EP0374679A2 - Method for producing a two-sided high-pressure discharge lamp - Google Patents

Method for producing a two-sided high-pressure discharge lamp Download PDF

Info

Publication number
EP0374679A2
EP0374679A2 EP89122833A EP89122833A EP0374679A2 EP 0374679 A2 EP0374679 A2 EP 0374679A2 EP 89122833 A EP89122833 A EP 89122833A EP 89122833 A EP89122833 A EP 89122833A EP 0374679 A2 EP0374679 A2 EP 0374679A2
Authority
EP
European Patent Office
Prior art keywords
tube
discharge vessel
pinch
lamp
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89122833A
Other languages
German (de)
French (fr)
Other versions
EP0374679A3 (en
EP0374679B1 (en
Inventor
Jürgen Dr. Heider
Dieter Lang
Hartmuth Bastian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6369557&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0374679(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0374679A2 publication Critical patent/EP0374679A2/en
Publication of EP0374679A3 publication Critical patent/EP0374679A3/en
Application granted granted Critical
Publication of EP0374679B1 publication Critical patent/EP0374679B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/245Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps
    • H01J9/247Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps specially adapted for gas-discharge lamps

Definitions

  • the invention relates to the manufacture of a lamp with the features designated in the preamble of the main claim.
  • the invention relates in particular to the production of metal halide high-pressure discharge lamps with an electrical power consumption of at most 50 W, as have recently been increasingly proposed for the purpose of general lighting or for use in motor vehicle headlights.
  • Such lamps have hitherto been produced by first closing a quartz tube which is open on both sides and then forming the olive-shaped shape at the location of the future discharge vessel by collecting the quartz glass. Then the tube end, which was initially closed, is opened again in further work steps and a pump tube is attached to the center of the discharge vessel.
  • this object is achieved by the sequence of work steps set out in the main claim. Further details for the production of the metal halide high-pressure discharge lamps can be found in the subclaims. Since the work steps of filling and closing the discharge vessel take place in the high-purity atmosphere of the glovebox, contamination by foreign gases such as H2, O2 or H2O can be reduced to a minimum. By heating the still open tube inside the glovebox, the particle density in this area is reduced. This creates - after the sealing melting by means of a plasma torch in the glovebox and after the discharge vessel has cooled - a certain negative pressure inside, which, in conjunction with the temperature reduction to approx. ⁇ 100 ° C, enables the second pinch to be produced outside the glovebox.
  • the process time is considerably shortened and the entire production process is simplified. Because of the there are no different wall thicknesses or inhomogeneities of any other type, which means that the radiation emission from the lamp is much more uniform than in the known lamps with a pump tube.
  • the lamp is therefore particularly suitable for use in optical systems, for example in motor vehicle headlights, in which extremely precise adjustment and arrangement of the light / dark boundary are important.
  • FIG. 1a shows the tube 1 made of quartz glass cut to a length of approximately 150 mm.
  • the outside diameter of the tube is approx. 4.5 mm, the inside diameter d is approx. 2 mm.
  • both constrictions 4, 5 are placed in the center and at a defined distance from one another by means of the forming roller 3 (FIG. 1b).
  • a nitrogen stream N 2 is passed through the tube 1 at a rate of 10 l / h from one side.
  • the future discharge vessel 6 (FIG. 1c) is precisely delimited in its length of approximately 7.5 mm.
  • the constriction 4 has a smaller clear diameter than the constriction 5. This results in a gas accumulation p of the nitrogen stream N 2 between the two constrictions in the heated area of the future discharge vessel 6, so that this area is somewhat inflated and its olive shape with an outer diameter of approx .5.5 mm.
  • the prefabricated electrode system (FIG. 2) is squeezed into that end of the tube 1 which has the constriction 4 with the smaller diameter.
  • the electrode system consists of an electrode 7 made of tungsten, a sealing film 8 made of molybdenum and a power supply 9 made of molybdenum.
  • the electrode 7 is provided with a ball 10 at its end arranged in the discharge vessel 6.
  • the power supply line 9 is bent in a zigzag shape in the yz plane, the angle ⁇ by which the curved power supply line 9 deviates from the xz plane being less than 45 °, preferably approximately 20 ° -30 °.
  • the height h that is the amount by which the reversal point 11 of the curved power supply 9 deviates from the xz plane, is greater than half the inner diameter d of the tube 1. In practice, a ratio corresponding to h ⁇ 0.55 d proven.
  • the you tion film 8 is aligned in the xz-plane, that is perpendicular to the yz-plane of the curved power supply 9.
  • An electrode system shaped in this way holds itself within the tube 1 by the kinking or reversal points 11 of the power supply 9 being clamped against the inner wall of the tube. Once adjusted to its predetermined position, the electrode system maintains it until it is finally fixed.
  • each power supply 9 To securely support the power supply 9 on the inner wall of the tube 1, at least three kink or reversal points 11 are attached to each power supply 9.
  • a power supply 9 designed in this way centers itself in the axis of the tube 1.
  • the electrode 7 in the discharge vessel 6 is also automatically centered in the x coordinate of the sealing film 8. Any possible decentration perpendicular to the plane of the sealing film 8, that is to say in the y coordinate, for example by bending the sealing film 8, is compensated for during the squeezing process.
  • the first pinch 12 is then produced.
  • the tube 1 in the area of the sealing film 8 is brought to a temperature of above approximately 2200 ° C. which is suitable for the deformation.
  • an argon flow is passed through the preformed tube 1.
  • the first pinch 12 is produced.
  • the pinch that is adjacent to the constriction 4 with the smaller diameter is first sealed.
  • the production of the pinch itself is a process known to the person skilled in lamp construction and is not shown separately in the figures.
  • the tube 1 provided with the first pinch 12 is now subjected to high-vacuum annealing at> 400 ° C. and ⁇ 5 ⁇ 10 ⁇ 5 mbar when it is introduced into the glove box for cleaning.
  • the glovebox 13 is filled with argon.
  • the filling pressure does not deviate from the surrounding atmospheric pressure by more than a few 10 mbar.
  • the argon filling gas of the glovebox 13 corresponds to the future filling gas of the metal halide high-pressure discharge lamp.
  • the work steps within the glove box 13 are shown in FIG. 4.
  • FIG. 4a shows the lamp of FIG. 3 pinched on one side in the glovebox 13.
  • the filling substances consisting of a metal halide pill 14 and a mercury ball 15, and first the second electrode system (FIG. 4b) introduced.
  • the filling substances fall through the still open constriction 5 with the larger diameter into the discharge vessel 6.
  • the electrode system is, as before during the preparation for the first squeeze 12, adjusted in its self-retaining position at its predetermined position, so that the electrode 7 within of the discharge vessel 6 is arranged and the distance between the balls 10 of the two electrodes 7 is given its intended value.
  • the open tube 1 is heated with a heating device. This causes a reduction in the particle density in the heated area.
  • the quartz tube 1 is then sealed at its open end inside the glovebox 13 by means of a plasma torch 16 or a laser (FIG. 4c), so that only one melting tip 17 (FIG. 4d) remains.
  • a plasma torch 16 or a laser FIG. 4c
  • the lamp thus prefabricated has cooled down Due to the reduced particle density inside the discharge vessel there is a filling pressure which is approx. 300 mbar below the surrounding atmospheric pressure.
  • the prefabricated lamp is now removed from the glovebox 13.
  • the area around the sealing film 8 of the second electrode system is heated to the pinch temperature of approximately 2200 ° C. and the second pinch 18 (FIG. 5) is applied by squeezing the second electrode system.
  • the area of the discharge vessel 6 is cooled to ⁇ 100 ° C. by means of cooled nitrogen in order to prevent the metal halide 14 and mercury 15 from evaporating.
  • the lamp is removed from the squeezing device and the tube ends 1 projecting beyond the squeezes 12, 18 are removed.
  • the zigzag part of the power supply lines 9 can also be removed.
  • a finished metal halide high-pressure discharge lamp 19 is shown in FIG. 5.

