EP0374925B1 - Graphitfaser mit hoher Dichte und Verfahren zu deren Herstellung - Google Patents

Graphitfaser mit hoher Dichte und Verfahren zu deren Herstellung Download PDF

Info

Publication number
EP0374925B1
EP0374925B1 EP19890123668 EP89123668A EP0374925B1 EP 0374925 B1 EP0374925 B1 EP 0374925B1 EP 19890123668 EP19890123668 EP 19890123668 EP 89123668 A EP89123668 A EP 89123668A EP 0374925 B1 EP0374925 B1 EP 0374925B1
Authority
EP
European Patent Office
Prior art keywords
fiber
graphite
less
weight
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19890123668
Other languages
English (en)
French (fr)
Other versions
EP0374925A2 (de
EP0374925A3 (de
Inventor
Hiroyasu C/O Toho Rayon Co. Ltd. Ogawa
Harumitsu C/O Toho Rayon Co. Ltd. Enomoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18165338&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0374925(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Publication of EP0374925A2 publication Critical patent/EP0374925A2/de
Publication of EP0374925A3 publication Critical patent/EP0374925A3/de
Application granted granted Critical
Publication of EP0374925B1 publication Critical patent/EP0374925B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles

Definitions

  • the present invention relates to a graphite fiber derived from polyacrylic fiber which is useful for reinforcing a composite material, particularly useful for reinforcing a composite material in the aerospace industry.
  • the invention further relates to a method of manufacturing a graphite fiber.
  • the graphite fibers which have been used in the aerospace industry have a strand tensile modulus of 50x103 kgf/mm2 at the highest and a strand tensile strength of as low as 200 kgf/mm2. Accordingly, their use for members in the aerospace industry is limited to a very narrow range.
  • the fibers, even when they are useful, have disadvantages in that they have to be used in a large amount or have to be used in combination with other materials, thus resulting in increased weight.
  • Such graphite fibers have been made according to the methods disclosed, for example, in U.S. Patent 4,321,446.
  • Aerospace materials which are repeatedly exposed to high temperatures and low temperatures are required to have high heat conductivity.
  • graphite fibers need to have higher density which correlates with the heat conductivity.
  • graphite fibers are desired to have a high density, a high strength, and a high tensile modulus. Additionally, the graphite fibers are desired to be capable of being used as pseudoisotropic composite material in use for members in the aerospace industry.
  • the graphite fibers are desired to have a small filament diameter.
  • a graphite fiber has long been desired which is composed of filaments of a small diameter, particularly not more than 7 »m in diameter, and which has a high density, a high strength and a high modulus.
  • An object of the present invention is to provide a graphite fiber which is light in weight and has a high strand tensile modulus and a high strand tensile strength and further which has a high density which contributes to heat conductivity.
  • Another object of the present invention is to provide a graphite fiber which is suitable for producing a pseudoisotropic composite material.
  • graphite fiber derived from an acrylic fiber, which has a fiber density of not less than 1.93 g/cm3, a strand tensile strength of not less than 350 kgf/mm2, and a strand tensile modulus of not less than 53x103 kgf/mm2.
  • the fiber density, the strand tensile strength, and the strand tensile modulus are measured according to JIS R7601, and the diameter of the filament is determined by measuring the sectional area of the filament employing scanning electromicroscopy and converting the obtained value to the true circle diameter.
  • a graphite fiber having a fiber density of up to about 2.10 g/cm3, a strand tensile strength of up to about 550 kgf/mm2, and a strand tensile modulus of up to about 75 x 103 kgf/mm2 can be obtained.
  • the graphite fiber of the present invention substantially consists of carbon atoms in an amount of 100% by weight.
  • nitrogen atoms, oxygen atoms, and hydrogen atoms each may be present in an amount of from 0 to 0.1% by weight
  • ash may be present in an amount of from 0 to 0.2% by weight based on the weight of the total weight of the grahite fiber (including such materials, when present).
  • the ash content is the residue of the graphite fiber after heating the graphite fiber at 650°C in the air for 300 minutes. (The heating is repeatedly conducted until the weight of the residue becomes constant.) A fiber density of less than 1.93/cm3 leads to decrease in the heat conductivity.
  • the graphite fiber of the present invention preferably is composed of a filaments of not more than 7 »m in diameter.
  • the filament diameter of not more than 7 »m is desirable as mentioned above, an excessively small filament diameter (i.e., less than 0.1 »m), namely extreme fineness thereof, is undesirable because such causes a remarkable increase in fluffing of the strands in ultra-thin sheet materials.
  • a preferred diameter is from 0.5 to 5 »m.
