même si on peut obtenir une même sensibilité entre le capteur 131 et 132 en inversant les valeurs de seuil, il n'est en revanche pas possible d'obtenir une même sensibilité avec le capteur 133, tel qu'il est orienté. Il n'est donc pas possible d'avoir un fonctionnement d'un système muni d'un tel moyen capteur qui soit indépendant de l'orientation de ce moyen capteur.
  • Le dispositif de détection 13, représenté à la figure 9, comprend principalement un moyen capteur 231, une unité logique de traitement 26 et un émetteur d'ondes radioélectriques 27.
  • Le moyen capteur 231 comprend deux accéléromètres 20 et 21. Le premier accéléromètre 20 est destiné à la détection et à la mesure d'accélérations selon l'axe Y1 et le deuxième accéléromètre 21 est destiné à la détection et à la mesure d'accélérations selon l'axe X1. Les axes X1 et Y1 sont perpendiculaires. Ces deux accéléromètres fournissent des signaux attaquant l'unité logique de traitement 26.
  • L'unité logique de traitement 26 comprend un moyen 22 de traitement des signaux fournis par le moyen capteur 231. Il permet de fournir à un moyen 23 de comparaison un signal secondaire destiné à être comparé à un ou plusieurs seuils stockés dans une mémoire 25. Ce moyen de comparaison permet de fournir un signal déclenchant l'établissement d'un signal de commande au sein d'un moyen de génération d'un signal de commande 24. Ce signal de commande est ensuite transmis à l'émetteur d'ondes radioélectriques 27 qui émet celui-ci sous forme radioélectrique. Le dispositif de détection comprend notamment des moyens logiciels pour régir le procédé de détermination objet de l'invention dont des modes d'exécution sont décrits en détail plus bas. En particulier, ces moyens logiciels peuvent comprendre des programmes informatiques qui peuvent notamment être mis en oeuvre dans l'unité logique de traitement. Le moyen 22 de traitement des signaux fournis par le moyen capteur 231 peut également comprendre des moyens logiciels comme des programmes informatiques de calcul du signal secondaire.
  • Un premier mode d'exécution du procédé de détermination selon l'invention est décrit ci-après en référence à la figure 4.
  • Dans une première étape 210, une valeur seuil Rs est réglée au niveau du dispositif de détection 13. Le réglage peut se faire par le biais d'un potentiomètre ou de tout autre moyen analogue. La valeur seuil est stockée dans la mémoire 25.
  • Dans une deuxième étape 220, le dispositif de détection est fixé sur la barre de charge. Cette étape peut être intervertie avec l'étape précédente mais il est plus simple d'effectuer les opérations dans l'ordre proposé. La fixation du dispositif de détection est par exemple telle que le moyen capteur qu'il contient se trouve dans l'une des positions occupées à la figure 3, c'est-à-dire que les axes X1, Y1 et/ou X2, Y2 et/ou X3, Y3 du moyen capteur 231 et/ou 232 et/ou 233 sont parallèles (ou au moins sensiblement parallèles) à un même plan P dans lequel on souhaite mesurer les effets du vent. Dans le cas de la figure 3, ce plan P est perpendiculaire à la barre de charge 5. En revanche, le moyen capteur peut être orienté dans ce plan P (autour de l'axe de la barre de charge) de manière indifférente, comme le montrent les différentes positions des capteurs 231, 232 et 233. En d'autres termes, le moyen capteur peut être orienté angulairement par rapport à un axe perpendiculaire aux deux directions de mesure du moyen capteur sans affecter la détermination du signal secondaire représentatif des effets du vent. Ce signal est donc indépendant de l'orientation du capteur dans le plan P c'est-à-dire indépendant de son orientation par rapport à cet axe perpendiculaire. De ce fait, le capteur peut être installé librement sur un élément du store pour autant que ses directions de mesure restent toujours dans un même plan. On suppose par la suite que le dispositif de détection comprend le moyen capteur 231.
