EP0377080B1 - Electrical conductor with polymeric insulation - Google Patents

Electrical conductor with polymeric insulation Download PDF

Info

Publication number
EP0377080B1
EP0377080B1 EP89117457A EP89117457A EP0377080B1 EP 0377080 B1 EP0377080 B1 EP 0377080B1 EP 89117457 A EP89117457 A EP 89117457A EP 89117457 A EP89117457 A EP 89117457A EP 0377080 B1 EP0377080 B1 EP 0377080B1
Authority
EP
European Patent Office
Prior art keywords
adhesive
insulated conductor
peroxide
conductor
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89117457A
Other languages
German (de)
French (fr)
Other versions
EP0377080A3 (en
EP0377080A2 (en
Inventor
Kevin Kirk
Ewald Brückner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates GmbH
Original Assignee
WL Gore and Associates GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WL Gore and Associates GmbH filed Critical WL Gore and Associates GmbH
Publication of EP0377080A2 publication Critical patent/EP0377080A2/en
Publication of EP0377080A3 publication Critical patent/EP0377080A3/en
Application granted granted Critical
Publication of EP0377080B1 publication Critical patent/EP0377080B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/301Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen or carbon in the main chain of the macromolecule, not provided for in group H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones

Definitions

  • This invention relates to insulated electrical conductors, particularly those conductors that are insulated with polymers. Round cables as well as flat and coaxial cables are to be used as electrical conductors.
  • the siloxanes have 1.3 to 1.95 phenyl and methyl groups per silicon atom, up to half of the phenyl groups can be biphenyl groups and up to 10% of the organic groups can be tolyl, alkyl, ethyl or other groups.
  • the siloxanes are soluble in aromatic, organic solvents or mixtures.
  • the polyamide comes with referred to, wherein m represents two or more, n 0 or an integer, R is the residue of an ethylenically unsaturated dicarboxylic acid after removal of the hydroxyl groups and R1 is the residue of isophthalic, terephthalic or saturated aliphatic acids having 4 to 10 carbon atoms, their hydroxyl groups are removed.
  • a wire is coated with this mixture and cured by removal of the solvent and by heating to form an insulating varnish coating on the wire.
  • R is usually polyalkylene or polyarylene, and R1 is, for example, methyl or phenyl.
  • Composite materials could be made by firmly joining two sheet material elements made of the same or different materials, e.g. glass, metals or polymers, by converting the organosilanamide block copolymers described in U.S. Patent 3,740,305 to the corresponding polyimides in order to to form firmly bonded materials.
  • the organosilane imides were applied to the surfaces of the sheet members to be bonded, the solvent was removed, and the cyclization reaction was effected by heat.
  • organosiloxanes have the formula wherein R is a monovalent hydrocarbon radical, usually methyl, and n is 0 to 150.
  • organosiloxaneimide block copolymers A much broader and wider variety of organosiloxaneimide block copolymers than those mentioned above has been provided by U.S. Patent 4,522,985; according to this publication, the norbornane and norbornene cores have been used extensively for both the siloxane and diamine regions of the starting materials.
  • Curing under heat for example to cyclize a polyamide into a polyimide directly on the cable, was not a good solution. It is now common to coat a fully cured polyimide tape with a thermoplastic adhesive material, such as a fluorinated ethylene-propylene copolymer. This works very well unless halogen-free insulation is required due to reduced toxicity when burned; it is desirable to remove the outer layer of the thermoplastic adhesive after processing, or to subject the cable to electromagnetic radiation, in which case a halogenated polymer does not work very well under such radiation and a halogenated material must be avoided.
  • a thermoplastic adhesive material such as a fluorinated ethylene-propylene copolymer
  • the invention has for its object to provide an insulation material that has good insulating properties and good adhesiveness when it is applied to the material to be insulated. Furthermore, a method for insulating an electrical conductor is to be specified, by means of which the insulation material can be applied to the conductor with good adhesion.
  • the insulation material according to the invention consists of a high temperature-resistant polymer which surrounds an electrical conductor. A completely heat-cured organosiloxaneimide adhesive is applied to this polymer, which surprisingly ensures a good polymer-polymer connection.
  • the polymer is a polyimide, polyphenylene sulfide (PPS) or a polyether ether ketone (PEEK).
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • the cables according to the invention are particularly suitable for use at high temperatures and under aggressive environmental conditions.
  • the innovative composite material can be used both as primary insulation and as a jacket.
  • the organopolysiloxaneimide is dissolved in an organic solvent, possibly with organic peroxides and pigments, and the solution is applied to a layer of the fully cured polymer.
  • the solvent is then evaporated and the polymer layer is wrapped around an electrical conductor with the adhesive on top.
  • the polymer layer is preferably cut into a band shape and wound spirally around the electrical conductor.
  • the conductor wrapped in the tape is first of all for a relatively short time heated to a higher temperature to seal the layers of polymer. It is then kept at a low temperature for an extended period of time to increase the cross-link curing reaction and to prevent problems such as tarnishing of metal conductors, which can occur at higher temperatures and longer heating times.
  • the preferred organopolysiloxaneimide adhesive is a fully cured material with the formula where Q is a tetravalent radical selected from where D is selected from -O-, -S-, and -O R4-O-, wherein R4 is a bivalent radical selected from and divalent organic radicals of the general formula wherein R1 and R2 represent alkylenes, usually - (CH2) 3 -, or R4, wherein R represents methyl, phenyl, tolyl or a mixture of aliphatic and aromatic radicals, wherein R3 represents hydrogen or an alkyl radical with 1 to 8 carbon atoms , X from bivalent radicals -CR 3rd 2nd -, C y H 2y -, - CO -, - SO2-, -O-, and -S-, is selected, where y 1 to 5, k 1 to 7, n 1 to 7, m is an integer greater than 1 and p are 0 or 1.
  • the crosslinking reaction is preferably carried out in the presence of a peroxide.
  • Benzoyl peroxides such as bis-2,4-dichlorobenzoyl peroxide, dicumyl peroxide or t-butyl peroxide are particularly suitable as peroxides.
  • the presence of peroxide accelerates the crosslinking reaction and increases chemical resistance to solvents.
  • the crosslinking reaction is initiated by cleavage of the peroxide, as can be seen from the formula below.
  • the radicals formed in this way generate a polymer radical by splitting off hydrogen from the polymer chain. Two of the polymer radicals formed in this way can saturate to form a CC bond, as can be seen from the formula below.
  • a coactivator such as, for example, triallyl cyanurate
  • three-dimensional crosslinking can be achieved, which leads to a thermally more stable product which, by multiplying the number of crosslinking sites, also has better chemical resistance.
  • the polymer radical reacts with an allyl group of the cyanurate. The formula is shown below.
  • peroxide radicals, polymer radicals or allyl residues of another cyanurate can attach to the radicals of the allyl groups of the cyanurate, which are linked to the main chain, and thus saturate one another. This leads to an increase in the number of networking points and thus to an increase in the degree of networking.
  • peroxide radicals, polymer radicals or allyl residues of another cyanurate can attach to the radicals of the allyl groups of the cyanurate, which are linked to the main chain, and thus saturate one another. This leads to an increase in the number of networking points and thus to an increase in the degree of networking.
  • these preferred crosslinking reactions there can of course also be numerous other side reactions which overall lead to a spatially crosslinked, thermally stable and chemically resistant product.
  • the crosslinking is only started when the finished product is exposed to a higher temperature, which ensures that no pre-crosslinking takes place during the drying and further processing of the product.
  • the reaction is only triggered when the product is held at 300 ° C for a period of 1 to 3 minutes.
  • the finished products are subjected to post-heating, which normally takes place at 200 ° C for 2 to 3 hours. Insulation produced using this method can be used for mechanical loads up to a permanent temperature of 150 ° C and for only electrical loads up to a permanent temperature of 170 ° C.
  • the amount of silane used in each case is approximately 0.1 to 0.8% of the weight of glass balls.
  • the silanes that can be used have the following general formula y-Si-R'-X, where y and X represent the two different reactive centers.
  • the functional group X is linked to an organic intermediate R 'with the four-bonded silicon atom.
  • the functional group y is a removable group, in this case either a trimethoxy or a trieethoxysilyl group.
  • the function of silanes as an adhesion promoter is based on the formation of a monomolecular silane layer on the surface of the glass spheres, the functional group y reacting here.
  • the remaining functional group X can react chemically with the plastic matrix or with the crosslinker / coactivator system.
  • a halogen-free flame retardant can also be added.
  • the proportion of the flame retardant can be up to approx. 20 percent by weight. This also makes it possible to obtain a higher layer thickness of the adhesive application and thus to use the coated polymer layer, for example in the form of a film, for the production of ribbon cables.
  • the thickness of the adhesive layer is preferably 50 to 100 »m. This enables the embedding of bare conductors or of fully insulated wires.
  • a roll of polyimide film (DuPont Kapton H-50) is coated with a 2.54 »m (0.0001 inch) thick layer of an organopolysiloxanimide adhesive which has been dissolved in methylene chloride to form a 5% solids solution surrender. 20% by weight of a green pigment in polyester, based on the organopolysiloxaneimide, was added to the solution of organopolysiloxaneimide and methylene chloride to color the film. The solvent is evaporated to a to produce dry film.
  • the roll is then cut into evenly wound bobbins with an approximately 1.83 mm (0.072 inch) wide band.
  • the tape is wrapped around a 30 AWG silver plated copper conductor to give a 2.1 wrap construction with a 0.3048 mm (0.012 inch) end diameter.
  • This wrapped structure is connected in an air oven at 300 ° C with a residence time of 50 seconds.
  • the outer adhesive layer which is not covered with a film layer, is washed off the assembly by passing the assembly through a methylene chloride bath to give a green, insulated wire assembly. Tests are carried out on this wire construction with regard to the dielectric in a moist environment, with regard to aging when heated and with regard to the resistance to solvents.
  • the test procedure for dielectric in a humid environment is carried out according to the provisions of MIL-W-81822A, section 4.6.20; the heat resistance test procedure is in accordance with the provisions of MIL-W-81822A, section 4.6.22; and fluid resistance is in accordance with the provisions of MIL-W-8l822A, Section 4.6.25.
  • the heat resistance of the construction using an organosiloxaneimide adhesive is greater than the heat resistance of a comparable polyester adhesive, but the solvent resistance to 1,1,1-trichloroethane is insufficient.
  • a roll of polyimide film (DuPont Kapton H-100) is covered with a 2.54 »m (0.0001 inch) thick layer coated with an organopolysiloxaneimide adhesive dissolved in methylene chloride to give a 5% solids solution.
  • a red pigment containing chromium is added to the adhesive solution to color the tape. The solvent is evaporated to give a dry film.
  • Another tape is coated exactly as above, except that an organic peroxide (e.g. Luprox 500R dicumyl peroxide) is added in an amount of 10% by weight based on the organopolysiloxaneimide adhesive.
  • an organic peroxide e.g. Luprox 500R dicumyl peroxide
  • Both tapes are cut into evenly wound coils approximately 2.64 mm (0.104 inch) wide.
  • the tapes are wrapped around a 30 AWG silver plated copper conductor to create a 3.2 wrap construction with a finished 0.4064 mm (0.016 inch) diameter.
  • the wrapped superstructures are fired in an air oven with a temperature of 320 ° C and a residence time of 100 seconds.
  • the outer layer of adhesive, which is not covered by the film, is washed off the assembly by passing the assembly through a methylene chloride bath. A red, insulated wire structure is obtained.
  • the adhesive is more resistant to some solvents than to other solvents.
  • the curing of samples in the presence of peroxide accelerates the crosslinking and thus increases the solvent resistance of the adhesive to those solvents which more easily dissolve the adhesive, for example methylene chloride.
  • a roll of PEEK (polyether ether ketone) film is coated with a 0.00254 mm (0.0001 inch) thick layer of an organopolysiloxane imide adhesive dissolved in methylene chloride to form a 5% solids solution. to surrender.
  • a chromium-containing red pigment is added at 25% by weight, based on the organopolysiloxanimide adhesive, in order to color the tape.
  • the solvent is evaporated to give a 5.0 wrap construction with a final diameter of 0.508 mm (0.020 inch).
  • the wrapped structure is heated in an air oven at 300 ° C with a residence time of 100 seconds.
  • the outer layer of adhesive which is not covered by a film layer, is washed off the assembly by passing it through a methylene chloride bath so that a red, insulated conductor assembly results.
  • the finished composite insulation material had a tensile strength of 175 (25000 psi) and an elongation of 110%. It also had good heat resistance and good electrical properties.
  • a polyphenylene sulfide film with a layer thickness of about 12 to 100 »m is coated with an adhesive solution.
  • the adhesive solution which is used as a coating material, contains organopolysiloxane imide as the plastic matrix, bis-2,4-dichlorobenzoyl peroxide as the crosslinker, triallyl cyanurate as the coactivator, and color pigments and methylene chloride as the solvent.
  • the solids concentration is approximately 20 to 25% by weight, depending on the required layer thickness.
  • the solvent is evaporated, the crosslinking reaction takes place at 300 ° C and a time of 1 to 3 minutes.
  • the finished product is subjected to post-heating, which takes place at 200 ° C. for a period of 2 to 3 hours.
  • the end product is a primary insulation material for electrical parts, can be used mechanically for a permanent temperature of at least 150 ° C and electrically for a temperature of at least 170 ° C.
  • Methylene chloride proved to be the best solvent for the uncured organopolysiloxaneimide adhesive.
  • the improved resistance to methylene chloride by means of an organopolysiloxane imide hardened with the help of peroxide thus eliminates a weak point in the use of this adhesive for the production of wires and cables.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Insulators (AREA)

