EP0377378B1 - Verfahren und Vorrichtung zum Fernsteuern einer Bohrgestängeeinrichtung mittels einer Informationsfolge - Google Patents

Verfahren und Vorrichtung zum Fernsteuern einer Bohrgestängeeinrichtung mittels einer Informationsfolge

Info

Publication number
EP0377378B1
EP0377378B1 EP89403647A EP89403647A EP0377378B1 EP 0377378 B1 EP0377378 B1 EP 0377378B1 EP 89403647 A EP89403647 A EP 89403647A EP 89403647 A EP89403647 A EP 89403647A EP 0377378 B1 EP0377378 B1 EP 0377378B1
Authority
EP
European Patent Office
Prior art keywords
flow rate
flow
equipment
sequence
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89403647A
Other languages
English (en)
French (fr)
Other versions
EP0377378A1 (de
Inventor
Christian Bardin
Guy Pignard
Jean Boulet
Pierre Morin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0377378A1 publication Critical patent/EP0377378A1/de
Application granted granted Critical
Publication of EP0377378B1 publication Critical patent/EP0377378B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes

Definitions

  • the present invention relates to a method and a device for remotely controlling drilling equipment.
  • the present invention avoids these drawbacks and untimely tripping is no longer possible because, according to the present invention, the detection of a predetermined sequence of events relating to one or more quantities detectable at the bottom of the well is required (sequence which may also be qualified as information sequence) before triggering the desired action.
  • Such quantities can be in particular quantities linked to the fluid flowing in the drill string or to the mechanical connection that constitutes the drill string.
  • the sequences relate to the flow of drilling fluid and include a step of reducing the flow of the value of a flow during drilling to a first level of flow, then a phase of increase in flow of said first level of flow to 'at a second level of flow, said phase having a given duration of time.
  • this other sequence differs from the predetermined sequence transmitted on the surface only to take account of the transformations possibly due to transmission.
  • the sequences may also relate to at least one of the quantities of the following set: speed of rotation of at least part of the drill string, or weight of the tool.
  • the present invention also relates to a device for remote control of at least one drill string equipment from information emitted at the surface.
  • This device comprises means for transmitting information, means for detecting said information, the latter being connected to means for actuating said equipment.
  • the emission means are drilling fluid pumps located on the surface, the detection means include a flow meter and a unit for processing flow measurements, a clock adapted to, at least, measure the duration of a flow rise from a first level to a second level, means for comparing the detected information with predetermined information and the actuation means comprise at least a solenoid valve, controlled when the detected information coincides with said predetermined information.
  • the solenoid valve can put in communication, when it is energized, a reserve of oil under pressure with a chamber whose variation in volume causes the actuation of said equipment.
  • the device according to the invention may comprise a valve mounted on a communication between said chamber and said reserve and the valve is open when the pressure of the oil prevailing in the oil reserve is lower than the pressure prevailing in the chamber.
  • the equipment can be a bent element with variable angle.
  • the equipment can be a stabilizer with variable geometry.
  • Figures 1 and 2 relate to a simple example of a sequence based on a fluid flow rate.
  • actuation is done if the flow of fluid flowing in the drill string changes from one level to another within a given period of time.
  • the flow measurement is made by means of a measurement of the differential pressure Pd between the neck 1 where the pressure is designated P1 and the upstream part 2 where the pressure is designated P2 of a venturi 3, which presents l he advantage of a simple geometry creating little pressure drop and avoids the use of moving parts.
  • Pd P2 - P1
  • the pressure difference between the upstream part 2 and the neck 1 of the venturi 3 is measured by two piezoresistive sensors 4 and 5, the gauge bridges of which are connected in differential mounting.
  • the holding range of the sensors can be from 0 to 750 bars.
  • Their differential measurement range can be from 0 to 40 bars.
  • the accuracy of the measurement may be of the order of 1%.
  • FIG. 2 represents a curve for variation of the flow rate Q as a function of time t.
  • This curve 6 corresponds to a flow sequence effectively giving rise to the actuation of the member to be controlled
  • the dotted horizontal line corresponds to the Qmini flow
  • the upper horizontal line corresponds to the Qact activation or activation flow threshold.
  • Qfor corresponds to the usual flow during drilling.