  • Dans une troisième étape 230, le moyen capteur 231 fournit des signaux représentatifs des accélérations subies par la partie mobile du store sur laquelle est fixé le capteur, en l'espèce la barre de charge. Ces signaux sont dans ce cas représentatifs des projections des accélérations subies par la barre de charge sur les axes de détection des accéléromètres composant le moyen capteur, à savoir, X1 et Y1. Les valeurs instantanées des signaux obtenus sont respectivement notées Xa et Ya.
  • Dans une quatrième étape 240, la valeur instantanée d'un signal représentatif de l'accélération subie par le dispositif de détection ou la barre de charge est calculée à partir des valeurs instantanées des signaux représentatifs des projections de cette accélération. On note A le vecteur représentant cette accélération résultante, sa valeur instantanée nA (la norme du vecteur) vaut : nA = Xa 2 + Ya 2
    Figure imgb0001
  • La valeur instantanée de l'accélération résultante constitue un signal secondaire représentatif des effets du vent et indépendant de l'orientation du moyen capteur dans le plan P.
  • Dans une cinquième étape 250, la valeur instantanée de l'accélération est comparée à la valeur seuil Rs. Si cette valeur instantanée est plus grande que la valeur seuil Rs, alors le procédé passe à une sixième étape 260. Dans le cas contraire, on retourne à l'étape 230. Une temporisation peut être mise en place avant de renouveler l'étape 230.
  • Dans la sixième étape 260, un ordre d'exécution d'un scénario de sécurité est transmis par le dispositif de détection à l'unité électronique de commande 12 puis cet ordre est exécuté. Généralement, le scénario commence par un ordre de repli de la toile.
  • La figure 5 illustre ce principe du traitement des mesures du moyen capteur. Le vecteur accélération A ne déclenche aucun scénario alors que le vecteur accélération A' commande l'enroulement de la toile 4, l'extrémité de la flèche représentant le vecteur A' sortant de la zone grise.
  • En revenant à la figure 3, il apparaît alors que quelle que soit l'orientation du moyen capteur, la sensibilité de détection est toujours la même. Le dispositif de détection déclenche le scénario de sécurité pour une même sollicitation.
  • Un deuxième mode d'exécution du procédé de détermination selon l'invention est décrit ci-après en référence à la figure 7.
  • Dans une première étape 310, le dispositif de détection est fixé sur la barre de charge comme décrit à l'étape 220. La configuration du dispositif de détection est identique à celle de la figure 3. Cependant, une phase d'apprentissage est ici nécessaire.
  • Dans une deuxième étape 320, l'installateur effectue une opération de configuration permettant d'associer un repère spécifique OXY, par exemple orthogonal, au moyen capteur. Le réglage de ce nouveau repère OXY est donc indépendant des axes de détection X1 et Y1 du moyen capteur. Il est ainsi indépendant de l'orientation du dispositif de détection. La prise en compte de ce repère par le dispositif de détection se traduit par une relation entre le nouveau repère OXY et un repère OX1Y1 correspondant aux axes de détection du capteur (rotation d'un angle α).
  • Pour définir ce repère spécifique, différents modes d'apprentissage sont envisageables. Le dispositif de détection peut détecter la verticale en utilisant l'effet de la gravité détecté par mesure à partir de ses accéléromètres 20, 21 (la barre de charge étant par exemple déployée et au repos). A partir de ces mesures, le dispositif de détection peut définir une orientation absolue et déduire un repère spécifique identique quelle que soit l'orientation du dispositif de détection. L'axe X du repère spécifique pouvant être parallèle au champ de gravitation.
  • Un autre moyen consiste à placer le dispositif de détection dans un mode de configuration. L'installateur sollicite alors la barre de charge en exerçant sur celle-ci un effort. L'axe de sollicitation est déterminé par analyse des signaux fournis par les accéléromètres 20 et 21 du moyen capteur. Cet axe de sollicitation peut alors constituer l'axe X du repère spécifique.