Abstract

Process for joining a completely thermally cured polymer to itself or to another material by coating the polymer with an adhesive layer of a completely thermally cured organosiloxanimide adhesive which contains an organic peroxide, and curing the adhesive by heating in order to crosslink it. The polymer used may be a polyimide, a polyphenylene sulphide or a polyether ether ketone. A heat-resistant and solvent-resistant polymer-insulated wire is obtained.

Description

Diese Erfindung betrifft isolierte elektrische Leiter, insbesondere solche Leiter, die mit Polymeren isoliert sind. Als elektrische Leiter sollen sowohl Rundkabel als auch Flach- und Koaxialkabel verwendet werden.This invention relates to insulated electrical conductors, particularly those conductors that are insulated with polymers. Round cables as well as flat and coaxial cables are to be used as electrical conductors.

Bei der Überzugs- und Isoliertechnik von elektrischen Leitern ist es bekannt, daß zur Erzeugung von zufriedenstellenden isolierten Schaltungen bzw. Installationen, harte und feste Überzüge bzw. Isolierungen, die einem hohem Verschleiß, Biegungsbeanspruchungen, hohen Temperaturen, aggresiven Umweltbedingungen und einem chemischen Angriff von Flüssigkeiten widerstehen, erforderlich sind.In the coating and insulation technology of electrical conductors, it is known that in order to produce satisfactory insulated circuits or installations, hard and solid coatings or insulations which are subject to high wear, bending stresses, high temperatures, aggressive environmental conditions and a chemical attack by liquids resist, are required.