Abstract

In the manufacture of a two-sided flattened metal halogenide high-pressure discharge lamp (19) the following process steps are carried out: preforming of the discharge vessel (6) by rolling with N2 dynamic pressure rinse, clamping into a flattening device, introducing the first electro-optical system (7, 8, 9, 10), the power supply (9) being bent in a zig-zag shape and resting on the inner wall of the quartz tube (1) in a self-supporting fashion, manufacture of the first flattened portion (12) with Ar rinse, high-vacuum baking during insertion into the glovebox, filling in the filling substances (14, 15), introducing the second electro-optical system (7, 8, 9, 10), fusing the open tube end tight with a plasma torch, removal from the glovebox, manufacture of the second flattened portion (18) with simultaneous cooling of the discharge vessel (6), removal of the lamp (19) from the flattening device and removal of the projecting ends of the quartz tube as well as, if necessary, of the ends of the power supplies (9). There is no pump tube on the discharge vessel (6). <IMAGE>

Description

Die Erfindung betrifft die Herstellung einer Lampe mit den im Oberbegriff des Hauptanspruchs bezeichneten Merkmalen. Die Erfindung betrifft insbesondere die Herstellung von Metallhalogenidhochdruckentladungslam­pen mit einer elektrischen Leistungsaufnahme von maxi­mal 50 W, wie sie in letzter Zeit vermehrt zum Zweck der Allgemeinbeleuchtung oder zum Einsatz in Kraft­fahrzeugscheinwerfern vorgeschlagen wurden. Solche Lampen wurden bisher hergestellt, indem ein beidseitig offenes Quarzrohr zuerst einseitig verschlossen und anschließend an der Stelle des künftigen Entladungsge­fäßes durch Versammeln des Quarzglases dessen oliven­förmige Gestalt ausgebildet wird. Danach werden in weiteren Arbeitsgängen das anfangs verschlossene Rohr­ende wieder geöffnet sowie ein Pumprohr mittig an das Entladungsgefäß angesetzt. Nachdem in die offenen Rohrenden jeweils ein Elektrodensystem eingeführt und eingeschmolzen wurde, werden die Füllsubstanzen und das Füllgas durch das Pumprohr in das Entladungs­gefäß eingebracht und letztlich das Pumprohr abge­schmolzen. Dieses aufwendige, arbeitsintensive Her­stellverfahren hat den gravierenden Nachteil, daß an dem ohnehin sehr kleinen Entladungsgefäß - seine Länge beträgt nur ca. 7,5 mm, sein Durchmesser nur ca. 5,5 mm - durch das Ansetzen und Abschmelzen des Pumprohres Inhomogenitäten in der Materialverteilung entstehen, die zum einen die Cold-Spot-Temperatur und damit die Lichtfarbe der Lampe nachteilig beein­flussen und zum anderen die von der Lampe emittierte Strahlung in einem nicht reproduzierbaren Maß streuen, was sich bei dem vorgesehenen Einsatz dieser Lampen in optischen Systemen besonders nachteilig bemerkbar macht.The invention relates to the manufacture of a lamp with the features designated in the preamble of the main claim. The invention relates in particular to the production of metal halide high-pressure discharge lamps with an electrical power consumption of at most 50 W, as have recently been increasingly proposed for the purpose of general lighting or for use in motor vehicle headlights. Such lamps have hitherto been produced by first closing a quartz tube which is open on both sides and then forming the olive-shaped shape at the location of the future discharge vessel by collecting the quartz glass. Then the tube end, which was initially closed, is opened again in further work steps and a pump tube is attached to the center of the discharge vessel. After an electrode system has been introduced and melted into each of the open tube ends, the filling substances and the filling gas are introduced through the pump tube into the discharge vessel and ultimately the pump tube is melted off. This complex, labor-intensive manufacturing process has the serious disadvantage that in the already very small discharge vessel - its length is only about 7.5 mm, its diameter is only about 5.5 mm - inhomogeneities in the material distribution due to the attachment and melting of the pump tube arise, on the one hand the cold spot temperature and thus adversely influencing the light color of the lamp and secondly scattering the radiation emitted by the lamp to a non-reproducible extent, which is particularly disadvantageous when these lamps are used in optical systems.