  • Un troisième moyen peut comprendre un apprentissage du repère spécifique lors du déploiement de la toile ou un mouvement de va-et-vient de la toile suite à un ordre spécifique. L'axe X correspondrait à l'axe de déploiement. D'autres moyens peuvent être imaginés, notamment la saisie d'angles d'orientation du dispositif de détection par rapport à la verticale par l'installateur via une interface homme-machine.
  • Dans une troisième étape 330, des valeurs de seuil Xs et Ys sont réglées. Ces valeurs sont stockées dans la mémoire 25. Ces valeurs Xs et Ys correspondent respectivement à des seuils à ne pas dépasser selon chaque axe X et Y du repère spécifique réglé OXY. Le réglage peut se faire par le biais de potentiomètres ou tout autre moyen. Alternativement, une valeur seuil peut s'appliquer à plusieurs axes, permettant ainsi de simplifier l'électronique en supprimant des moyens de réglages.
  • Dans une quatrième étape 340, le moyen capteur 231 fournit des signaux représentatifs des accélérations subies par la partie mobile du store sur laquelle est fixé le dispositif de détection, en l'espèce la barre de charge. Ces signaux sont dans ce cas représentatifs des projections des accélérations subies par la barre de charge sur les axes de détection des accéléromètres composant le moyen capteur, à savoir, X1 et Y1. Les valeurs instantanées des signaux obtenus sont respectivement notées X1a et Y1a. Tout comme précédemment, la mesure est directe à partir des accéléromètres composant le moyen capteur.
  • Dans une cinquième étape 350, les mesures obtenues précédemment X1a et Y1a sont converties dans le repère spécifique prédéfini OXY par transformation de rotation et donnent les grandeurs Xa et Ya. Elles s'expriment comme suit : Xa = X 1 a × cos α + Y 1 a × sin α
    Figure imgb0002
    Ya = - X 1 a × sin α + Y 1 a × cos α
    Figure imgb0003
    avec α angle algébrique entre X et X1.
  • Ces grandeurs constituent un signal secondaire représentatif des effets du vent et indépendant de l'orientation du moyen capteur dans le plan P.
  • D'une manière alternative, les valeurs seuils Xs et Ys peuvent être transcrites dans le repère direct de mesure (OX1Y1). Dans ce cas, les valeurs seuils exprimées dans le repère direct ne sont pas constantes. Elles sont interdépendantes.
  • Avantageusement, une sensibilité plus fine du dispositif de détection peut être réglée en déterminant un repère spécifique adapté au store. Un de ses axes peut correspondre à l'axe de sollicitation le plus contraignant pour la structure du store, ce peut être la direction perpendiculaire au déploiement de la toile. Pour cet axe, une valeur seuil peut ainsi être plus faible.
  • Dans une sixième étape 360, la composante Xa est comparée à la valeur seuil Xs. Si cette grandeur Xa est plus grande que la valeur seuil Xs, alors on passe à une étape 380. Dans le cas contraire, le procédé passe à une étape 370.
  • Dans une septième étape 370, la composante Ya est comparée à la valeur seuil Ys. Si cette grandeur Ya est plus grande que la valeur seuil Ys, alors on passe à l'étape 380. Dans le cas contraire, on retourne à l'étape 340. Une temporisation peut être mise en place avant de renouveler l'étape 340. Bien entendu, les étapes 360 et 370 peuvent être interverties.
  • Dans la huitième étape 380, un ordre d'exécution d'un scénario de sécurité est transmis par le dispositif de détection à l'unité électronique de commande 12 puis cet ordre est exécuté. Généralement, le scénario commence par un ordre de repli de la toile.
  • La figure 8 illustre ce principe du traitement des mesures du moyen capteur. Le vecteur accélération A ne déclenche aucun scénario alors que le vecteur accélération A' commande l'enroulement de la toile 4, l'extrémité de la flèche représentant le vecteur A' sortant de la zone grise.
  • En revenant à la figure 6, il apparaît alors que quelle que soit l'orientation du moyen capteur, la sensibilité de détection est toujours la même. Le dispositif de détection déclenche le scénario de sécurité pour une même sollicitation. En effet, le procédé permet de fournir un signal secondaire représentatif des effets du vent et indépendant de l'orientation du moyen capteur dans le plan P. Ce signal secondaire pouvant être notamment l'intensité de la résultante de l'accélération mesurée dans le plan P ou l'intensité et la direction de la résultante de l'accélération mesurée dans le plan P ou les composantes, dans un repère particulier, de la résultante mesurée dans le plan P.