  • the pumps are then stopped at the surface, so that the flow detected by the electronic assembly is less than Qmini.
  • the portion 7 of the curve corresponds to the drop in flow to the almost zero level, in any case less than Qmini. This level is reached at time t2.
  • the electronic system counts the time, so as to establish whether the time elapsed between the instant t4 and the instant t5 when the flow reached the flow Qact, is less than a predetermined time DT.
  • Figure 1 shows a logic diagram corresponding to what has been described in relation to Figure 2.
  • the flow rate Q passing at a given instant in the venturi 3 is determined from the pressures P1 and P2, in particular by making the difference between these two pressures.
  • a first test is then carried out on the flow rate Q, by comparing it with a flow rate Qmini.
  • the Qmini flow rate is low and may be close to zero.
  • the clock is initialized to zero, otherwise there is no intervention on the clock.
  • a second test is then carried out, comparing the flow rate Q to an actuation flow rate Qact. If the flow Q is lower than the flow Qact, we return again to the first test, but with a new value of flow. Of course, the clock time has been increased.
  • the value of this indication corresponds to the time it took for the flow to go from the Qmini value to the Qact value.
  • the third test compares this indication to a maximum delay DT.
  • the flow sequence is a valid control sequence and there is actuation, for example by opening a solenoid valve.
  • the detection system should be put on standby until the detected flow rate becomes equal to or less than Qmini.
  • FIGS. 3A and 3B represent an embodiment of the device according to the present invention applied to the actuation of a bent element at variable angle.
  • a tubular element has in its upper part a thread 8 allowing the mechanical connection to a drill string or to a drill string and in its lower part a thread 9 allowing the fixing of the continuation of the train rods or drill string.
  • the bent element comprises a shaft 10 which can slide in its upper part in the bore 11 of the body 12 and which can slide in its lower part in the bore 13 of the body 14.
  • This shaft has male grooves 15 meshing in female grooves of the body 12, alternately straight grooves 16 (parallel to the axis of the tubular body 12) and oblique (inclined relative to the axis of the tubular body 12), into which fingers 17 sliding along a perpendicular axis engage to that of the displacement of the shaft 10 and kept in contact with the shaft by springs 18, male splines 19 meshing with female splines of the body 14 only when the shaft 10 is in the high position.
  • the shaft 10 is equipped with a nozzle 20 in the low position, opposite which is a needle 21 coaxial with the movement of the shaft 10.
  • a return spring 22 maintains the shaft 10 in the high position, the grooves 19 meshing in the corresponding female grooves of the body 14.
  • the bodies 12 and 14 are free to rotate at the rotary surface 23, inclined with respect to the axes of the bodies 12 and 14 and composed of rows of cylindrical rollers 74 inserted in their raceways 25 and extractable through the holes 26 by removing the door 27.
  • a reserve of oil 28 is maintained at the pressure of the drilling fluid by means of an annular free piston 29.
  • the oil lubricates the sliding surfaces of the shaft 10 via the passage 30.
  • This passage may include a solenoid valve 31.
  • the bore 20 is carried by a tube 32 which is fixed to the shaft 10 by means of a ball joint 33.
  • This ball joint 33 as well as the ball joint allow during movement of the shaft 10 a deflection of the tube 32. This deflection remains low, since the maximum angle obtained by the bent elements is generally a few degrees.
  • the shaft 10 comprises a second piston 35.
  • This piston 35 defines with the tubular body 13 a chamber 36.
  • the piston 35 slides in the bore 13 made in the tubular body 14.
  • the chamber 36 communicates through the holes 37, 38 with the passage 30 comprising the solenoid valve 31 and therefore with the oil reserve 28 through the holes 39, 40 and 41.
  • the communication of the oil reserve 28 and the chamber 36 is carried out through the solenoid valve 31, when there is a valid control sequence, that is to say effectively corresponding to the actuation of the equipment to be ordered.
  • the reference 42 designates a venturi comprising a neck 43, an upstream zone 44 and a downstream zone 45, a pressure sensor 46 possibly differential, or two pressure sensors 4 and 5 as shown in FIG. 1.
  • This or these sensors are connected by electrical wires 49 to an electronic unit 47 which monitors the flow rates to detect the control sequence and trigger the actuation.
  • the electronic unit 47 is connected by electrical wires 48 to a solenoid valve or to a solenoid valve 31.
  • the reference 50 designates an external connector which makes it possible to communicate on the surface with the electronic unit 47 without dismantling the entire device according to the invention.