Unter den Materialien, die zur Isolierung von Leitern für den Gebrauch unter derartigen Bedingungen verwendet werden, sind Mischungen aus lösungsmittellöslichen, hitzehärtbaren Phenylmethylsiloxanen und organischen Polyamiden genannt, die in US-PS 2,983,700 offenbart sind. Die Siloxane weisen 1,3 bis 1,95 Phenyl- und Methylgruppen pro Siliziumatom auf, bis zur Hälfte der Phenylgruppen können Biphenylgruppen sein und bis zu 10 % der organischen Gruppen können Tolyl-, Alkyl-, Ethyl- oder andere Gruppen sein. Die Siloxane sind in aromatischen, organischen Lösungsmitteln oder Mischungen löslich. Das Polyamid wird mit

Figure imgb0001

bezeichnet, worin m zwei oder mehr, n 0 oder eine ganze Zahl, R der Rest einer ethylenisch ungesättigten Dicarbonsäure nach der Entfernung der Hydroxylgruppen und R1 der Rest von Isophthal-, Terephtal- oder gesättigten aliphatischen Säuren mit 4 bis 10 Kohlenstoffatomen darstellt, deren Hydroxylgruppen entfernt sind.Among the materials used to insulate conductors for use under such conditions are mixtures of solvent-soluble, thermosetting phenylmethylsiloxanes and organic polyamides disclosed in U.S. Patent 2,983,700. The siloxanes have 1.3 to 1.95 phenyl and methyl groups per silicon atom, up to half of the phenyl groups can be biphenyl groups and up to 10% of the organic groups can be tolyl, alkyl, ethyl or other groups. The siloxanes are soluble in aromatic, organic solvents or mixtures. The polyamide comes with
Figure imgb0001

referred to, wherein m represents two or more, n 0 or an integer, R is the residue of an ethylenically unsaturated dicarboxylic acid after removal of the hydroxyl groups and R1 is the residue of isophthalic, terephthalic or saturated aliphatic acids having 4 to 10 carbon atoms, their hydroxyl groups are removed.

Ein Draht wird mit dieser Mischung überzogen und durch Entfernung des Lösungsmittels sowie durch Erhitzen ausgehärtet, um auf dem Draht einen Isolierlacküberzug zu bilden.A wire is coated with this mixture and cured by removal of the solvent and by heating to form an insulating varnish coating on the wire.

Nachfolgend wurden Polyamide mit der Formel

Figure imgb0002

in organischen Lösungsmitteln gelöst, wie in US-PS 3,325,450 dargelegt, und auf Metalle, beispielsweise in der Form von Drähten, aufgebracht. Das Lösungsmittel wurde verdampft und die Überzüge wurden erhitzt, um das Amid in den harten, widerstandsfähigen und gebrannten Imidüberzug zu zyklisieren. Von dem Amid, das in die Imidform zyklisiert werden sollte, konnten ebenfalls Filme gegossen werden, die in der Form von gewickelten Polyimid-Streifenfilmen auf Leitern verwendbar waren, wobei das Polyimid die Formel
Figure imgb0003

aufwies, worin R ein bivalentes Kohlenwasserstoffradikal, R¹ ein monovalentes Kohlenwasserstoffradikal, ml 1 bis 1000, n 10 bis 10000 oder mehr bedeuten.Below were polyamides with the formula
Figure imgb0002

dissolved in organic solvents as set forth in U.S. Patent 3,325,450 and applied to metals, for example in the form of wires. The solvent was evaporated and the coatings were heated to cyclize the amide into the hard, tough and fired imide coating. Films could also be cast from the amide to be cyclized into the imide form which could be used in the form of striped polyimide strip films on conductors, the polyimide having the formula
Figure imgb0003

wherein R is a bivalent hydrocarbon radical, R¹ is a monovalent hydrocarbon radical, ml is 1 to 1000, n is 10 to 10,000 or more.

R ist üblicherweise Polyalkylen oder Polyarylen, und R¹ ist beispielsweise Methyl oder Phenyl.R is usually polyalkylene or polyarylene, and R¹ is, for example, methyl or phenyl.

Verbundmaterialien konnten hergestellt werden durch ein festes Verbinden von zwei Flachmaterialelementen aus dem gleichen oder aus unterschiedlichen Materialien, beispielsweise Glas, Metalle oder Polymere, indem die Organosilanamid-Blockcopolymere, die in US-PS 3,740,305 beschrieben sind, in die entsprechenden Polyimide umgewandelt wurden, um die fest verbundenen Materialien zu bilden. Die Organosilanimide wurden auf die Oberflächen der Flachmaterialelemente, die verbunden werden sollten, aufgebracht, das Lösungsmittel wurde entfernt und die Zyklisierungsreaktion wurde durch Wärme bewirkt.Composite materials could be made by firmly joining two sheet material elements made of the same or different materials, e.g. glass, metals or polymers, by converting the organosilanamide block copolymers described in U.S. Patent 3,740,305 to the corresponding polyimides in order to to form firmly bonded materials. The organosilane imides were applied to the surfaces of the sheet members to be bonded, the solvent was removed, and the cyclization reaction was effected by heat.

Ein anderer Weg zur Erreichung guter Eigenschaften bei den Siloxanimid-Harzen wurde in US-PS 3,763,081 dargelegt, wo ungesättigte Vinylgruppen, die auf Organosiloxanen substituiert waren, zu einem ausgehärteten Produkt durch Hitze und Sauerstoff oder Peroxid mit ungesättigten Gruppen auf Bismaleinsäureimiden vernetzt wurden, die durch Kondensation von Maleinsäureanhydrid mit p, p¹-Methylendianilin hergestellt wurden.Another way to achieve good properties with the siloxaneimide resins has been set forth in U.S. Patent 3,763,081 where unsaturated vinyl groups substituted on organosiloxanes have been crosslinked to a cured product by heat and oxygen or peroxide with unsaturated groups on bismaleimides by Condensation of maleic anhydride with p, p¹-methylenedianiline were prepared.

Derartige Organosiloxane haben die Formel

Figure imgb0004

worin R ein monovalentes Kohlenwasserstoffradikal, üblicherweise Methyl, und n 0 bis 150 ist.Such organosiloxanes have the formula
Figure imgb0004

wherein R is a monovalent hydrocarbon radical, usually methyl, and n is 0 to 150.

Eine wesentlich umfassendere und breitere Vielfalt von Organosiloxanimid-Blockcopolymeren als die oben erwähnten, wurde durch die US-PS 4,522,985 zur Verfügung gestellt; gemäß dieser Veröffentlichung wurden die Norbornan- und Norbornenkerne sowohl für die Siloxan- als auch die Diaminbereiche der Ausgangsmaterialien umfassend verwendet. Die Endprodukte, die Organosiloxanimide, sind Gummis, die unter Hitzeeinwirkung mit Peroxiden zu harten Elastomeren aushärtbar sind.A much broader and wider variety of organosiloxaneimide block copolymers than those mentioned above has been provided by U.S. Patent 4,522,985; according to this publication, the norbornane and norbornene cores have been used extensively for both the siloxane and diamine regions of the starting materials. The end products, the organosiloxane imides, are rubbers that can be cured with hard peroxides to form hard elastomers.

Wo Bandumwickelverfahren verwendet werden, um bei der Herstellung von isolierten, elektrischen Kabeln auf Leitern Schichten aufzubauen, haben die isolierenden und die physikalischen Eigenschaften von Polyimid, Polyetheretherketon und Polyphenylensulfid die Verwendung dieser Materialien wünschenswert gemacht, wenn sie erfolgreich mit sich selbst verbunden werden können.Where tape wrap processes are used to build up layers on conductors in the manufacture of insulated electrical cables, the insulating and physical properties of polyimide, polyether ether ketone and polyphenylene sulfide have made the use of these materials desirable if they can be successfully bonded to themselves.

Das Aushärten unter Hitze, um beispielsweise ein Polyamid in ein Polyimid direkt auf dem Kabel zu zyklisieren, erwies sich nicht als eine gute Lösung. Es ist nun üblich, ein vollständig ausgehärtetes Polyimidband mit einem thermoplastischen Klebstoffmaterial zu überziehen, beispielsweise mit einem fluorierten Ethylen-Propylen-Copolymer. Dies funktioniert sehr gut, wenn nicht eine halogenfreie Isolierung wegen einer verminderten Toxizität beim Verbrennen verlangt wird; es ist wünschenswert, die äußere Schicht aus dem thermoplastischen Klebstoff nach der Bearbeitung zu entfernen, oder das Kabel, einer elektromagnetischen Strahlung zu unterwerfen, wobei in diesem Fall ein halogeniertes Polymer unter einer derartigen Strahlung nicht sehr gut funktioniert und ein halogeniertes Material vermieden werden muß.Curing under heat, for example to cyclize a polyamide into a polyimide directly on the cable, was not a good solution. It is now common to coat a fully cured polyimide tape with a thermoplastic adhesive material, such as a fluorinated ethylene-propylene copolymer. This works very well unless halogen-free insulation is required due to reduced toxicity when burned; it is desirable to remove the outer layer of the thermoplastic adhesive after processing, or to subject the cable to electromagnetic radiation, in which case a halogenated polymer does not work very well under such radiation and a halogenated material must be avoided.