  • the number of filaments constituting a graphite fiber strand obtained according on the method of the present invention is desirably not overly large, and is preferably from 50 to 15,000 because of the required fineness of the strand. Less than 50 filaments is undesirable since it causes frequent thread breakage rendering difficult the production of thin sheet materials.
  • the filaments constituting the strand are preferably not interlocked but are parallel with each other for producing thinner sheets.
  • the interlocking degree of the filaments in a strand is measured by vertically hanging 300 mm long strand with a load of 0.1 g/d at the lower end thereof, perpendicularly piercing the strand with a chromium plated pin of 1 mm diameter at around the middle of the strand breadth, and measuring the distance that the pin goes down by 10 g of load for 3 minutes.
  • the interlocking degree of the strand is represented by this distance.
  • the interlocking degree is preferably not less than 250 mm.
  • the graphite fiber of the present invention can be prepared from an acrylic fiber, that is, a polyacrylonitrile fiber or a copolymer fiber composed of preferably about 90% by weight or more, and more preferably about 95% by weight or more, of acrylonitrile, and any vinyl monomers which are copolymerizable with acrylonitrile can be used as the comonomers.
  • known comonomers can be used, including neutral monomers such as methyl acrylate, methyl methacrylate and vinyl acetate; acrylic acid, methacrylic acid, itaconic acid, maleic acid, vinylsulfonic acid, allylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid and metal salts thereof (such as the sodium salt and potassium salt) and ammonium salts; vinylimidazole, vinylpyrimidine and derivatives thereof; and acrylamide, methacrylamide, etc.
  • the preferred molecular weight of the polymer is about 40,000 to 200,000, more preferably about 60,000 to 150,000 calculated using Staudinger's equation.
  • the graphite fiber can be obtained by preoxidizing acrylic fiber, carbonizing the thus-obtained preoxidized fiber and the graphitizing the thus-obtained carbon fiber.
  • Methods for producing carbon fiber are known, for example, in U.S. Patents 4,197,279, 4,397,831, 4,347,279, 4,474,906 and 4,522,801, and methods for producing graphite fibers are known, for example in U.S. Patent 4,321,446.
  • the graphite fiber of the present invention can be obtained by using a specifically selected carbon fiber and by using precisely selected conditions for obtaining the graphite fiber.
  • Such an acrylic fiber can be obtained referring to U.S. Patent Application Serial No. 845,167*
  • the acrylic fiber is preoxidized by heating in air at a temperature below the heat decomposition temperature of the fiber (usually at from 200 to 350°C) under a tension preferably of from 70 to 200 mg/d (more preferably of from 100 to 150 mg/d) for preferably from 5 to 120 minutes (more preferably of from 10 to 60 minutes) to give a fiber density of from 1.32 to 1.40 g/cm3 (preferably from 1.32 to 1.37 g/cm3).
  • the thus obtained carbon fiber is stretched at least 3% (preferably from 5 to 15%, more preferably 5 to 10%) during graphitizing in an inert gas atmosphere (argon, helium or nitrogen, preferably argon or helium) at a temperature of 2,400°C or higher (preferably of from 2,400 to 3,300°C, more preferably of from 2,600 to 3,300°C) to produce a graphite fiber.
  • the time period for heating (graphitizing) is usually from about 0.1 to 10 minutes.
  • the graphitization is conducted until the density of the fiber becomes at least 1.93 g/cm3.
  • the fiber density of the preoxidized fiber, the nitrogen content, the orientation degree, the density of the carbon fiber, the graphitization temperature of 2,400°C or higher and the elongation ratio must be met to provide the intended graphite.
  • the composite materials reinforced by the graphite fiber of the present invention will enable a weight reduction and thus a speed increase of flying objects, satellites, and space stations etc., in the aerospace field, and similar results with respect to rotating bodies, travelling bodies, etc., in other technical fields.
  • a prepreg containing fiber in an amount of 150 g/m2 with a resin content of 37% (based on the weight of the prepreg) was prepared from the thus obtained graphite fiber and a resin component constituted of 50 parts of an epoxy resin: Epikote 828 ® (made by Yuka Shell Epoxy K.K., bisphenol A diglycidyl ether having an epoxy equivalent of from 184 to 194), 50 parts of Epikote 1002 ® (made by Yuka Shell Epoxy K.K., bisphenol A diglycidyl ether having an epoxy equivalent of from 600 to 700) and 3 parts of dicyandiamide, by arranging the graphite fiber unidirectionally.
  • Epikote 828 ® made by Yuka Shell Epoxy K.K., bisphenol A diglycidyl ether having an epoxy equivalent of from 184 to 194
  • Epikote 1002 ® made by Yuka Shell Epoxy K.K., bisphenol A diglycidyl ether having an epoxy equivalent of from 600 to 700
  • the prepreg was laminated and compression molded at 130°C for 2 hours under a pressure of 7 kgf/cm2 to produce a composite material in the form of a plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)