  • This connector is connected to the box 47 by electrical wires 51. It is also possible to program the electronic box or to empty the memories without dismantling the connection.
  • the electronic unit sends, possibly after a time delay adjustable in the workshop between 0 and 60 seconds, a control signal, for the opening of the solenoid valve 31, which will take place once the flow sequence detected.
  • This control signal can be maintained until the next stop of the flow or passage of the flow below the Qmini value.
  • the electronic unit can also memorize the hours at which a control signal has been transmitted.
  • the electronic box can be powered by a set of rechargeable or non-rechargeable batteries.
  • the supply voltage can be 24 volts, the power required for the operation of a solenoid valve is 15 watt.
  • the opening of the solenoid valve 31 puts the oil reserve 28 in communication with the chamber 36.
  • the flow of fluid which passes through the device creates a pressure drop which causes a force tending to act on the piston 29 to expel the oil from the reserve 28 towards the chamber 36.
  • the needle 21 includes a bead 52 so that, when the nozzle 20 arrives there, there is a variation in the pressure drop which results, at constant flow rate, in a detectable pressure variation at the surface, which informs the operators that the shaft 10 has reached its low position.
  • the rise of the shaft 10 is done by lowering or canceling the flow rate, so that the forces exerted on the pistons 29 and 35 are low enough for the spring 22 to return the shaft 10 to its high position. .
  • the solenoid valve 31 may include a valve authorizing the flow of oil to the oil reserve when there is a pressure gradient in this direction and blocks flow when the gradient is in the opposite direction.
  • Figure 6 schematically illustrates such an arrangement.
  • Reference 53 designates the oil reserve and its piston. These references correspond to references 29 and 28 in FIG. 3A.
  • the reference 54 designates the chamber for receiving the pressurized fluid and the working piston which correspond substantially to the references 16 and 35 of FIG. 3B.
  • the reference 55 designates a solenoid valve equipped with accessories.
  • Reference 56 designates the solenoid valve itself.
  • the reference 57 designates a manual safety valve
  • the reference 58 a non-return type valve which makes it possible to empty the chamber 59 when the pressure in the reserve 60 is lower than that of the chamber 59.
  • the reference 61 designates a calibrated valve authorizing the flow of the reserve 60 towards the chamber 59, if the pressure difference between these two zones is greater than a critical value which can be fixed at 40 or 50 bars.
  • the present invention can be applied to the actuation of a stabilizer with variable geometry, such as that described in patent FR-2,579,662.
  • the shaft 10 will be coaxial with the tubular bodies 12 and 14 and it will be useless to use the ball joint 33.
  • the present invention makes it possible to control two different pieces of equipment from two different sequences.
  • FIG. 5 represents two curves 62 and 63 corresponding to two different flow sequences.
  • the first curve 62 corresponds, for example, to the triggering of the actuation of a variable angle elbow and the second 63 to the actuation of a stabilizer with variable geometry and that of the elbow element with variable angle.
  • Such a procedure can be implemented by setting end to end a set strictly similar to that of FIGS. 3A and 3B and another derivative of FIGS. 3A and 3B, but which controls a stabilizer with variable geometry.
  • the actuation of the stabilizer is triggered the number of times necessary to put it in the desired position, then the actuation of the elbow element is triggered, without triggering the stabilizer, the number of times desired to put it in the desired position.
  • variable geometry stabilizer and the variable angle bent element are in the desired configurations.
  • Figure 4 shows a trigger sequence that avoids the use of an accurate flow sensor.
  • the debit sequence corresponds to a succession of crossings of two thresholds Q1 and Q2 which must be carried out within a period of less than DT.
  • sequences include a variation of a magnitude of the whole flow rate of the drilling fluid, speed of rotation of at least part of the drill string or weight on the tool in a maximum time, you can impose a minimum time and combine these two time limits.
  • the desired variation should occur in a window in a predetermined time.
  • the detected sequence triggers the command only if the variation of flow rates from Qmini to Qact takes place in a period of time greater than 5 minutes, but less than 10 minutes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Earth Drilling (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Selective Calling Equipment (AREA)