Es ist Aufgabe der Erfindung, ein einfaches Herstell­verfahren für die in Frage kommenden Lampen zu schaffen, bei dem keine inhomogene Materialverteilung am Entladungsgefäß auftritt, um die zuvor beschrie­benen Nachteile auszuschalten.It is an object of the invention to provide a simple manufacturing process for the lamps in question, in which there is no inhomogeneous material distribution on the discharge vessel in order to eliminate the disadvantages described above.

Diese Aufgabe wird erfindungsgemäß durch die im Haupt­anspruch aufgeführte Folge von Arbeitsschritten ge­löst. Den Unteransprüchen sind weitere Details für die Herstellung der Metallhalogenid-Hochdruckentladungs­lampen entnehmbar. Da die Arbeitsschritte des Füllens und Verschließens des Entladungsgefäßes in der hoch­reinen Atmosphäre der Glovebox erfolgen, können Ver­unreinigungen durch Fremdgase, wie H₂, O₂ oder H₂O, auf ein Minimum reduziert werden. Durch die Aufheizung des noch offenen Rohres innerhalb der Glovebox wird eine Reduzierung der Teilchendichte in diesem Bereich bewirkt. Hierdurch entsteht - nach dem Dichtschmelzen mittels eines Plasmabrenners in der Glovebox und nach dem Abkühlen des Entladungsgefäßes - in seinem Inneren ein gewisser Unterdruck, der es in Verbindung mit der Temperaturabsenkung auf ca. < 100 °C ermöglicht, die zweite Quetschung außerhalb der Glovebox herzustellen. Mit der beschriebenen Herstellungsweise wird eine erhebliche Verkürzung der Verfahrenszeit und eine Vereinfachung des gesamten Herstellverfahrens erreicht. Aufgrund des am Entla­ dungsgefäß nicht mehr vorhandenen Pumprohres treten auch dort keine unterschiedlichen Wanddicken oder Inhomogenitäten anderer Art auf, wodurch die Strah­lungsemission der Lampe sehr viel gleichmäßiger er­folgt als bei den bekannten Lampen mit Pumprohr. Die Lampe ist deshalb für den Einsatz in optischen Syste­men besonders geeignet, wie z.B. in Kraftfahrzeug­scheinwerfern, bei denen es auf eine äußerst präzise Justierung und Anordnung der Hell-/Dunkelgrenze ankommt.According to the invention, this object is achieved by the sequence of work steps set out in the main claim. Further details for the production of the metal halide high-pressure discharge lamps can be found in the subclaims. Since the work steps of filling and closing the discharge vessel take place in the high-purity atmosphere of the glovebox, contamination by foreign gases such as H₂, O₂ or H₂O can be reduced to a minimum. By heating the still open tube inside the glovebox, the particle density in this area is reduced. This creates - after the sealing melting by means of a plasma torch in the glovebox and after the discharge vessel has cooled - a certain negative pressure inside, which, in conjunction with the temperature reduction to approx. <100 ° C, enables the second pinch to be produced outside the glovebox. With the method of production described, the process time is considerably shortened and the entire production process is simplified. Because of the there are no different wall thicknesses or inhomogeneities of any other type, which means that the radiation emission from the lamp is much more uniform than in the known lamps with a pump tube. The lamp is therefore particularly suitable for use in optical systems, for example in motor vehicle headlights, in which extremely precise adjustment and arrangement of the light / dark boundary are important.