Der Erfindung liegt die Aufgabe zugrunde, ein Isolationsmaterial zur Verfügung zu stellen, das gute isolierende Eigenschaften und eine gute Haftfähigkeit aufweist, wenn es auf dem zu isolierenden Material aufgebracht ist. Weiterhin soll ein Verfahren zum Isolieren eines elektrischen Leiters angegeben werden, durch das das Isolationsmaterial mit guter Haftfähigkeit auf den Leiter aufgebracht werden kann.The invention has for its object to provide an insulation material that has good insulating properties and good adhesiveness when it is applied to the material to be insulated. Furthermore, a method for insulating an electrical conductor is to be specified, by means of which the insulation material can be applied to the conductor with good adhesion.

Lösungen dieser Aufgaben sind in den Ansprüchen 1 bis 21 angegeben.Solutions to these problems are given in claims 1 to 21.

Das erfindungsgemäße Isolationsmaterial besteht aus einem hochtemperaturfesten Polymer, das einen elektrischen Leiter umgibt. Auf diesem Polymer ist ein vollständig hitzegehärteter Organosiloxanimid-Klebstoff aufgebracht, der überraschenderweise für eine gute Polymer-Polymer-Verbindung sorgt. Das Polymer ist ein Polyimid, Polyphenylensulfid (PPS) oder ein Polyether-etherketon (PEEK) Die erfindungsgemäßen Kabel sind besonders für den Einsatz bei hohen Temperaturen und unter aggresiven Umweltbedingungen geeignet. Der neuartige Verbundwerkstoff kann sowohl als Primärisolierung aber auch als Mantel eingesetzt werden.The insulation material according to the invention consists of a high temperature-resistant polymer which surrounds an electrical conductor. A completely heat-cured organosiloxaneimide adhesive is applied to this polymer, which surprisingly ensures a good polymer-polymer connection. The polymer is a polyimide, polyphenylene sulfide (PPS) or a polyether ether ketone (PEEK). The cables according to the invention are particularly suitable for use at high temperatures and under aggressive environmental conditions. The innovative composite material can be used both as primary insulation and as a jacket.

Das Organopolysiloxanimid wird in einem organischen Lösungsmittel evtl. mit organischen Peroxiden und Pigmenten gelöst, und die Lösung wird auf eine Schicht des vollständig ausgehärteten Polymers aufgetragen. Das Lösungsmittel wird dann verdampft, und die Polymerschicht wird um einen elektrischen Leiter gewickelt, wobei der Klebstoff oben liegt. Vorzugsweise wird die Polymerschicht bandförmig zugeschnitten und spiralförmig um den elektrischen Leiter gewickelt. Der mit dem Band umwickelte Leiter wird zunächst für eine verhältnismäßig kurze Zeit auf eine höhere Temperatur erhitzt, um die Schichten aus dem Polymer abzudichten. Er wird dann für eine längere Zeit auf einer niedrigen Temperatur gehalten, um die Vernetzungs-Aushärt-Reaktion zu erhöhen und um Probleme wie das Anlaufen von Metalleitern zu verhindern, was bei höheren Temperaturen und längeren Aufheizzeiten auftreten kann.The organopolysiloxaneimide is dissolved in an organic solvent, possibly with organic peroxides and pigments, and the solution is applied to a layer of the fully cured polymer. The solvent is then evaporated and the polymer layer is wrapped around an electrical conductor with the adhesive on top. The polymer layer is preferably cut into a band shape and wound spirally around the electrical conductor. The conductor wrapped in the tape is first of all for a relatively short time heated to a higher temperature to seal the layers of polymer. It is then kept at a low temperature for an extended period of time to increase the cross-link curing reaction and to prevent problems such as tarnishing of metal conductors, which can occur at higher temperatures and longer heating times.

Der bevorzugte Organopolysiloxanimid-Klebstoff ist ein vollständig ausgehärtetes Material mit der Formel

Figure imgb0005

worin Q ein tetravalentes Radikal ist, das ausgewählt wird aus
Figure imgb0006

worin D ausgewählt wird aus
-O-, -S-,
Figure imgb0007
Figure imgb0008

und -O R⁴-O-,
worin R⁴ ein bivalentes Radikal ist, das ausgewählt ist aus
Figure imgb0009
Figure imgb0010
Figure imgb0011

und bivalenten organischen Radikalen der allgemeinen Formel
Figure imgb0012

worin R¹ und R² Alkylene darstellen, für gewöhnlich -(CH₂)₃ -, oder R⁴, worin R Methyl, Phenyl, Tolyl oder eine Mischung von aliphatischen und aromatischen Radikalen darstellt, worin R³ Wasserstoff oder ein Alkylradikal mit 1 bis 8 C-Atomen darstellt, X aus bivalenten Radikalen -CR 3 2
Figure imgb0013
- , CyH2y-,-CO-,-SO₂-, -O-, und -S-, ausgewählt ist, wobei y 1 bis 5, k 1 bis 7, n 1 bis 7, m eine ganze Zahl größer als 1 und p 0 oder 1 sind.The preferred organopolysiloxaneimide adhesive is a fully cured material with the formula
Figure imgb0005

where Q is a tetravalent radical selected from
Figure imgb0006

where D is selected from
-O-, -S-,
Figure imgb0007
Figure imgb0008

and -O R⁴-O-,
wherein R⁴ is a bivalent radical selected from
Figure imgb0009
Figure imgb0010
Figure imgb0011

and divalent organic radicals of the general formula
Figure imgb0012

wherein R¹ and R² represent alkylenes, usually - (CH₂) ₃ -, or R⁴, wherein R represents methyl, phenyl, tolyl or a mixture of aliphatic and aromatic radicals, wherein R³ represents hydrogen or an alkyl radical with 1 to 8 carbon atoms , X from bivalent radicals -CR 3rd 2nd
Figure imgb0013
-, C y H 2y -, - CO -, - SO₂-, -O-, and -S-, is selected, where y 1 to 5, k 1 to 7, n 1 to 7, m is an integer greater than 1 and p are 0 or 1.

Da es sich bei dem Polyimidsiloxan um ein Thermoplast handelt, ist die chemische Beständigkeit und die Wärmebeständigkeit des Materials stark begrenzt. Um diese Nachteile teilweise zu kompensieren, ist es notwendig, die Matrix chemisch zu vernetzen. Die Vernetzungsreaktion wird vorzugsweise in Gegenwart eines Peroxids durchgeführt. Als Peroxide sind insbesondere Benzoylperoxide wie Bis-2,4-dichlorbenzoylperoxid, Dicumylperoxid oder t-Butylperoxid geeignet. Die Gegenwart von Peroxid beschleunigt die Vernetzungsreaktion und erhöht die chemische Resistenz gegenüber Lösungsmitteln.Since the polyimide siloxane is a thermoplastic, the chemical resistance and the heat resistance of the material are severely limited. To partially compensate for these disadvantages, it is necessary to chemically crosslink the matrix. The crosslinking reaction is preferably carried out in the presence of a peroxide. Benzoyl peroxides such as bis-2,4-dichlorobenzoyl peroxide, dicumyl peroxide or t-butyl peroxide are particularly suitable as peroxides. The presence of peroxide accelerates the crosslinking reaction and increases chemical resistance to solvents.

Die Vernetzungsreaktion wird durch die Spaltung des Peroxids eingeleitet, wie aus nachstehender Formel ersichtlich ist.

Figure imgb0014
Figure imgb0015
The crosslinking reaction is initiated by cleavage of the peroxide, as can be seen from the formula below.
Figure imgb0014
Figure imgb0015

Die auf diese Weise gebildeten Radikale erzeugen durch Abspalten von Wasserstoff aus der Polymerkette ein Polymerradikal. Zwei der auf diese Weise entstandenen Polymerradikale können sich zu einer C-C-Bindung absättigen, wie aus nachstehender Formel ersichtlich ist.