Claims (7)

  1. Verfahren zur Fernbedienung wenigstens einer Installation einer Bohrungsrohrstranganordnung auf der Grundlage einer von der Oberfläche ausgesendeten Anweisung, das folgende Schritte umfaßt:
    - Aussenden einer ersten Informationssequenz von der Oberfläche entsprechend einer vorbestimmten Sequenz (6, 62, 63),
    - Erfassen einer zweiten, aus der Übertragung der ersten Sequenz resultierenden Sequenz und Vergleich dieser zweiten Sequenz mit einer anderen vorbestimmten Sequenz,
    - Ausführen der Bedienung der Installation in dem Fall, in dem eine Ähnlichkeit zwischen diesen beiden letzten Sequenzen besteht,
    dadurch gekennzeichnet, daß die Sequenzen die Menge an Bohrflüssigkeit betreffen und daß sie eine Mengenverminderungsstufe von dem Wert einer Menge während der Bohrung auf ein erstes Mengenniveau, dann eine Mengenerhöhungsphase von dem ersten Mengenniveau auf ein zweites Mengenniveau umfassen, wobei die Phase eine gegebene Zeitdauer (DT) aufweist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Seqenzen außer der Bohrmenge wenigstens eine der folgenden Größen des Aufbaus betreffen: Rotationsgeschwindigkeit eines Teils wenigstens der Rohrstranganordnung oder Gewichtskraft auf das Werkzeug.
  3. Vorrichtung zur Fernbedienung wenigstens einer Installation einer Bohrungsrohrstranganordnung auf der Grundlage von an die Oberfläche ausgesendeten Informationen, umfassend Informationsaussendungsmittel und Informationserfassungsmittel, wobei diese letzteren mit Installationsbetätigungsmitteln verbunden sind, dadurch gekennzeichnet, daß die Aussendungsmittel an der Oberfläche angeordnete Pumparbeitsmittel der Bohrungsflüssigkeit sind, daß die Erfassungsmittel einen Durchflußmesser (42, 43) und ein Mengenmessungsverarbeitungsgehäuse (47), einen Zeitgeber, der geeignet ist, die Dauer einer Mengenerhöhung von einem ersten Niveau auf ein zweites Niveau zu messen, Vergleichsmittel von erfaßten Informationen mit vorbestimmten Informationen umfassen und daß die Betätigungsmittel wenigstens ein Elektroventil (31, 56), gesteuert, wenn die erfaßten Informationen mit den vorbestimmten Informationen übereinstimmen, umfassen.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß das Elektroventil (31, 56) bei Erregung eine unter Druck stehende Ölreserve (28, 60) mit einer Kammer (36, 59) in Verbindung setzt, deren Volumenveränderung die Betätigung der Installation nach sich zieht.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß es ein in der Verbindung zwischen der Kammer und der Reserve angeordnetes Klappenventil (58) umfaßt und daß das Klappenventil geöffnet ist, wenn der in der Ölreserve herrschende Öldruck kleiner ist als der in der Kammer herrschende Druck.
  6. Vorrichtung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die Installation ein abgewinkeltes Element mit variablem Winkel ist.
  7. Vorrichtung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die Installation ein Stabilisator mit variabler Geometrie ist.
EP89403647A 1988-12-30 1989-12-21 Verfahren und Vorrichtung zum Fernsteuern einer Bohrgestängeeinrichtung mittels einer Informationsfolge Expired - Lifetime EP0377378B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8817604A FR2641387B1 (fr) 1988-12-30 1988-12-30 Methode et dispositif de telecommande d'equipement de train de tiges par sequence d'information
FR8817604 1988-12-30

Publications (2)