  • Quel que soit le mode de réalisation retenu, il est préférable de confirmer la mesure en se basant sur une moyenne de plusieurs mesures. Cela permet d'éviter des mesures parasites. Pour exécuter le scénario de sécurité, le dispositif de détection se base sur une grandeur représentative de l'accélération de la partie mobile qui peut être son accélération absolue, sa variation d'accélération, sa vitesse ou sa variation, sa position ou sa variation ou toute autre information pouvant refléter l'effet du vent sur la toile. Le dispositif de détection aura de préférence une source d'alimentation autonome et transmettra préférentiellement les ordres sécuritaires à l'unité électronique de commande 12 par radio. Les signaux et grandeurs fournis par les moyens capteurs, tel que décrit précédemment, sont traités au niveau du dispositif de détection mais peuvent très bien l'être également au niveau de l'unité électronique de commande 12. Enfin, il est intéressant d'utiliser un moyen capteur détectant l'accélération selon trois axes, par exemple orthogonaux. De cette manière, la protection du store est accrue. Le principe de fonctionnement précédent s'applique alors de la même manière.
  • L'utilisation d'un capteur détectant l'accélération selon trois axes est plus avantageuse qu'un capteur n'utilisant que deux directions de mesure car le signal secondaire est identique quelle que soit l'orientation du capteur, il n'est pas besoin de placer le capteur de manière à conserver les directions de mesure dans un même plan. Ainsi, le signal secondaire est indépendant de l'orientation dans l'espace du capteur et l'installation de ce dernier sur un élément du store en est alors d'autant plus facilitée.
  • Dans cette demande, on entend par un « plan choisi pour la mesure des effets du vent », lorsqu'un capteur à deux directions de mesures est utilisé, le plan dans lequel l'utilisateur souhaite mesurer les effets du vent. Pour mesurer les effets du vent dans un tel plan, il est alors nécessaire que les directions de mesures du capteur soient parallèles ou coplanaires à ce plan. Dans les figures 3 et 6, le plan est perpendiculaire à la barre de charge et les directions de mesures sont coplanaires.
  • Le plan de mesure des effets du vent d'un capteur à deux directions de mesures est lié à l'installation du capteur sur un élément mobile du store soumis aux effets du vent. Ainsi, pour une position du capteur, celui-ci mesure l'effet du vent en fonction de l'orientation de ses deux directions de mesure. Ce plan est défini par les deux directions. Il est soit parallèle, soit coplanaire à ces deux directions. Si les deux directions de mesure sont coplanaires, le plan formé par ces deux directions correspond au plan de mesure des effets du vent du capteur. Si les directions de mesure ne sont pas coplanaires, un plan parallèle à ces deux directions peut être défini. Il correspond au plan de mesure des effets du vent du capteur.
  • On considère que des capteurs ayant des plans de mesure des effets du vent parallèles mesurent les effets du vent dans un même plan. Ainsi, plusieurs capteurs ayant des directions de mesure différentes peuvent avoir un même plan de mesure des effets du vent.
  • « L'orientation du capteur dans le plan de mesure » signifie que le capteur peut prendre différentes positions pourvu que ses deux directions de mesure soient toujours parallèles ou coplanaires au plan choisi pour la mesure.
  • En conséquence, lorsque l'utilisateur choisit un plan pour la mesure des effets du vent, ce plan étant lié à l'installation du capteur sur un élément mobile du store, le capteur peut prendre différentes positions pour mesurer les effets du vent dans le plan choisi. L'effet du vent mesuré par le capteur peut donc être indépendant de son orientation dans son plan de mesure.