Die Erfindung wird nachstehend anhand von 5 Figuren näher erläutert. Es zeigen

  • Figuren 1a bis c die Herstellung eines vorgeformten Entladungsgefäßes
  • Figur 2 ein Elektrodensystem
  • Figur 3 das Entladungsgefäß mit vorhandener erster Quetschung
  • Figuren 4a bis d die Bearbeitungsschritte in der Glovebox
  • Figur 5 eine fertige Metallhalogenidhochdruckentla­dungslampe
The invention is explained below with reference to 5 figures. Show it
  • Figures 1a to c, the manufacture of a preformed discharge vessel
  • Figure 2 shows an electrode system
  • Figure 3 shows the discharge vessel with an existing first pinch
  • Figures 4a to d the processing steps in the glovebox
  • Figure 5 shows a finished metal halide high pressure discharge lamp

Figur 1a zeigt das auf eine Länge von ca. 150 mm ge­schnittene Rohr 1 aus Quarzglas. Der Außendurch­messer des Rohres beträgt ca. 4,5 mm, der Innendurch­messer d ca. 2 mm.FIG. 1a shows the tube 1 made of quartz glass cut to a length of approximately 150 mm. The outside diameter of the tube is approx. 4.5 mm, the inside diameter d is approx. 2 mm.

Mit Hilfe der Flammen 2 wird zunächst das in Rotation versetzte Rohr 1 erwärmt und nach Erreichen der Ver­ formungstemperatur werden mittels der Formrolle 3 gleichzeitig beide Einschnürungen 4, 5 mittig und in einem definierten Abstand zueinander angebracht (Fig. 1b). Während des Erwärmens und des Verformens wird von einer Seite ein Stickstoffstrom N₂ mit einer Menge von 10 l/h durch das Rohr 1 geführt. Durch das Anbringen der Einschnürungen 4, 5 wird das zukünf­tige Entladungsgefäß 6 (Fig. 1c) in seiner Länge von ca. 7,5 mm genau abgegrenzt. Die Einschnürung 4 weist einen geringeren lichten Durchmesser auf als die Einschnürung 5. Hierdurch entsteht zwischen den beiden Einschnürungen im erwärmten Bereich des zukünftigen Entladungsgefäßes 6 ein Gasstau p des Stickstoff­stromes N₂, so daß dieser Bereich etwas aufgeblasen wird und seine olivenförmige Gestalt mit einem Außen­durchmesser von ca. 5,5 mm annimmt.With the help of the flames 2, the rotating tube 1 is first heated and after reaching Ver Forming temperature, both constrictions 4, 5 are placed in the center and at a defined distance from one another by means of the forming roller 3 (FIG. 1b). During the heating and shaping, a nitrogen stream N 2 is passed through the tube 1 at a rate of 10 l / h from one side. By attaching the constrictions 4, 5, the future discharge vessel 6 (FIG. 1c) is precisely delimited in its length of approximately 7.5 mm. The constriction 4 has a smaller clear diameter than the constriction 5. This results in a gas accumulation p of the nitrogen stream N 2 between the two constrictions in the heated area of the future discharge vessel 6, so that this area is somewhat inflated and its olive shape with an outer diameter of approx .5.5 mm.

Im nächsten Arbeitsgang wird das vorgefertigte Elek­trodensystem (Fig. 2) in dasjenige Ende des Rohres 1 eingequetscht, das die Einschnürung 4 mit dem gerin­geren Durchmesser aufweist. Das Elektrodensystem be­steht aus einer Elektrode 7 aus Wolfram, einer Dich­tungsfolie 8 aus Molybdän sowie aus einer Stromzufüh­rung 9 aus Molybdän. Die Elektrode 7 ist an ihrem im Entladungsgefäß 6 angeordneten Ende mit einer Kugel 10 versehen. Die Stromzuführung 9 ist in der y-z-Ebene zickzackförmig gebogen, wobei der Winkel α , um den die gebogene Stromzuführung 9 von der x-z-Ebene abweicht, kleiner als 45°, vorzugsweise ca. 20° - 30° ist. Die Höhe h, das ist jener Betrag, um den der Umkehrpunkt 11 der gebogenen Stromzuführung 9 von der x-z-Ebene abweicht, ist größer als der halbe Innen­durchmesser d des Rohres 1. In der Praxis hat sich ein Verhältnis entsprechend h ≃ 0, 55 d bewährt. Die Dich­ tungsfolie 8 ist in der x-z-Ebene ausgerichtet, also senkrecht zur y-z-Ebene der gebogenen Stromzuführung 9. Ein derart geformtes Elektrodensystem haltert sich innerhalb des Rohres 1 von selbst, indem die Knick- oder Umkehrpunkte 11 der Stromzuführung 9 klemmend an der Rohrinnenwand anliegen. Einmal an seiner vorbe­stimmten Position einjustiert, behält das Elektroden­system diese bis zur endgültigen Fixierung bei. Zur sicheren Abstützung der Stromzuführung 9 an der Innenwand des Rohres 1 sind mindestens drei Knick- oder Umkehrpunkte 11 an jeder Stromzuführung 9 ange­bracht. Eine derart gestaltete Stromzuführung 9 zentriert sich in der Achse des Rohres 1 von selbst. Dadurch wird auch automatisch eine Zentrierung der Elektrode 7 im Entladungsgefäß 6 in der x-Koordinate der Dichtungsfolie 8 erreicht. Eine eventuell mögliche Dezentrierung senkrecht zur Ebene der Dichtungsfolie 8, also in der y-Koordinate, z.B. durch Verbiegen der Dichtungsfolie 8, wird beim Quetschvorgang ausge­glichen.In the next step, the prefabricated electrode system (FIG. 2) is squeezed into that end of the tube 1 which has the constriction 4 with the smaller diameter. The electrode system consists of an electrode 7 made of tungsten, a sealing film 8 made of molybdenum and a power supply 9 made of molybdenum. The electrode 7 is provided with a ball 10 at its end arranged in the discharge vessel 6. The power supply line 9 is bent in a zigzag shape in the yz plane, the angle α by which the curved power supply line 9 deviates from the xz plane being less than 45 °, preferably approximately 20 ° -30 °. The height h, that is the amount by which the reversal point 11 of the curved power supply 9 deviates from the xz plane, is greater than half the inner diameter d of the tube 1. In practice, a ratio corresponding to h ≃ 0.55 d proven. The you tion film 8 is aligned in the xz-plane, that is perpendicular to the yz-plane of the curved power supply 9. An electrode system shaped in this way holds itself within the tube 1 by the kinking or reversal points 11 of the power supply 9 being clamped against the inner wall of the tube. Once adjusted to its predetermined position, the electrode system maintains it until it is finally fixed. To securely support the power supply 9 on the inner wall of the tube 1, at least three kink or reversal points 11 are attached to each power supply 9. A power supply 9 designed in this way centers itself in the axis of the tube 1. As a result, the electrode 7 in the discharge vessel 6 is also automatically centered in the x coordinate of the sealing film 8. Any possible decentration perpendicular to the plane of the sealing film 8, that is to say in the y coordinate, for example by bending the sealing film 8, is compensated for during the squeezing process.