Publication Number Publication Date
EP0377378A1 EP0377378A1 (de) 1990-07-11
EP0377378B1 true EP0377378B1 (de) 1993-12-29

Family

ID=9373727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403647A Expired - Lifetime EP0377378B1 (de) 1988-12-30 1989-12-21 Verfahren und Vorrichtung zum Fernsteuern einer Bohrgestängeeinrichtung mittels einer Informationsfolge

Country Status (5)

Country Link
US (1) US5065825A (de)
EP (1) EP0377378B1 (de)
CA (1) CA2006938A1 (de)
FR (1) FR2641387B1 (de)
NO (1) NO300393B1 (de)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2223251A (en) * 1988-07-06 1990-04-04 James D Base Downhole drilling tool system
FR2641320B1 (fr) * 1988-12-30 1991-05-03 Inst Francais Du Petrole Dispositif d'actionnement a distance d'equipement comportant un systeme duse-aiguille
FR2659383B1 (fr) * 1990-03-07 1992-07-10 Inst Francais Du Petrole Dispositif de forage rotary comportant des moyens de reglage en azimut de la trajectoire de l'outil de forage et procede de forage correspondant.
FR2670824B1 (fr) * 1990-12-21 1997-01-24 Inst Francais Du Petrole Dispositif d'actionnement a distance d'un equipement comportant un systeme duse/aiguille et son application a une garniture de forage .
US5283768A (en) * 1991-06-14 1994-02-01 Baker Hughes Incorporated Borehole liquid acoustic wave transducer
FR2679293B1 (fr) * 1991-07-16 1999-01-22 Inst Francais Du Petrole Dispositif d'actionnement associe a une garniture de forage et comportant un circuit hydrostatique en fluide de forage, methode d'actionnement et leur application.
US5318138A (en) * 1992-10-23 1994-06-07 Halliburton Company Adjustable stabilizer
US5318137A (en) * 1992-10-23 1994-06-07 Halliburton Company Method and apparatus for adjusting the position of stabilizer blades
US5332048A (en) * 1992-10-23 1994-07-26 Halliburton Company Method and apparatus for automatic closed loop drilling system
FR2699222B1 (fr) * 1992-12-14 1995-02-24 Inst Francais Du Petrole Dispositif et méthode d'actionnement à distance d'un équipement comportant des moyens de temporisation - Application à une garniture de forage.
US5273113A (en) * 1992-12-18 1993-12-28 Halliburton Company Controlling multiple tool positions with a single repeated remote command signal
DE59509406D1 (de) * 1995-05-23 2001-08-16 Baker Hughes Inc Verfahren und Vorrichtung zur Übertragung von Informationen an einen untertägigen Informationsempfänger
US5995449A (en) 1995-10-20 1999-11-30 Baker Hughes Inc. Method and apparatus for improved communication in a wellbore utilizing acoustic signals
WO1998039547A2 (en) 1997-02-21 1998-09-11 Pes, Inc. Integrated power and control system
US6179052B1 (en) 1998-08-13 2001-01-30 Halliburton Energy Services, Inc. Digital-hydraulic well control system
US6567013B1 (en) * 1998-08-13 2003-05-20 Halliburton Energy Services, Inc. Digital hydraulic well control system
CA2474232C (en) * 1999-07-12 2007-06-19 Halliburton Energy Services, Inc. Anti-rotation device for a steerable rotary drilling device
US6308137B1 (en) 1999-10-29 2001-10-23 Schlumberger Technology Corporation Method and apparatus for communication with a downhole tool
GB2355739B (en) * 1999-10-29 2001-12-19 Schlumberger Holdings Method and apparatus for communication with a downhole tool
ATE269482T1 (de) 1999-11-10 2004-07-15 Schlumberger Holdings Steuerungsverfahren für steuerbares bohrsystem
US6871712B2 (en) 2001-07-18 2005-03-29 The Charles Machine Works, Inc. Remote control for a drilling machine
NO313430B1 (no) * 2000-10-02 2002-09-30 Bernt Reinhardt Pedersen Anordning ved nedihullsventil
US7245229B2 (en) * 2003-07-01 2007-07-17 Pathfinder Energy Services, Inc. Drill string rotation encoding
US20050030036A1 (en) * 2003-08-06 2005-02-10 Baker Hughes Incorporated Side entry leak protection for sondes
US7832500B2 (en) * 2004-03-01 2010-11-16 Schlumberger Technology Corporation Wellbore drilling method
GB2421744A (en) 2005-01-04 2006-07-05 Cutting & Wear Resistant Dev Under-reamer or stabiliser with hollow, extendable arms and inclined ribs
US7222681B2 (en) * 2005-02-18 2007-05-29 Pathfinder Energy Services, Inc. Programming method for controlling a downhole steering tool
US7983113B2 (en) 2005-03-29 2011-07-19 Baker Hughes Incorporated Method and apparatus for downlink communication using dynamic threshold values for detecting transmitted signals
US7518950B2 (en) * 2005-03-29 2009-04-14 Baker Hughes Incorporated Method and apparatus for downlink communication
US8408331B2 (en) 2010-01-08 2013-04-02 Schlumberger Technology Corporation Downhole downlinking system employing a differential pressure transducer
US8570833B2 (en) 2010-05-24 2013-10-29 Schlumberger Technology Corporation Downlinking communication system and method
US8792304B2 (en) * 2010-05-24 2014-07-29 Schlumberger Technology Corporation Downlinking communication system and method using signal transition detection
US9284816B2 (en) 2013-03-04 2016-03-15 Baker Hughes Incorporated Actuation assemblies, hydraulically actuated tools for use in subterranean boreholes including actuation assemblies and related methods
US9341027B2 (en) 2013-03-04 2016-05-17 Baker Hughes Incorporated Expandable reamer assemblies, bottom-hole assemblies, and related methods
US10174560B2 (en) 2015-08-14 2019-01-08 Baker Hughes Incorporated Modular earth-boring tools, modules for such tools and related methods
US9863197B2 (en) * 2016-06-06 2018-01-09 Bench Tree Group, Llc Downhole valve spanning a tool joint and methods of making and using same
US11047208B2 (en) * 2017-08-15 2021-06-29 Schlumberger Technology Corporation Chemical injection system
US11773687B2 (en) 2021-01-26 2023-10-03 Halliburton Energy Services, Inc. Single solenoid electro-hydraulic control system to actuate downhole valves