Claims (12)

  1. Procédé de détermination des effets du vent sur un store (1) ou similaire muni d'un moyen capteur (231) mesurant les effets du vent dans un plan de mesure (P) défini par des première et deuxième directions de mesure du moyen capteur (X1, Y1), les deux directions étant distinctes, le procédé comprenant les étapes suivantes :
    - recueillir, du moyen capteur, au moins un premier signal représentatif des effets du vent sur le store ou similaire selon la première direction de mesure et un deuxième signal représentatif des effets du vent sur le store ou similaire selon la deuxième direction de mesure,
    caractérisé en ce qu'il comprend l'étape :
    - traiter les signaux recueillis de manière à fournir un signal secondaire représentatif des effets du vent et indépendant de l'orientation du moyen capteur dans le plan de mesure afin d'obtenir une même sensibilité de détection du moyen capteur quelle que soit son orientation.
  2. Procédé de détermination selon la revendication 1, caractérisé en ce qu'il comprend une étape préliminaire de positionnement du moyen capteur, l'orientation du moyen capteur étant indifférente pourvu que les première et deuxième directions de mesure soient parallèles à un plan choisi pour la mesure des effets du vent.
  3. Procédé de détermination selon la revendication 1, caractérisé en ce que le moyen capteur mesure également les effets du vent selon une troisième direction de mesure, les trois directions de mesure étant distinctes les unes des autres, et en ce qu'il comprend une étape dans laquelle on recueille, du moyen capteur, un troisième signal représentatif des effets du vent sur le store ou similaire selon la troisième direction de mesure.
  4. Procédé de détermination selon la revendication 3, caractérisé en ce qu'il comprend une étape préliminaire de positionnement du moyen capteur, l'orientation du moyen capteur dans l'espace étant indifférente.
  5. Procédé de détermination selon l'une des revendications précédentes, caractérisé en ce que le signal secondaire est l'intensité de la résultante des signaux représentatifs des effets du vent sur les différentes directions ou l'intensité et la direction de la résultante des signaux représentatifs des effets du vent sur les différentes directions.
  6. Procédé de détermination selon l'une des revendications 1 à 4, caractérisé en ce qu'il comprend une étape préliminaire de détermination d'axes (X, Y) propres au store ou similaire et en ce que le signal secondaire consiste en des composantes de la résultante des signaux représentatifs des effets du vent selon ces axes propres.
  7. Procédé de détermination selon la revendication 6, caractérisé en ce que l'étape préliminaire de détermination comprend une sous-étape dans laquelle on exerce une action mécanique sur le store ou similaire, une sous-étape dans laquelle le moyen capteur détermine la direction de cette action et une sous-étape dans laquelle on utilise cette direction pour définir l'un des axes propres du store ou similaire.
  8. Dispositif de détection (13) destiné à être monté sur un store (1) ou similaire, comprenant un moyen capteur (231) mesurant les effets du vent selon au moins une première direction de mesure (X1) et une deuxième direction de mesure (Y1), les deux directions étant distinctes, caractérisé en ce qu'il comprend des moyens matériels (231, 20, 21, 22, 23, 24, 25, 26) et logiciels de mise en oeuvre du procédé selon l'une des revendications précédentes.
  9. Dispositif de détection (13) selon la revendication précédente, caractérisé en ce que le moyen capteur comprend au moins un accéléromètre (20, 21).
  10. Dispositif de protection d'un store ou similaire comprenant un dispositif de détection (13) selon la revendication 8 ou 9.
  11. Dispositif de protection selon la revendication 10, caractérisé en ce que le traitement des signaux est effectué au niveau du dispositif de détection ou au niveau d'une unité électronique de commande (12).
  12. Dispositif de protection selon la revendication 10 ou 11, caractérisé en ce qu'il comprend des moyens (27, 12) pour commander un ordre de repli du store ou similaire lorsque le signal secondaire ou l'une des composantes du signal secondaire franchit à la hausse un seuil prédéterminé.
EP08100200A 2007-01-10 2008-01-08 Procédé de détermination des effets du vent sur un store Active EP1944449B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0700155A FR2911163B1 (fr) 2007-01-10 2007-01-10 Procede de determination des effets du vent sur un store