Wie aus der Figur 3 ersichtlich, wird anschließend die erste Quetschung 12 hergestellt. Hierfür wird das Rohr 1 im Bereich der Dichtungsfolie 8 auf eine für die Verformung geeignete Temperatur von oberhalb ca. 2200 °C gebracht. Gleichzeitig wird ein Argonstrom durch das vorgeformte Rohr 1 geleitet. Nachdem die Quetschtemperatur erreicht ist, wird die erste Quet­schung 12 hergestellt. Es wird zuerst die Quetschung abgedichtet, die der Einschnürung 4 mit dem geringeren Durchmesser benachbart ist. Die Herstellung der Quet­schung an sich ist ein dem Fachmann im Lampenbau be­kannter Vorgang und in den Figuren nicht gesondert dargestellt.As can be seen from FIG. 3, the first pinch 12 is then produced. For this purpose, the tube 1 in the area of the sealing film 8 is brought to a temperature of above approximately 2200 ° C. which is suitable for the deformation. At the same time, an argon flow is passed through the preformed tube 1. After the pinch temperature is reached, the first pinch 12 is produced. The pinch that is adjacent to the constriction 4 with the smaller diameter is first sealed. The production of the pinch itself is a process known to the person skilled in lamp construction and is not shown separately in the figures.

Das mit der ersten Quetschung 12 versehene Rohr 1 wird nun beim Einschleusen in die Glovebox zur Reinigung einer Hochvakuumglühung bei > 400 °C und < 5 x 10⁻⁵ mbar unterzogen. Die Glovebox 13 ist mit Argon gefüllt. Der Fülldruck weicht um nicht mehr als einige 10 mbar vom umgebenden Atmosphärendruck ab. Das Füllgas Argon der Glovebox 13 entspricht dem künftigen Füllgas der Metallhalogenidhochdruckentladungslampe. Die Arbeitsschritte innerhalb der Glovebox 13 sind in der Figur 4 dargestellt.The tube 1 provided with the first pinch 12 is now subjected to high-vacuum annealing at> 400 ° C. and <5 × 10⁻⁵ mbar when it is introduced into the glove box for cleaning. The glovebox 13 is filled with argon. The filling pressure does not deviate from the surrounding atmospheric pressure by more than a few 10 mbar. The argon filling gas of the glovebox 13 corresponds to the future filling gas of the metal halide high-pressure discharge lamp. The work steps within the glove box 13 are shown in FIG. 4.