Claims (21)

  1. Von einer Acrylfaser abgeleitete Graphitfaser, wobei die Graphitfaser eine Faserdichte von nicht weniger als 1,93 g/cm³ hat, eine Fadenzugfestigkeit von nicht weniger als 3,43245 GPa (350 kgf/mm²) und einen Fadenzugmodul von nicht weniger als 519,771 GPa (53x10³ kgf/mm²) hat.
  2. Graphitfaser gemäß Anspruch 1, bei welcher die Graphitfaser einen Filamentdurchmesser von nicht mehr als 7 »m hat.
  3. Graphitfaser gemäß Anspruch 1, bei welcher die Faserdichte 1,93 bis 2,10 g/cm³ beträgt.
  4. Graphitfaser gemäß Anspruch 1, bei welcher die Fadenzugfestigkeit von 3,43245 bis 5,39385 GPa (350 bis 550 kgf/mm²) beträgt.
  5. Graphitfaser gemäß Anspruch 1, bei welcher die Fadenzugfestigkeit 519,771 bis 735,525 GPa (53 x 10³ bis 75 x 10⁵ kgf/mm²) beträgt.
  6. Graphitfaser gemäß Anspruch 1, bei welcher der Filamentdurchmesser 0,1 bis 7 »m beträgt.
  7. Graphitfaser gemäß Anspruch 1, bei welcher die Graphitfaser aus 99,5 bis 100 Gew.-% Kohlenstoffatomen, weniger als 0,1 Gew.-% von jeweils Stickstoffatomen, Sauerstoffatomen und Wasserstoffatomen und weniger als 0,2 Gew.-% Asche besteht.
  8. Graphitfaser gemäß Anspruch 1, bei welcher die Graphitfaser eine Orientierung von 85 bis 98 % bei einer maximalen Beugung bei 2ϑ = 25,3 ± 0,5°, Röntgenbeugungswinkel der (002) Ebene des Graphitkristalls hat.
  9. Graphitfaser gemäß Anspruch 1, in welcher die Dichte 1,93 bis 2,10 g/cm³ beträgt, die Fadenzugfestigkeit 3,43245 bis 5,39385 GPa (350 bis 550 kgf/mm²) ist, der Fadenzugmodul 519,771 bis 735,525 GPa (53 x 10³ bis 75 x 10³ kgf/mm²) ist, die Graphitfaser aus 99,5 bis 100 Gew.-% Kohlenstoffatomen, weniger als 0,1 Gew.-% von jeweils Stickstoffatomen, Sauerstoffatomen und Wasserstoffatomen und weniger als 0,2 Gew.-% Asche besteht, und die Graphitfaser eine Orientierung von 85 bis 98 % bei der Maximalbeugung bei 2ϑ = 25,3 ± 0,5°, Röntgenbeugungswinkel der (002) Ebene des Graphitkristalls hat.
  10. Verfahren zur Herstellung einer Graphitfaser mit einer Faserdichte von nicht weniger als 1,93 g/cm³, einer Fadenzugfestigkeit von nicht weniger als 3,43245 GPa (350 kgf/mm²) und einem Fadenzugmodul von nicht weniger als 519,771 GPa (53x10³ kgf/mm²) hat, umfassend das Carbonisieren einer voroxidierten Faser, die sich von einer Acrylfaser ableitet, mit einer Faserdichte von 1,32 bis 1,40 g/cm³ unter Erhalt einer Kohlenstoffaser mit einem Stickstoffgehalt von nicht weniger als 1,0 Gew.-%, bezogen auf das Kohlenfasergewicht, einer Faserdichte von nicht weniger als 1,79 g/cm³ und einer Orientierung von nicht weniger als 79 % bei der Maximalbeugung bei 2ϑ = 25,3 ± 0,5° bei dem Röntgenbeugungswinkel der (002) Ebene des Graphitkristalls, und Graphitisieren der so erhaltenen Kohlenstoffaser in einem Inertgas bei einer Temperatur von nicht niedriger als 2.400°C unter Spannung und Strecken der Faser um wenigstens 3 % während der Graphitisierung.