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485299A (en) * 1965-10-24 1969-12-23 Schlumberger Technology Corp Methods for controlling well tools in well bores
US4354233A (en) * 1972-05-03 1982-10-12 Zhukovsky Alexei A Rotary drill automatic control system
US3967680A (en) * 1974-08-01 1976-07-06 Texas Dynamatics, Inc. Method and apparatus for actuating a downhole device carried by a pipe string
US4100528A (en) * 1976-09-29 1978-07-11 Schlumberger Technology Corporation Measuring-while-drilling method and system having a digital motor control
US4454598A (en) * 1980-01-21 1984-06-12 Dresser Industries, Inc. Drilling orientation tool
DE3325962A1 (de) * 1983-07-19 1985-01-31 Bergwerksverband Gmbh, 4300 Essen Zielbohrstange fuer drehendes bohrgestaenge mit spuelkanal fuer den untertagebetrieb
DE3428931C1 (de) * 1984-08-06 1985-06-05 Norton Christensen, Inc., Salt Lake City, Utah Vorrichtung zur Fernuebertragung von Informationen aus einem Bohrloch zur Erdoberflaeche waehrend des Betriebs eines Bohrgeraetes
FR2579662B1 (fr) * 1985-04-02 1989-11-10 Smf Int Dispositif de forage a trajectoire controlee
FR2575793B1 (fr) * 1985-01-07 1987-02-27 Smf Int Dispositif d'actionnement a distance d'un equipement associe a un conduit dans lequel circule un fluide incompressible
US4655299A (en) * 1985-10-04 1987-04-07 Petro-Design, Inc. Angle deviation tool
US4734893A (en) * 1986-10-06 1988-03-29 Navigator Mwd, Inc. Apparatus and method for transmitting downhole conditions to the surface
US4811798A (en) * 1986-10-30 1989-03-14 Team Construction And Fabrication, Inc. Drilling motor deviation tool
DE8633905U1 (de) * 1986-12-18 1988-11-10 Salzgitter Maschinenbau
US4796699A (en) * 1988-05-26 1989-01-10 Schlumberger Technology Corporation Well tool control system and method
US4854397A (en) * 1988-09-15 1989-08-08 Amoco Corporation System for directional drilling and related method of use