Publications (2)

Publication Number Publication Date
EP1944449A1 EP1944449A1 (fr) 2008-07-16
EP1944449B1 true EP1944449B1 (fr) 2013-03-27

Family

ID=38324164

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08100200A Active EP1944449B1 (fr) 2007-01-10 2008-01-08 Procédé de détermination des effets du vent sur un store

Country Status (7)

Country Link
US (1) US8050885B2 (fr)
EP (1) EP1944449B1 (fr)
JP (1) JP2008208701A (fr)
CN (1) CN101349140B (fr)
AU (1) AU2008200071B2 (fr)
CA (1) CA2617023C (fr)
FR (1) FR2911163B1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8887785B2 (en) * 2009-08-11 2014-11-18 Carefree/Scott Fetzer Co. Awning control with multidimensional motion sensing
FR2955956B1 (fr) 2010-02-04 2013-06-28 Somfy Sas Capteur de mouvement pour dispositif domotique.
CN101782474A (zh) * 2010-03-29 2010-07-21 上海建科检验有限公司 对于遮阳产品性能的测试方法
CN101782773A (zh) * 2010-03-29 2010-07-21 上海建科检验有限公司 测试遮阳产品性能的控制系统
FR2964758B1 (fr) 2010-09-15 2012-10-05 Somfy Sas Capteur communicant autonome et extra-plat.
ES2432093B1 (es) * 2011-03-25 2014-09-05 Gaviota Simbac, S.L. Equipo de protección automatizada para toldos y voladizos frente a esfuerzos y causas externas
CN103383313B (zh) * 2012-05-03 2016-04-13 上海建科检验有限公司 曲臂遮阳篷抗风压试验装置
CN105259928B (zh) * 2015-11-13 2017-11-03 上海斐讯数据通信技术有限公司 根据风向调整设备方向的方法及装置
US10612301B2 (en) * 2017-07-24 2020-04-07 Crestron Electronics, Inc. System and method for leveling a motorized window treatment
EP3456898A1 (fr) * 2017-09-07 2019-03-20 Lippert Components Inc. Prévention des dommages du vent sur un auvent rétractable
JP7094830B2 (ja) * 2018-08-22 2022-07-04 シャープ株式会社 ブラインド
US11396772B2 (en) 2019-12-10 2022-07-26 Crestron Electronics, Inc. Obstacle and pulling detection in a clutch based roller shade

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956932A (en) * 1975-01-29 1976-05-18 Nasa Wind sensor
US4480480A (en) * 1981-05-18 1984-11-06 Scott Science & Technology, Inc. System for assessing the integrity of structural systems
US4615214A (en) * 1985-05-06 1986-10-07 Burns Joseph R Piezoelectric wind sensor
DE4009373A1 (de) * 1990-03-23 1991-09-26 Somfy Feinmech & Elektrotech Verfahren und vorrichtung zur positionssteuerung und -ueberwachung einer markise o. dgl.
US5959613A (en) * 1995-12-01 1999-09-28 Immersion Corporation Method and apparatus for shaping force signals for a force feedback device
DE19840418C2 (de) * 1998-09-04 2003-04-24 Martin Argast Sonnenschutzvorrichtung
DE19932153C1 (de) * 1999-07-12 2000-11-23 Dorma Gmbh & Co Kg Schiebetür
DE10033831A1 (de) * 1999-07-14 2001-03-08 Warema Renkhoff Gmbh & Co Kg Windmesser für Sonnenschutzanlage
AU778068B2 (en) * 2000-01-31 2004-11-11 Turnils A.B. Awning assembly and control system
US7328624B2 (en) * 2002-01-23 2008-02-12 Cidra Corporation Probe for measuring parameters of a flowing fluid and/or multiphase mixture
CN2695579Y (zh) * 2004-05-13 2005-04-27 刘三彦 一种根据风速自动开关的窗户
US7242162B2 (en) * 2004-11-22 2007-07-10 Carefree/Scott Fetzer Company Apparatus and method for retracting awning
US7342375B2 (en) * 2005-06-29 2008-03-11 Paul R Johansen Automatic storm shutter control
CN100390838C (zh) * 2006-07-18 2008-05-28 南京师范大学 广告牌风力载荷的卸载方法及抗强风广告牌