  11. Verfahren zur Herstellung einer Graphitfaser gemäß Anspruch 10, wobei die Kohlenstoffaser während der Graphitisierung um 3 % bis 15 % gestreckt wird.
  12. Verfahren zur Herstellung einer Graphitfaser gemäß Anspruch 10, wobei der Stickstoffgehalt der Kohlenstoffaser 1,0 bis 8 Gew.-% beträgt.
  13. Verfahren zur Herstellung einer Graphitfaser gemäß Anspruch 10, wobei die Kohlenstoffaser eine Orientierung von 79 bis 84 % bei der Maximalbeugung bei 2ϑ = 25,3 ± 0,5°, Röntgenbeugungswinkel der (002) Ebene des Graphitkristalls hat.
  14. Verfahren zur Herstellung einer Graphitfaser gemäß Anspruch 10, wobei die Faserdichte der Kohlenstoffaser 1,79 bis 1,85 g/cm³ beträgt.
  15. Verfahren zur Herstellung einer Graphitfaser gemäß Anspruch 10, wobei die Kohlenstoffaser einen Faden, bestehend aus 50 bis 15.000 Filamenten umfaßt.
  16. Verfahren zur Herstellung einer Graphitfaser gemäß Anspruch 10, wobei die Acrylfaser eine Polyacrylnitrilfaser oder eine Copolymerfaser, die sich aus nicht weniger als 90 Gew.-% an Acrylnitril zusammensetzt, ist.
  17. Verfahren zur Herstellung einer Graphitfaser gemäß Anspruch 10, bei dem die Acrylfaser einen Filamentdurchmesser von 0,1 bis 13 »m hat.
  18. Verfahren zur Herstellung einer Graphitfaser gemäß Anspruch 10, wobei die Kohlenstoffaser sich von einer Acrylfaser mit einer Zugfestigkeit von nicht weniger als 26,478 cN/tex (3 g/d) einer Zugdehnung von nicht weniger als 5 % und einem Orientierungsgrad von nicht weniger als 88 %, bezogen bei dem Röntgenbeugungswinkel von 2ϑ = 17,3 ± 0,3° hat.
  19. Verfahren zur Herstellung einer Graphitfaser gemäß Anspruch 10, wobei die Graphitisierungstemperatur 2.400 bis 3.300°C beträgt.
  20. Verfahren zur Hertellung einer Graphitfaser gemäß Anspruch 18, bei dem die Kohlenstoffaser erhalten wurde durch Voroxidieren der Acrylfaser an der Luft bei einer Temperatur von 100 bis 350°C unter einer Spannung von 0,617 bis 1,765 cN/tex (70 bis 200 mg/d) bis die Faserdichte 1,33 bis 1,40 g/cm³ erreicht, worauf man dann die erhaltene voroxidierte Faser in einer Inertatmosphäre bei einer Temperatur von 1.100 bis 1.430°C unter Streckbedingungen carbonisiert, so daß man einen Orientierungsgrad von 79 % bis 84 % bei der Maximalbeugung bei 2ϑ = 25,3 ± 0,5°, Röntgenbeugungswinkel der (002) Ebene des Graphitkristalls erhält, bis die Faserdichte wenigstens 1,79 bis 1,85 g/cm³ beträgt, und der Stickstoffgehalt 1,0 bis 8 Gew.-% ist.
  21. Verfahren zur Herstellung einer Graphitfaser gemäß Anspruch 20, bei dem man das Carbonisieren unter Streckbedingungen durchführt und die Faser bis zu einem Ausmaß von 5 bis 20 % streckt.
EP19890123668 1988-12-22 1989-12-21 Graphitfaser mit hoher Dichte und Verfahren zu deren Herstellung Expired - Lifetime EP0374925B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP324397/88 1988-12-22
JP32439788 1988-12-22