Figur 4a zeigt die einseitig gequetschte Lampe der Figur 3 in der Glovebox 13. Als Nächstes werden in das wieder erkaltete Entladungsgefäß 6 zuerst die Füll­substanzen, bestehend aus einer Metallhalogenid-Pille 14 und einer Quecksilber-Kugel 15, und weiterhin das zweite Elektrodensystem (Fig. 4b) eingebracht. Die Füllsubstanzen fallen durch die noch offene Einschnü­rung 5 mit dem größeren Durchmesser in das Entla­dungsgefäß 6. Das Elektrodensystem wird, wie schon zuvor bei der Vorbereitung auf die erste Quetschung 12, selbsthalternd an seine ihm vorbestimmte Stelle in Position einjustiert, so daß die Elektrode 7 inner­halb des Entladungsgefäßes 6 angeordnet ist und der Abstand der Kugeln 10 beider Elektroden 7 genau seinen vorgesehenen Wert erhält. Anschließend wird das offene Rohr 1 mit einer Heizvorrichtung aufgeheizt. Dadurch wird eine Reduzierung der Teilchendichte in dem er­wärmten Bereich bewirkt. Danach wird das Quarzrohr 1 an seinem offenen Ende innerhalb der Glovebox 13 mittels eines Plasmabrenners 16 oder eines Lasers dichtgeschmolzen (Fig. 4c), so daß nur noch eine Abschmelzspitze 17 (Fig. 4d) verbleibt. Nach der Abkühlung der auf diese Weise vorgefertigten Lampe entsteht aufgrund der reduzierten Teilchendichte im Innern des Entladungsgefäßes ein um ca. 300 mbar unter dem umgebenden Atmosphärendruck liegender Fülldruck. Die vorgefertigte Lampe wird jetzt wieder der Glovebox 13 entnommen. Danach wird, wie schon bei der ersten Quetschung 12 beschrieben, der Bereich um die Dich­tungsfolie 8 des zweiten Elektrodensystems auf die Quetschtemperatur von ca. 2200 °C aufgeheizt und die zweite Quetschung 18 (Fig. 5) angebracht, indem das zweite Elektrodensystem eingequetscht wird. Während des Aufheiz- und Quetschvorganges wird der Bereich des Entladungsgefäßes 6 mittels gekühltem Stickstoff auf < 100 °C gekühlt, um ein Verdampfen des Metallhalo­genids 14 und Quecksilbers 15 zu verhindern.FIG. 4a shows the lamp of FIG. 3 pinched on one side in the glovebox 13. Next, the filling substances, consisting of a metal halide pill 14 and a mercury ball 15, and first the second electrode system (FIG. 4b) introduced. The filling substances fall through the still open constriction 5 with the larger diameter into the discharge vessel 6. The electrode system is, as before during the preparation for the first squeeze 12, adjusted in its self-retaining position at its predetermined position, so that the electrode 7 within of the discharge vessel 6 is arranged and the distance between the balls 10 of the two electrodes 7 is given its intended value. Then the open tube 1 is heated with a heating device. This causes a reduction in the particle density in the heated area. The quartz tube 1 is then sealed at its open end inside the glovebox 13 by means of a plasma torch 16 or a laser (FIG. 4c), so that only one melting tip 17 (FIG. 4d) remains. After the lamp thus prefabricated has cooled down Due to the reduced particle density inside the discharge vessel there is a filling pressure which is approx. 300 mbar below the surrounding atmospheric pressure. The prefabricated lamp is now removed from the glovebox 13. Then, as already described for the first pinch 12, the area around the sealing film 8 of the second electrode system is heated to the pinch temperature of approximately 2200 ° C. and the second pinch 18 (FIG. 5) is applied by squeezing the second electrode system. During the heating and squeezing process, the area of the discharge vessel 6 is cooled to <100 ° C. by means of cooled nitrogen in order to prevent the metal halide 14 and mercury 15 from evaporating.

Abschließend wird die Lampe der Quetschvorrichtung entnommen und es werden die über die Quetschungen 12, 18 hinausstehenden Rohrenden 1 entfernt. Ebenso kann der zickzackförmig ausgeführte Teil der Stromzufüh­rungen 9 entfernt werden. Eine fertige Metallhalo­genidhochdruckentladungslampe 19 ist in Figur 5 dargestellt.Finally, the lamp is removed from the squeezing device and the tube ends 1 projecting beyond the squeezes 12, 18 are removed. The zigzag part of the power supply lines 9 can also be removed. A finished metal halide high-pressure discharge lamp 19 is shown in FIG. 5.

Claims (12)