Also Published As

Publication number Publication date
FR2641387A1 (fr) 1990-07-06
CA2006938A1 (fr) 1990-06-30
EP0377378A1 (de) 1990-07-11
NO895306D0 (no) 1989-12-28
NO895306L (no) 1990-07-02
NO300393B1 (no) 1997-05-20
FR2641387B1 (fr) 1991-05-31
US5065825A (en) 1991-11-19

Similar Documents

Publication Publication Date Title
EP0377378B1 (de) Verfahren und Vorrichtung zum Fernsteuern einer Bohrgestängeeinrichtung mittels einer Informationsfolge
CA2314831C (fr) Procede de controle du bon fonctionnement du systeme de recuperation de vapeur emise dans une installation de distribution de carburant ainsi qu'installation permettant la mise enoeuvre de ce procede
FR2628835A1 (de)
EP0544560B1 (de) System zur Betätigung eines Bedienungszylinders für das Fahrwerk eines Flugzeuges
EP1944449B1 (de) Verfahren zur Bestimmung der Windeffekte auf eine Markise
CA2169895C (fr) Procede et dispositif de regulation d'un ensemble de pompage polyphasique
CA3037781C (fr) Procede d'engagement de deux elements engrenage et dispositif d'entrainement mettant en oeuvre un tel procede
FR3008528A1 (fr) Dispositif de detection de chute pour une ligne de vie ; installation de ligne de vie equipee d'un tel dispositif; methode de detection de chute associee
EP0527678A1 (de) Verfahren zur Durchflussmessung fluidisierten Pulvers und Durchflussmessvorrichtung zur Durchführung dieses Verfahrens
CA1155390A (fr) Dispositif assurant le deplacement d'un element dans un conduit rempli d'un liquide
EP0270443B1 (de) Regeleinrichtung für das Startventil eines Turbostarters für ein Flugtriebwerk
EP0724504B1 (de) Verfahren und vorrichtung zum steuern eines druckmittelbetätigten doppeltwirkenden stellantriebs
EP3546792B1 (de) Verfahren zum eingriff zweier zahnräder und antriebsvorrichtung zur durchführung eines derartigen verfahrens
CH627247A5 (de)
FR2567825A1 (fr) Dispositif de commande de la pression hydraulique de freinage de vehicules muni d'un dispositif anti-blocage
EP0519794A1 (de) Füllregelungs- und automatische Füllabbruchvorrichtung auf einem gewähltes Niveau für Flüssiggas-(LPG)-Behälter
FR2764591A1 (fr) Dispositif de compensation de charge d'un engin de manutention
EP0604332A1 (de) Verfahren und Vorrichtung zum Starten oder Bremsen eines hydraulischen Antriebsmotors, welcher ein Gerät mit grosser Massenträgheit antreibt
EP2218827A1 (de) Vorrichtung zur Druckbeaufschlagung einer Schachteinfassung
EP1411177B1 (de) Verfahren und Einrichtung zum Messen der Tragfähigkeit eines in den Boden durch Schwingung eingeführten Objektes
EP0148690A1 (de) Einrichtung zum Nachweisen von Partikeln, insbesondere festen Partikeln in einem gasförmigen Fluid, das aus einer Leitung herausfliesst
EP0818255B1 (de) Anlage zum Nieten von Reibbelägen auf ihre Trägerscheiben
FR2706951A1 (de)
FR3051205A1 (fr) Realisation de pieux avec un dispositif de forage a outil telescopable.
FR2657140A1 (fr) Limiteur de debit d'un fluide.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): GB IT NL

17Q First examination report despatched

Effective date: 19920129

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: ST. ASSOC. MARIETTI & P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991122

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991231

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001221

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051221