Publications (3)

Publication Number Publication Date
EP0374925A2 EP0374925A2 (de) 1990-06-27
EP0374925A3 EP0374925A3 (de) 1991-09-25
EP0374925B1 true EP0374925B1 (de) 1995-03-08

Family

ID=18165338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890123668 Expired - Lifetime EP0374925B1 (de) 1988-12-22 1989-12-21 Graphitfaser mit hoher Dichte und Verfahren zu deren Herstellung

Country Status (2)

Country Link
EP (1) EP0374925B1 (de)
DE (1) DE68921581T2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939046B2 (en) 2004-06-21 2011-05-10 Raytheon Company Microporous graphite foam and process for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW459075B (en) * 1996-05-24 2001-10-11 Toray Ind Co Ltd Carbon fiber, acrylic fiber and preparation thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1093084A (en) * 1965-03-16 1967-11-29 Union Carbide Corp Manufactured graphite yarn
JPS58214534A (ja) * 1982-06-09 1983-12-13 Toray Ind Inc 高強伸度炭素繊維束およびその製法
WO1985001752A1 (en) * 1983-10-13 1985-04-25 Mitsubishi Rayon Co., Ltd. Carbon fibers with high strength and high modulus, and process for their production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939046B2 (en) 2004-06-21 2011-05-10 Raytheon Company Microporous graphite foam and process for producing same
US8051666B2 (en) 2004-06-21 2011-11-08 Raytheon Company Microporous graphite foam and process for producing same

Also Published As

Publication number Publication date
DE68921581T2 (de) 1995-08-17
EP0374925A2 (de) 1990-06-27
DE68921581D1 (de) 1995-04-13
EP0374925A3 (de) 1991-09-25

Similar Documents

Publication Publication Date Title
Ko The influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization
Chand Review carbon fibers for composites
EP2233616B1 (de) Herstellungsverfahren für flammenfeste faser und kohlenstofffaser
US4904424A (en) Ceramic alloys from colloidal metal alloy suspensions
Tse-Hao et al. The characterization of PAN-based carbon fibers developed by two-stage continuous carbonization
US3917776A (en) Process for producing carbon fiber
US3723607A (en) Surface modification of carbon fibers
EP0297695A2 (de) Verfahren zur Herstellung von Gegenständen aus Kohlenstoff/Kohlenstoffasern
US5167945A (en) Method for producing graphite fiber
EP0644280B1 (de) Gemahlene Kohlenstoffasern und Verfahren zu deren Herstellung
US3556729A (en) Process for oxidizing and carbonizing acrylic fibers
EP0374925B1 (de) Graphitfaser mit hoher Dichte und Verfahren zu deren Herstellung
US3754957A (en) Enhancement of the surface characteristics of carbon fibers
Dačić et al. Kinetics of air oxidation of unidirectional carbon fibres/CVD carbon composites
JP2630477B2 (ja) 高密度黒鉛繊維
US3723150A (en) Surface modification of carbon fibers
EP0372931B1 (de) Kontinuierliche Kohlenstoffasern mit sehr hohem Modul
US3900556A (en) Process for the continuous carbonization and graphitization of a stabilized acrylic fibrous material
CA2007067A1 (en) Composite metal-loaded carbon fibers
US3547584A (en) Graphitization of fibrous polyamide resinous materials
Ko Characterization of PAN‐based nonburning (nonflammable) fibers
Curtis et al. Hollow carbon fibres for high performance polymer composites
JP3303424B2 (ja) アクリル系炭素繊維の製造方法
US6528036B2 (en) Milled carbon fiber and process for producing the same
JPH08209457A (ja) 炭素繊維およびその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19920318

17Q First examination report despatched

Effective date: 19940517

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 68921581

Country of ref document: DE

Date of ref document: 19950413

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: TORAY INDUSTRIES, INC.

Effective date: 19951208

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBL Opposition procedure terminated

Free format text: ORIGINAL CODE: EPIDOS OPPC

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 19970210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071219

Year of fee payment: 19

Ref country code: FR

Payment date: 20071210

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071213

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081221

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231