1. Verfahren zur Herstellung einer zweiseitigen Hoch­druckentladungslampe, wobei die Lampe ein Entladungs­gefäß (6) mit zwei an gegenüberliegenden Seiten des Entladungsgefäßes (6) angeordneten Einschmelzungen oder Quetschungen (12, 18) aufweist, in die jeweils ein Elektrodensystem (7, 8, 9) gasdicht eingeschmolzen oder eingequetscht ist, das aus einer im Entladungs­gefäß (6) angeordneten Elektrode (7), einer von der Einschmelzung oder Quetschung (12, 18) eingebetteten Dichtungsfolie (8) und einer aus der Einschmelzung oder Quetschung (12, 18) in Lampenlängsachse austre­tenden Stromzuführung (9) besteht, gekennzeichnet durch den Ablauf folgender Arbeitsgänge: a) Erwärmen und Einrollen eines durchgehend zylindri­schen Rohres (1) aus Quarz von vorbestimmter Länge und an vorbestimmter Stelle b) Einführen und Ausrichten eines ersten vorgefertig­ten Elektrodensystems in ein Ende des Rohres (1) c) Erwärmen des Rohres (1) im Bereich der Dichtungs­folie (8) des ersten Elektrodensystems (7, 8, 9) und Herstellen der ersten Einschmelzung in Form einer Quetschung (12) d) Einbringen der Füllsubstanzen (14, 15) und des Füllgases durch das zweite, noch offene Ende des Rohres (1) e) Einführen und Ausrichten des zweiten vorgefertigten Elektrodensystems (7, 8, 9) in das offene Ende des Rohres (1) f) Erwärmen des Rohres (1) im Bereich der Dichtungs­folie des zweiten Elektrodensystems (7, 8, 9) und Herstellen der zweiten Einschmelzung in Form einer Quetschung (18). 1. A method for producing a two-sided high-pressure discharge lamp, the lamp having a discharge vessel (6) with two melts or squeezes (12, 18) arranged on opposite sides of the discharge vessel (6), into each of which an electrode system (7, 8, 9) is melted or squeezed in a gas-tight manner, which consists of an electrode (7) arranged in the discharge vessel (6), a sealing film (8) embedded in the melt or pinch (12, 18) and one from the melt or pinch (12, 18) in the longitudinal axis of the lamp emerging power supply (9), characterized by the sequence of the following operations: a) heating and rolling a continuously cylindrical tube (1) made of quartz of a predetermined length and at a predetermined location b) inserting and aligning a first prefabricated electrode system into one end of the tube (1) c) heating the tube (1) in the area of the sealing film (8) of the first electrode system (7, 8, 9) and producing the first melt in the form of a pinch (12) d) introducing the filling substances (14, 15) and the filling gas through the second, still open end of the tube (1) e) inserting and aligning the second prefabricated electrode system (7, 8, 9) into the open end of the tube (1) f) heating the tube (1) in the area of the sealing film of the second electrode system (7, 8, 9) and producing the second melt in the form of a pinch (18). 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß während der Arbeitsgänge a) und c) ein Inertgas­strom durch das offene Rohr (1) geführt wird.2. The method according to claim 1, characterized in that an inert gas stream is passed through the open tube (1) during operations a) and c). 3. Verfahren nach Anspruch 1 und 2, dadurch gekenn­zeichnet, daß während des Arbeitsganges c) der Bereich des Entladungsgefäßes (6) auf ca. < 1000 °C gekühlt wird.3. The method according to claim 1 and 2, characterized in that the region of the discharge vessel (6) is cooled to about <1000 ° C during operation c). 4. Verfahren nach Anspruch 1 bis 3, dadurch gekenn­zeichnet, daß nach dem Arbeitsgang c) das Entladungs­gefäß (6) unter Hochvakuum ausgeheizt wird.4. The method according to claim 1 to 3, characterized in that after the operation c) the discharge vessel (6) is heated under high vacuum. 5. Verfahren nach Anspruch 1 bis 4, dadurch gekenn­zeichnet, daß die Arbeitsgänge d) und e) in einer Glovebox (13) vorgenommen werden.5. The method according to claim 1 to 4, characterized in that the operations d) and e) are carried out in a glove box (13). 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß nach dem Arbeitsgang e) das zweite, noch offene Ende des Rohres (1) in der Glovebox (13) mittels einer Heizvorrichtung aufgeheizt wird.6. The method according to claim 5, characterized in that after operation e) the second, still open end of the tube (1) in the glove box (13) is heated by means of a heating device. 7. Verfahren nach Anspruch 5 und 6, dadurch gekenn­zeichnet, daß das noch offene Ende des Rohres (1) nach dem Aufheizen in der Glovebox (13) mittels eines Plasmabrenners (16) oder Lasers gasdicht verschmolzen wird.7. The method according to claim 5 and 6, characterized in that the still open end of the tube (1) after heating in the glove box (13) by means of a plasma torch (16) or laser is fused gas-tight. 8. Verfahren nach Anspruch 1 bis 7, dadurch gekenn­ zeichnet, daß zur Durchführung der Arbeitsgänge b) und e) die Stromzuführung (9) eine sich innerhalb des Rohres (1) selbsthalternde Gestalt aufweist.8. The method according to claim 1 to 7, characterized is characterized in that to carry out the operations b) and e) the power supply (9) has a self-retaining shape within the tube (1). 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Stromzuführung (9) mit mindestens drei Auf­lagepunkten an der Innenwand des Rohres (1) abgestützt ist.9. The method according to claim 8, characterized in that the power supply (9) is supported with at least three support points on the inner wall of the tube (1). 10. Verfahren nach Anspruch 1 bis 9, dadurch gekenn­zeichnet, daß während des Arbeitsganges f) der Bereich des Entladungsgefäßes (6) auf ca. < 100 °C gehalten wird.10. The method according to claim 1 to 9, characterized in that the region of the discharge vessel (6) is kept at about <100 ° C during operation f). 11. Verfahren nach Anspruch 10, dadurch gekenn­zeichnet, daß die Kühlung des Entladungsgefäßes (6) durch gekühlten Stickstoff erfolgt.11. The method according to claim 10, characterized in that the cooling of the discharge vessel (6) is carried out by cooled nitrogen. 12. Verfahren nach Anspruch 1 bis 11, dadurch gekenn­zeichnet, daß im Anschluß an den Arbeitsgang f) das jeweilige, über die Einschmelzung der Quetschung (12, 18) hinausstehende Rohr (1), in dem auch der die Auflagepunkte (11) aufweisende Teil der Stromzuführung (9) angeordnet ist, ganz oder teilweise abgetrennt wird.12. The method according to claim 1 to 11, characterized in that following the operation f) the respective, beyond the melting of the pinch (12, 18) projecting tube (1), in which also the support points (11) having part the power supply (9) is arranged, is completely or partially separated.
EP89122833A 1988-12-19 1989-12-11 Method for producing a two-sided high-pressure discharge lamp Expired - Lifetime EP0374679B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3842769A DE3842769A1 (en) 1988-12-19 1988-12-19 METHOD FOR PRODUCING A TWO-SIDED HIGH PRESSURE DISCHARGE LAMP
DE3842769 1988-12-19

Publications (3)

Publication Number Publication Date
EP0374679A2 true EP0374679A2 (en) 1990-06-27
EP0374679A3 EP0374679A3 (en) 1991-05-08
EP0374679B1 EP0374679B1 (en) 1995-03-15

Family

ID=6369557

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89122833A Expired - Lifetime EP0374679B1 (en) 1988-12-19 1989-12-11 Method for producing a two-sided high-pressure discharge lamp

Country Status (5)