Figure imgb0016
The radicals formed in this way generate a polymer radical by splitting off hydrogen from the polymer chain. Two of the polymer radicals formed in this way can saturate to form a CC bond, as can be seen from the formula below.
Figure imgb0016

In Gegenwart eines Coaktivators, wie beispielsweise Triallylcyanurat kann eine dreidimensionale Vernetzung erreicht werden, die zu einem thermisch stabileren Produkt füht, das durch eine Vervielfachung der Vernetzungsstellen auch eine bessere chemische Beständigkeit aufweist. Das Polymerradikal reagiert in diesem Fall mit einer Allylgruppe des Cyanurats. Die Formel ist nachfolgend wiedergegeben.

Figure imgb0017
In the presence of a coactivator, such as, for example, triallyl cyanurate, three-dimensional crosslinking can be achieved, which leads to a thermally more stable product which, by multiplying the number of crosslinking sites, also has better chemical resistance. In this case, the polymer radical reacts with an allyl group of the cyanurate. The formula is shown below.
Figure imgb0017

An den Radikalen der Allylgruppen des Cyanurats, die mit der Hauptkette verknüpft sind, können sich andere Peroxidradikale, Polymerradikale oder Allylreste eines anderen Cyanurats anlagern und somit gegenseitig absättigen. Dies führt zu einer Vermehrung der Vernetzungsstellen und somit zu einer Erhöhung des Vernetzungsgrades. Neben diesen bevorzugten Vernetzungsreaktionen können natürlich noch zahlreiche andere Nebenreaktionen auftreten, die insgesamt zu einem räumlich vernetzten, thermisch stabilen und chemisch resistenten Produkt führen.Other peroxide radicals, polymer radicals or allyl residues of another cyanurate can attach to the radicals of the allyl groups of the cyanurate, which are linked to the main chain, and thus saturate one another. This leads to an increase in the number of networking points and thus to an increase in the degree of networking. In addition to these preferred crosslinking reactions, there can of course also be numerous other side reactions which overall lead to a spatially crosslinked, thermally stable and chemically resistant product.

Die Vernetzung wird erst bei Beaufschlagung des fertigen Produkts mit höherer Temperatur in Gang gesetzt, womit gewährleistet ist, daß während des Trocknens und weiterverarbeiten des Produkts keine Vorvernetzung erfolgt. Die Reaktion wird erst dann ausgelöst, wenn das Produkt über eine Zeitspanne von 1 bis 3 Minuten bei 300° C gehalten wird. Um die entstandenen Kristallisationsbereiche in der Mikrostruktur des Materials zu egalisieren, werden die fertigen Produkte einer Nachtemperierung unterworfen, was normalerweise bei 200° C für die Dauer von 2 bis 3 Stunden geschieht. Eine nach diesem Verfahren hergestellte Isolierung kann bei mechanischer Belastung bis zu einer Dauertemperatur von 150° C und bei einer nur elektrischen Belastung bis zu einer Dauertemperatur von 170° C verwendet werden.The crosslinking is only started when the finished product is exposed to a higher temperature, which ensures that no pre-crosslinking takes place during the drying and further processing of the product. The reaction is only triggered when the product is held at 300 ° C for a period of 1 to 3 minutes. In order to equalize the crystallization areas in the microstructure of the material, the finished products are subjected to post-heating, which normally takes place at 200 ° C for 2 to 3 hours. Insulation produced using this method can be used for mechanical loads up to a permanent temperature of 150 ° C and for only electrical loads up to a permanent temperature of 170 ° C.

Für die Verwendung des Isolationsmaterials für Flachoder Coaxialkabel ist eine niedrige Dielektrizitätskonstante notwendig. Dazu muß der Klebstoffansatz modifiziert werden. Dies kann beispielsweise erfolgen, indem zusätzlich zu der genannten Mischung expandierte Glaskugeln, vorzugsweise Mikrokugeln, die innen hohl sind, zugegeben werden. Um eine bessere Haftung zwischen der Kunststoffmatrix und den Glaskugeln zu erreichen, wird ein Kupplungsmittel auf Silanbasis zugegeben. Als Silan kann insbesondere Vinyltris-(2-methoxyethoxy-)silan (1); 3,4 Epoxybutyltriethoxysilan (2); 3-Thiocyanatopropyltriethoxysilan (3) oder 3-Methacryloxypropyltriethoxysilan (4) verwendet werden.

  • (1)   (CH₃OCH₂CH₂O)₃ - Si - CH = CH₂
  • (2)
    Figure imgb0018
  • (3)   (C₂H₅O)₃ - Si - CH₂ - CH₂ - CH₂ - SCN
  • (4)
    Figure imgb0019
A low dielectric constant is required to use the insulation material for flat or coaxial cables. To do this, the adhesive approach must be modified. This can be done, for example, by adding expanded glass spheres, preferably microspheres that are hollow on the inside, in addition to the mixture mentioned. To achieve better adhesion between the plastic matrix and the glass balls, a silane-based coupling agent is added. In particular, vinyl tris (2-methoxyethoxy) silane (1); 3,4 epoxybutyltriethoxysilane (2); 3-thiocyanatopropyltriethoxysilane (3) or 3-methacryloxypropyltriethoxysilane (4) can be used.
  • (1) (CH₃OCH₂CH₂O) ₃ - Si - CH = CH₂
  • (2)
    Figure imgb0018
  • (3) (C₂H₅O) ₃ - Si - CH₂ - CH₂ - CH₂ - SCN
  • (4)
    Figure imgb0019

Die Menge an jeweils verwendetem Silan beträgt ungefähr 0,1 bis 0,8 % des Gewichts an Glaskugeln. Die verwendbaren Silane haben die folgende allgemeine Formel y-Si-R′-X, wobei y und X die zwei verschiedenen reaktiven Zentren darstellen. Die funktionelle Gruppe X ist mit einem organischen Zwischenstück R′ mit dem vierbindigen Siliziumatom verknüpft. Die funktionelle Gruppe y ist eine abspaltbare Gruppe, in diesem Fall entweder eine Trimethoxy- oder eine Trieethoxysilyl-Gruppe. Die Funktion der Silane als Haftvermittler

Figure imgb0020

beruht auf der Ausbildung einer monomolekularen Silanschicht auf der Oberfläche der Glaskugeln, wobei hier die funktionelle Gruppe y reagiert. Die verbliebene funktionelle Gruppe X kann chemisch mit der Kunststoffmatrix oder mit dem Vernetzer/Coaktivator-System reagieren.The amount of silane used in each case is approximately 0.1 to 0.8% of the weight of glass balls. The silanes that can be used have the following general formula y-Si-R'-X, where y and X represent the two different reactive centers. The functional group X is linked to an organic intermediate R 'with the four-bonded silicon atom. The functional group y is a removable group, in this case either a trimethoxy or a trieethoxysilyl group. The function of silanes as an adhesion promoter
Figure imgb0020

is based on the formation of a monomolecular silane layer on the surface of the glass spheres, the functional group y reacting here. The remaining functional group X can react chemically with the plastic matrix or with the crosslinker / coactivator system.

Neben den Glaskugeln, die die Dielektrizitätskonstante des Isolationsmaterials auf etwa 2,1 bis 1,8 herabsetzen, kann auch ein halogenfreies Flammschutzmittel zugegeben werden. Dies führt einerseits zur verbesserten Flammwidrigkeit des Isolationsmaterials und andererseits zur wesentlichen Erhöhung der Viskosität des Beschichtungsmaterials. Der Anteil des Flammschutzmittels kann bis ca. 20 Gewichtsprozent betragen. Dadurch ist es auch möglich, eine höhere Schichtdicke des Klebstoffauftrages zu erhalten und somit die beschichtete Polymerschicht, beispielsweise in Form einer Folie, für die Herstellung von Flachbandkabeln zu verwenden. Dabei beträgt die Dicke der Klebstoffschicht vorzugsweise 50 bis 100 »m. Dies ermöglicht das Einbetten von blanken Leitern oder von fertig isolierten Adern.In addition to the glass spheres, which reduce the dielectric constant of the insulation material to about 2.1 to 1.8, a halogen-free flame retardant can also be added. On the one hand, this leads to an improved flame resistance of the insulation material and, on the other hand, to a substantial increase in the viscosity of the coating material. The proportion of the flame retardant can be up to approx. 20 percent by weight. This also makes it possible to obtain a higher layer thickness of the adhesive application and thus to use the coated polymer layer, for example in the form of a film, for the production of ribbon cables. The thickness of the adhesive layer is preferably 50 to 100 »m. This enables the embedding of bare conductors or of fully insulated wires.