Also Published As

Publication number Publication date
AU2008200071B2 (en) 2013-10-10
JP2008208701A (ja) 2008-09-11
CN101349140B (zh) 2012-11-21
AU2008200071A1 (en) 2008-07-24
EP1944449A1 (fr) 2008-07-16
FR2911163A1 (fr) 2008-07-11
CN101349140A (zh) 2009-01-21
FR2911163B1 (fr) 2009-04-03
US8050885B2 (en) 2011-11-01
CA2617023A1 (fr) 2008-07-10
CA2617023C (fr) 2015-06-02
US20080163685A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
EP1944449B1 (fr) Procédé de détermination des effets du vent sur un store
US8620475B2 (en) Operating system for roller blinds with protection against excessive wind
EP2075401B1 (fr) Procédé de réglage d'une installation de protection solaire motorisée ne comprenant pas de butée franche
FR2679031A1 (fr) Machine d'equilibrage pour des roues de vehicules automobiles.
EP0969161B1 (fr) Store motorisé avec automatisme de sécurité
CA1080190A (fr) Methode et dispositif de rangement automatique d'un element allonge flexible dans un panier tournant d'axe vertical
EP2710215B1 (fr) Tête d'actionneur électromécanique de manoeuvre d'un élément enroulable
EP1845217A1 (fr) Procédé de commande et installation de store commandée par ce procédé
EP2376737B1 (fr) Store vénitien extérieur avec un système de capteur pour déterminer les effets du vent
FR2975773A1 (fr) Capteur de couple de rotation
EP2354424A2 (fr) Capteur de mouvement pour dispositif domotique
EP2652234B1 (fr) Procédé de fonctionnement d'un actionneur de manoeuvre d'un volet roulant
EP1752597B1 (fr) Procédé de commande d'un dispositif domotique comprenant un écran sensible au vent et dispositif domotique pour sa mise en oeuvre
EP1689963B1 (fr) Procede d'initialisation et de commande d'une installation
FR3015543A1 (fr) Dispositif de commande d'ouverture et de fermeture d'une porte d'aeronef
FR2816465A1 (fr) Dispositif pour arreter un moteur d'entrainement d'un tube d'enroulement d'un store, en fonction d'une mesure du couple exerce sur ledit moteur
EP4240648A1 (fr) Dispositif et système de largage, de maintien en vol et de récupération d'un aérostat captif
EP3652065A1 (fr) Procédé et dispositif de détermination de la direction et de l'amplitude d'un effort appliqué sur une nacelle de propulsion pour bateau
WO2014202630A1 (fr) Sonde mécanique de niveau de chargement d'un réservoir, et procédé de mesure de niveau de chargement utilisant une telle sonde mécanique
FR3103550A1 (fr) Dispositif de mesure d’une longueur de cable entrainee par un treuil
FR3098294A1 (fr) Dispositif de mesure de l’écartement de deux éléments d’un appareil tendeur d’une caténaire
WO2008043949A1 (fr) Dispositif d'évaluation du poids d'un occupant d'un siège d'un véhicule automobile
FR2930666A1 (fr) Unite de detection protegee contre l'arrachement et/ou l'effraction et systeme comprenant au moins une telle unite
FR2962408A1 (fr) Dispositif de recuperation et, de preference, de lancement d'objet volant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20081218

17Q First examination report despatched

Effective date: 20090203

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602008023180

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: E05F0015200000

Ipc: E04F0010060000

RIC1 Information provided on ipc code assigned before grant

Ipc: E05F 15/20 20060101ALI20120704BHEP

Ipc: E06B 9/68 20060101ALI20120704BHEP

Ipc: E04F 10/06 20060101AFI20120704BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 603517

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008023180

Country of ref document: DE

Effective date: 20130529

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUGNION S.A., CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 603517

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130327

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130628

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130727

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130729

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008023180

Country of ref document: DE

Effective date: 20140103

BERE Be: lapsed

Owner name: SOMFY SAS

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140108

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140108

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080108

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008023180

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008023180

Country of ref document: DE

Owner name: SOMFY ACTIVITES SA, FR

Free format text: FORMER OWNER: SOMFY SAS, CLUSES, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230130

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230110

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 17

Ref country code: CH

Payment date: 20240202

Year of fee payment: 17