Beispiel 1:Example 1:

Eine Rolle aus Polyimidfilm (DuPont Kapton H-50) wird mit einer 2,54 »m (0,0001 inch) dicken Schicht aus einem Organopolysiloxanimid-Klebstoff überzogen, der in Methylenchlorid gelöst wurde, um eine Lösung mit einem Feststoffanteil von 5 % zu ergeben. 20 Gew.-% eines grünen Pigmentes in Polyester, bezogen auf das Organopolysiloxanimid, wurden zu der Lösung aus Organopolysiloxanimid und Methylenchlorid zugegeben, um den Film zu färben. Das Lösungsmittel wird verdampft, um einen trockenen Film zu erzeugen.A roll of polyimide film (DuPont Kapton H-50) is coated with a 2.54 »m (0.0001 inch) thick layer of an organopolysiloxanimide adhesive which has been dissolved in methylene chloride to form a 5% solids solution surrender. 20% by weight of a green pigment in polyester, based on the organopolysiloxaneimide, was added to the solution of organopolysiloxaneimide and methylene chloride to color the film. The solvent is evaporated to a to produce dry film.

Die Rolle wird dann in gleichmäßig gewundene Spulen mit einem etwa 1,83 mm (0,072 inch) breiten Band zerteilt. Das Band wird um einen 30 AWG, mit Silber plattierten Kupferleiter gewickelt, um einen Aufbau mit 2,1 Umwicklungen mit einem Enddurchmesser von 0,3048 mm (0,012 inch) zu ergeben. Dieser umwickelte Aufbau wird in einem Luftofen bei 300° C mit einer Verweilzeit von 50 Sekunden verbunden. Die äußere Klebstoffschicht, die nicht mit einer Filmschicht bedeckt ist, wird von dem Aufbau abgewaschen, indem der Aufbau durch ein Methylenchloridbad geführt wird, um einen grünen, isolierten Drahtaufbau zu ergeben. An diesem Drahtaufbau werden Tests hinsichtlich der Dielektrizität in feuchter Umgebung, hinsichtlich der Alterung bei Erhitzen sowie hinsichtlich der Lösungsmittelresistenz durchgeführt. Das Testverfahren bezüglich der Dielektrizität in feuchter Umgebung erfolgt nach den Bestimmungen von MIL-W-81822A, Abschnitt 4.6.20; das Testverfahren hinsichtlich der Hitzebeständigkeit erfolgt nach den Bestimmungen von MIL-W-81822A, Abschnitt 4.6.22; und die Widerstandfähigkeit gegenüber Fluiden erfolgt nach den Bestimmungen von MIL-W-8l822A, Abschnitt 4.6.25. Die Hitzebeständigkeit des Aufbaus, bei dem ein Organosiloxanimid-Klebstoff verwendet wird, ist größer als die Hitzebeständigkeit von einem vergleichbaren Polyester-Klebstoff, jedoch ist die Lösungsmittelwiderstandsfähigkeit hinsichtlich 1,1,1-Trichlorethan unzulänglich.The roll is then cut into evenly wound bobbins with an approximately 1.83 mm (0.072 inch) wide band. The tape is wrapped around a 30 AWG silver plated copper conductor to give a 2.1 wrap construction with a 0.3048 mm (0.012 inch) end diameter. This wrapped structure is connected in an air oven at 300 ° C with a residence time of 50 seconds. The outer adhesive layer, which is not covered with a film layer, is washed off the assembly by passing the assembly through a methylene chloride bath to give a green, insulated wire assembly. Tests are carried out on this wire construction with regard to the dielectric in a moist environment, with regard to aging when heated and with regard to the resistance to solvents. The test procedure for dielectric in a humid environment is carried out according to the provisions of MIL-W-81822A, section 4.6.20; the heat resistance test procedure is in accordance with the provisions of MIL-W-81822A, section 4.6.22; and fluid resistance is in accordance with the provisions of MIL-W-8l822A, Section 4.6.25. The heat resistance of the construction using an organosiloxaneimide adhesive is greater than the heat resistance of a comparable polyester adhesive, but the solvent resistance to 1,1,1-trichloroethane is insufficient.

Beispiel 2:Example 2:

Eine Rolle aus Polyimidfilm (DuPont Kapton H-100) wird mit einer 2,54 »m (0,0001 inch) dicken Schicht aus einem Organopolysiloxanimid-Klebstoff überzogen, der in Methylenchlorid gelöst wurde, um eine Lösung mit einem Feststoffanteil von 5 % zu ergeben. Ein chromhaltiges, rotes Pigment wird zu der Klebstofflösung zugefügt um das Band zu färben. Das Lösungsmittel wird verdampft, um einen trockenen Film zu ergeben.A roll of polyimide film (DuPont Kapton H-100) is covered with a 2.54 »m (0.0001 inch) thick layer coated with an organopolysiloxaneimide adhesive dissolved in methylene chloride to give a 5% solids solution. A red pigment containing chromium is added to the adhesive solution to color the tape. The solvent is evaporated to give a dry film.

Ein weiteres Band wird genau wie oben überzogen, mit der Ausnahme, daß ein organisches Peroxid (zum Beispiel Luprox 500R Dicumylperoxid) in einer Menge von 10 Gew.-%, bezogen auf den Organopolysiloxanimid-Klebstoff, zugegeben wird.Another tape is coated exactly as above, except that an organic peroxide (e.g. Luprox 500R dicumyl peroxide) is added in an amount of 10% by weight based on the organopolysiloxaneimide adhesive.

Beide Bänder werden in gleichmäßig gewundene Spulen mit einer Breite von etwa 2,64 mm (0,104 inch) zerteilt. Die Bänder werden um einen 30 AWG, mit Silber plattierten Kupferleiter gewickelt, so daß sich ein Aufbau mit 3,2 Umwicklungen und einem fertigen Durchmesser von 0,4064 mm (0,016 inch) ergibt. Die umwickelten Aufbauten werden in einem Luftofen mit einer Temperatur von 320° C und einer Verweilzeit von 100 Sekunden gebrannt. Die äußere Schicht aus Klebstoff, die nicht von dem Film bedeckt ist, wird von dem Aufbau abgewaschen, indem der Aufbau durch ein Methylenchloridbad geleitet wird. Es wird ein roter, isolierter Drahtaufbau erhalten.Both tapes are cut into evenly wound coils approximately 2.64 mm (0.104 inch) wide. The tapes are wrapped around a 30 AWG silver plated copper conductor to create a 3.2 wrap construction with a finished 0.4064 mm (0.016 inch) diameter. The wrapped superstructures are fired in an air oven with a temperature of 320 ° C and a residence time of 100 seconds. The outer layer of adhesive, which is not covered by the film, is washed off the assembly by passing the assembly through a methylene chloride bath. A red, insulated wire structure is obtained.

Proben von jedem Aufbau werden bei 225°C 3,5 Stunden lang ausgehärtet. Sowohl mit der ausgehärteten Probe als auch mit der nicht ausgehärteten Probe werden physikalische Testverfahren durchgeführt. Die Widerstandsfähigkeit gegenüber Fluiden wird entsprechend den Bestimmungen von MIL-W-8l822A, Abschnitt 4.6.25 durchgeführt, mit der Ausnahme, daß Methylenchlorid zu der Liste von Testfluiden hinzugefügt wird, und daß die Testspannung erhöht wird, bis ein Durchschlag erfolgt. Die Ergebnisse sind in der nachfolgenden Tabelle zusammengefaßt (KV = Kilovolt).

Figure imgb0021
Samples from each setup are cured at 225 ° C for 3.5 hours. Physical test procedures are performed on both the cured sample and the uncured sample. Resistance to fluids is performed in accordance with the provisions of MIL-W-81822A, Section 4.6.25, except that methylene chloride is added to the list of test fluids and the test voltage is increased until a breakdown occurs. The results are summarized in the table below (KV = Kilovolt).
Figure imgb0021

Aus den Beispielen ist ersichtlich, daß der Klebstoff hinsichtlich einiger Lösungsmittel widerstandsfähiger ist als hinsichtlich anderer Lösungsmittel. Das Aushärten von Proben in der Gegenwart von Peroxid beschleunigt die Vernetzung und erhöht somit die Lösungsmittelwiderstandsfähigkeit des Klebstoffs bezüglich solcher Lösungsmittel, die den Klebstoff leichter lösen, beispielswiese Methylenchlorid.From the examples it can be seen that the adhesive is more resistant to some solvents than to other solvents. The curing of samples in the presence of peroxide accelerates the crosslinking and thus increases the solvent resistance of the adhesive to those solvents which more easily dissolve the adhesive, for example methylene chloride.

Beispiel 3:Example 3:

Eine Rolle aus einem PEEK-(Polyether-etherketon)-Film wird mit einer 0,00254 mm (0,0001 inch) dicken Schicht aus einem Organopolysiloxanimid-Klebstoff überzogen, der in Methylenchlorid gelöst wurde, um eine Lösung mit einem Feststoffanteil von 5 % zu ergeben. Ein chromhaltiges, rotes Pigment wird mit 25 Gew.-%, bezogen auf den Organopolysiloxanimid-Klebstoff, zugegeben, um das Band zu färben. Das Lösungsmittel wird verdampft, um einen Aufbau mit 5,0 Umwicklungen mit einem Enddurchmesser von 0,508 mm (0,020 inch) zu ergeben. Der umwickelte Aufbau wird in einem Luftofen bei 300° C mit einer Verweilzeit von 100 Sekunden erhitzt. Die äußere Klebstoffschicht, die nicht durch eine Filmschicht bedeckt ist, wird von dem Aufbau abgewaschen, indem dieser durch ein Methylenchloridbad geleitet wird, so daß sich ein roter, isolierter Leiteraufbau ergbit.A roll of PEEK (polyether ether ketone) film is coated with a 0.00254 mm (0.0001 inch) thick layer of an organopolysiloxane imide adhesive dissolved in methylene chloride to form a 5% solids solution. to surrender. A chromium-containing red pigment is added at 25% by weight, based on the organopolysiloxanimide adhesive, in order to color the tape. The solvent is evaporated to give a 5.0 wrap construction with a final diameter of 0.508 mm (0.020 inch). The wrapped structure is heated in an air oven at 300 ° C with a residence time of 100 seconds. The outer layer of adhesive, which is not covered by a film layer, is washed off the assembly by passing it through a methylene chloride bath so that a red, insulated conductor assembly results.

Das fertige, zusammengesetzte Isolationsmaterial wies eine Zugfestigkeit von 175 (25000 psi) und eine Dehnung von 110 % auf. Ebenso hatte es eine gute Wärmebeständigkeit und gute elektrische Eigenschaften.The finished composite insulation material had a tensile strength of 175 (25000 psi) and an elongation of 110%. It also had good heat resistance and good electrical properties.

Beispiel 4:Example 4:

Eine Polyphenylensulfid-Folie mit einer Schichtdicke von etwa 12 bis 100 »m wird mit einer Klebstofflösung beschichtet. Die Klebstofflösung, die als Beschichtungsmasse verwendet wird, enthält als Kunststoffmatrix Organopolysiloxanimid, als Vernetzer Bis-2,4-dichlorbenzoylperoxid, als Coaktivator Triallylcyanurat sowie Farbpigmente und Methylenchlorid als Lösungsmittel. Die Feststoffkonzentration beträgt etwa 20 bis 25 Gew.-%, je nach erforderlicher Schichtdicke. Das Lösungsmittel wird verdampft, die Vernetzungsreaktion erfolgt bei 300° C und einer Zeit von 1 bis 3 Minuten. Das fertige Produkt wird einer Nachtemperierung unterworfen, was bei 200° C für die Dauer von 2 bis 3 Stunden geschieht.A polyphenylene sulfide film with a layer thickness of about 12 to 100 »m is coated with an adhesive solution. The adhesive solution, which is used as a coating material, contains organopolysiloxane imide as the plastic matrix, bis-2,4-dichlorobenzoyl peroxide as the crosslinker, triallyl cyanurate as the coactivator, and color pigments and methylene chloride as the solvent. The solids concentration is approximately 20 to 25% by weight, depending on the required layer thickness. The solvent is evaporated, the crosslinking reaction takes place at 300 ° C and a time of 1 to 3 minutes. The finished product is subjected to post-heating, which takes place at 200 ° C. for a period of 2 to 3 hours.

Das Endprodukt stellt ein Primärisolationsmaterial für elektrische Teile dar, ist mechanisch für eine Dauertemperatur von mindestens 150° C und elektrisch für eine Temperatur von mindestens 170° C zu verwenden.The end product is a primary insulation material for electrical parts, can be used mechanically for a permanent temperature of at least 150 ° C and electrically for a temperature of at least 170 ° C.

Methylenchlorid erwies sich als das beste Lösungsmittel für den ungehärteten Organopolysiloxanimid-Klebstoff. Die verbesserte Resistenz gegenüber Methylenchlorid durch ein mit Hilfe von Peroxid ausgehärtetes Organopolysiloxanimid eliminiert somit einen schwachen Punkt beim Gebrauch dieses Klebstoffes für die Herstellung von Drähten und Kabeln.Methylene chloride proved to be the best solvent for the uncured organopolysiloxaneimide adhesive. The improved resistance to methylene chloride by means of an organopolysiloxane imide hardened with the help of peroxide thus eliminates a weak point in the use of this adhesive for the production of wires and cables.

Claims (21)

  1. An insulated electric conductor having:
    (a) a core made of electroconductive metal;
    (b) an insulating material surrounding the core and made of a polymer selected from polyimide, polyphenylene sulfide or polyetheretherketone;
    (c) a completely thermoset organosiloxanimide adhesive which is applied to the polymer; and
    (d) a further layer of the polymer which is glued to the adhesive.
  2. The insulated conductor of claim 1, characterized in that the adhesive is selected from adhesives which have the formula
    Figure imgb0033
    wherein Q is a tetravalent radical selected from
    Figure imgb0034
    wherein D is selected from
    -O-, -S-,
    Figure imgb0035
    et -O-R⁴-O-,
    wherein R⁴ is a bivalent radical selected from
    Figure imgb0036
    Figure imgb0037
    Figure imgb0038
    and
    Figure imgb0039
    wherein:
    R¹ and R² are alkylene, in particular -(CH₂)₃-, or R⁴, R is methyl, phenyl, tolyl or a mixture of aliphatic and aromatic radicals, R³ is hydrogen or an alkyl radical with 1-8 C atoms, X is selected from bivalent radicals
    -CR₂-, -CyH2y-, -CO-, -SO₂-, -O-, and -S-,
    wherein y is 1 to 5, k is 1 to 7, n is 1 to 7, m is an integral number greater than 1, and p is zero or 1.
  3. The insulated conductor of claim 1 or 2, characterized in that R is -CH₃, R¹ is
    Figure imgb0040
    R² is -CH₂)₃-, R⁴ is
    Figure imgb0041
    X -C(CH)₃)₂-, Q
    Figure imgb0042
    wherein D is -O-R⁴-O-, p equals 1, k equals 5, n equals 4 and m is 4 to 8.
  4. The insulated conductor of any of claims 1 to 3, characterized in that the adhesive has been cured in the presence of an organic peroxide.
  5. The insulated conductor of claim 4, characterized in that the organic peroxide is benzoyl peroxide, bis-2,4-dichlorobenzoyl peroxide, dicumyl peroxide or t-butyl peroxide.
  6. The insulated conductor of claim 4 or 5, characterized in that the adhesive has been cured in the presence of a coactivator.
  7. The insulated conductor of claim 6, characterized in that the coactivator is a cyanurate.
  8. The insulated conductor of claim 7, characterized in that the cyanurate is a triallyl cyanurate.
  9. The insulated conductor of any of claims 1 to 8, characterized in that the adhesive is mixed with glass microballs which are hollow inside to lower the dielectric constant of the insulating material.
  10. The insulated conductor of claim 10, characterized in that the adhesive contains a silane to increase adhesion with the glass microballs.
  11. The insulated conductor of claim 11, characterized in that the silane is selected from vinyl tris-(2-methoxyethoxy)-silane, 3,4-epoxybutyltriethoxysilane, 3-thiocyanatopropyltriethoxysilane or 3-methacryloxypropyltriethoxysilane.
  12. The insulated conductor of claim 10 or 11, characterized in that the quantity of silane is 0.1 to 0.8% of the weight of microballs.
  13. The insulated conductor of any of claims 1 to 12, characterized in that the adhesive contains a flameproofing agent.
  14. The insulated conductor of claim 13, characterized in that the flameproofing agent is present in a concentration up to about 20% by weight.
  15. A method for insulating a conductor made of electro-conductive metal having the following method steps:
    (a) covering a polymer film with an adhesive layer comprising a completely thermoset organosiloxanimide in an organic solvent;
    (b) evaporating the solvent;
    (c) wrapping the conductor with the polymer film and the adhesive or embedding the conductor in the adhesive layer;
    (d) heating the wrapped conductor for connecting the layers.
  16. The method of claim 16, characterized in that the solution of the completely thermoset organosiloxanimide in an organic solvent contains an organic peroxide, and after the heating for connecting the layers the conductor is held for a relatively long time at a temperature lower than the crosslinking temperature to carry out the spatial crosslinking of the organosiloxanimide.
  17. A method for gluing a polymer used as insulating material in a cable, which is a polyimide, a polyphenylene sulfide or a polyetheretherketone, to itself or to another material by heating a connecting layer of completely thermoset organosiloxanimide adhesive which covers the polymer.
  18. The method of claim 17, characterized in that the adhesive contains an organic peroxide.
  19. The method of claim 18, characterized in that the organic peroxide is a benzoyl peroxide, for example bis-2,4-dichlorobenzoyl peroxide, dicumyl peroxide or t-butyl peroxide.
  20. The method of claim 18 or 19, characterized in that a coactivator, preferably a cyanurate, is used additionally to the organic peroxide.
  21. The method of claim 20, characterized in that the cyanurate used is a triallyl cyanurate.
EP89117457A 1988-12-21 1989-09-21 Electrical conductor with polymeric insulation Expired - Lifetime EP0377080B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28804888A 1988-12-21 1988-12-21
US288048 1988-12-21

Publications (3)

Publication Number Publication Date
EP0377080A2 EP0377080A2 (en) 1990-07-11
EP0377080A3 EP0377080A3 (en) 1991-12-18
EP0377080B1 true EP0377080B1 (en) 1995-12-06

Family

ID=23105529

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89117457A Expired - Lifetime EP0377080B1 (en) 1988-12-21 1989-09-21 Electrical conductor with polymeric insulation

Country Status (4)

Country Link
EP (1) EP0377080B1 (en)
AT (1) ATE131310T1 (en)
DE (2) DE58909529D1 (en)
ES (1) ES2080058T3 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2085653A1 (en) * 1992-01-10 1993-07-11 Michael G. Minnick Polyetherimide/dimethylsiloxane copolymer adhesive system for bonding copper foil to polyetherimide flexible films
IT1255027B (en) * 1992-05-08 1995-10-13 Luca Castellani CABLE FOR HIGH OPERATING TEMPERATURES
JP2013020727A (en) * 2011-07-07 2013-01-31 Nitto Denko Corp Coating material for rectangular copper wire, coated rectangular copper wire and electrical apparatus
JP2013033716A (en) * 2011-07-07 2013-02-14 Nitto Denko Corp Covering material for superconducting wire, superconducting electric wire and electrical device
JP2013020726A (en) * 2011-07-07 2013-01-31 Nitto Denko Corp Coating material for rectangular copper wire, coated rectangular copper wire and electrical apparatus
JP2013020725A (en) * 2011-07-07 2013-01-31 Nitto Denko Corp Coating material of superconducting wire, superconducting wire and electrical apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727966B2 (en) * 1986-07-04 1995-03-29 日立化成工業株式会社 Semiconductor device

Also Published As

Publication number Publication date
EP0377080A3 (en) 1991-12-18
ES2080058T3 (en) 1996-02-01
ATE131310T1 (en) 1995-12-15
DE377080T1 (en) 1990-10-18
EP0377080A2 (en) 1990-07-11
DE58909529D1 (en) 1996-01-18

Similar Documents

Publication Publication Date Title
DE1520012C3 (en) Process for the production of polycondensates with recurring imide units
DE2832893A1 (en) POLYMER BLENDS CONTAINING SILICONE RESINS
DE2913070A1 (en) INSULATION SYSTEM FOR ELECTRIC LADDERS
DE2439490C2 (en) Ethylene vinyl acetate copolymer composition
DE102010039168A1 (en) Electro-insulating varnishes of modified polymers and electrical conductors made therefrom with improved lubricity
EP0377080B1 (en) Electrical conductor with polymeric insulation
DE602004001781T2 (en) ELECTRICAL PIPE COATED WITH A LIQUID LAYER AND MANUFACTURING PROCESS THEREOF
JPS5828688B2 (en) Conductor coating method
DE2453436C3 (en) Electrical insulating material
DE69305563T2 (en) Lacquer-coated electrical wire and process for its manufacture
DE1795638A1 (en) Polyimides
DE19903137A1 (en) Baking varnish
US4480007A (en) Enamel having improved coatability and insulated electrical articles produced therefrom
JPS58501235A (en) Flame retardant composition, method for producing the same, and wire and cable products thereof
DE3873128T2 (en) METHOD FOR PRODUCING AN ELECTRICAL TRANSMISSION LINE.
DE3877963T2 (en) ELECTRIC WIRE.
US4404331A (en) Enamel having improved coatability and insulated electrical articles produced therefrom
EP0883881A1 (en) Enamelled metallic wires
DE3853710T2 (en) Oligomers containing silicon atoms and imido groups, curable compositions and their preparation.
JP3287116B2 (en) High heat resistant insulated wire
US4485127A (en) Enamel having improved coatability and insulated electrical articles produced therefrom
JP3376497B2 (en) Heat resistant insulated wire
DE1947030C (en) Insulated electrical component
CA1186839A (en) Enamel having improved coatability comprising a polyesterimide resin and a nylon polymer
DE1595733C (en) Process for the production of polyimides

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

GBC Gb: translation of claims filed (gb section 78(7)/1977)
ITCL It: translation for ep claims filed

Representative=s name: JACOBACCI CASETTA & PERANI S.P.A.

EL Fr: translation of claims filed
DET De: translation of patent claims
17P Request for examination filed

Effective date: 19901213

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19940801

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19951206

Ref country code: BE

Effective date: 19951206

REF Corresponds to:

Ref document number: 131310

Country of ref document: AT

Date of ref document: 19951215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58909529

Country of ref document: DE

Date of ref document: 19960118

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2080058

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960122

ITF It: translation for a ep patent filed

Owner name: PORTA CHECCACCI E BOTTI S.R.L.

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960930

Ref country code: LI

Effective date: 19960930

Ref country code: CH

Effective date: 19960930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000901

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000905

Year of fee payment: 12

Ref country code: GB

Payment date: 20000905

Year of fee payment: 12

Ref country code: DE

Payment date: 20000905

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20001006

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010922

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010922

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

EUG Se: european patent has lapsed

Ref document number: 89117457.5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050921