Country Link
EP (1) EP0374679B1 (en)
JP (1) JP2804134B2 (en)
DD (1) DD290504A5 (en)
DE (2) DE3842769A1 (en)
HU (1) HU203170B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892423A2 (en) * 1997-07-17 1999-01-20 Ushiodenki Kabushiki Kaisha Discharge lamp of the short arc type and process for production thereof
EP0944109A1 (en) * 1998-03-16 1999-09-22 Matsushita Electric Industrial Co., Ltd. Discharge lamp and method of producing the same
WO2005122206A2 (en) * 2004-06-09 2005-12-22 Patent-Treuhand- Gesellschaft Für Elektrische Glühlampen Mbh Method for machining a lamp and lamp machined by said method
WO2009115118A1 (en) * 2008-03-19 2009-09-24 Osram Gesellschaft mit beschränkter Haftung Gas discharge lamp and method for producing a gas discharge lamp
CN107029635A (en) * 2017-05-25 2017-08-11 桂林理工大学 A kind of method and device of prepare compound under vacuum conditions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2423862A (en) 2005-03-04 2006-09-06 Heraeus Noblelight Ltd High-pressure discharge lamp having constructional details for reducing devitrification of glass

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305289A (en) * 1963-05-09 1967-02-21 Gen Electric Electric lamp manufacture
US3689799A (en) * 1970-09-14 1972-09-05 Gen Electric Method of dosing lamps
DE2127526A1 (en) * 1971-06-03 1972-12-14 Licentia Gmbh Method for carrying out the method for generating a high vacuum and Vornch
JPS51128179A (en) * 1975-04-30 1976-11-08 Iwasaki Electric Co Ltd Discharge lamp manufacturing method
EP0055416A2 (en) * 1980-12-26 1982-07-07 Kabushiki Kaisha Toshiba Method of sealing a tube using a laser beam
EP0204061A1 (en) * 1985-05-23 1986-12-10 Lumalampan Aktiebolag A compact low-pressure mercury vapour discharge lamp and a method for its manufacture
DE3702813A1 (en) * 1986-02-12 1987-08-13 Tungsram Reszvenytarsasag METHOD AND DEVICE FOR THE PRODUCTION OF DISCHARGE TUBES FOR SODIUM STEAM DISCHARGE LAMPS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127633A (en) * 1983-12-12 1985-07-08 Toshiba Corp Production of metal vapor discharge lamp
DE3842770A1 (en) 1988-12-19 1990-06-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh METHOD FOR PRODUCING A TWO-SIDED HIGH PRESSURE DISCHARGE LAMP

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305289A (en) * 1963-05-09 1967-02-21 Gen Electric Electric lamp manufacture
US3689799A (en) * 1970-09-14 1972-09-05 Gen Electric Method of dosing lamps
DE2127526A1 (en) * 1971-06-03 1972-12-14 Licentia Gmbh Method for carrying out the method for generating a high vacuum and Vornch
JPS51128179A (en) * 1975-04-30 1976-11-08 Iwasaki Electric Co Ltd Discharge lamp manufacturing method
EP0055416A2 (en) * 1980-12-26 1982-07-07 Kabushiki Kaisha Toshiba Method of sealing a tube using a laser beam
EP0204061A1 (en) * 1985-05-23 1986-12-10 Lumalampan Aktiebolag A compact low-pressure mercury vapour discharge lamp and a method for its manufacture
DE3702813A1 (en) * 1986-02-12 1987-08-13 Tungsram Reszvenytarsasag METHOD AND DEVICE FOR THE PRODUCTION OF DISCHARGE TUBES FOR SODIUM STEAM DISCHARGE LAMPS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 1, Nr. 15, 23. März 1977, Seite 1195 M 76; & JP-A-51 128 179 (IWASAKI DENKI) 11-08-1976 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892423A2 (en) * 1997-07-17 1999-01-20 Ushiodenki Kabushiki Kaisha Discharge lamp of the short arc type and process for production thereof
EP0892423A3 (en) * 1997-07-17 1999-09-22 Ushiodenki Kabushiki Kaisha Discharge lamp of the short arc type and process for production thereof
EP0944109A1 (en) * 1998-03-16 1999-09-22 Matsushita Electric Industrial Co., Ltd. Discharge lamp and method of producing the same
US6791271B2 (en) 1998-03-16 2004-09-14 Matsushita Electric Industrial Co., Ltd. Discharge lamp and method of producing the same
WO2005122206A2 (en) * 2004-06-09 2005-12-22 Patent-Treuhand- Gesellschaft Für Elektrische Glühlampen Mbh Method for machining a lamp and lamp machined by said method
WO2005122206A3 (en) * 2004-06-09 2008-03-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method for machining a lamp and lamp machined by said method
WO2009115118A1 (en) * 2008-03-19 2009-09-24 Osram Gesellschaft mit beschränkter Haftung Gas discharge lamp and method for producing a gas discharge lamp
CN107029635A (en) * 2017-05-25 2017-08-11 桂林理工大学 A kind of method and device of prepare compound under vacuum conditions

Also Published As

Publication number Publication date
DE3842769A1 (en) 1990-06-21
JPH02223131A (en) 1990-09-05
HU896665D0 (en) 1990-02-28
JP2804134B2 (en) 1998-09-24
HU203170B (en) 1991-05-28
EP0374679A3 (en) 1991-05-08
DE58909112D1 (en) 1995-04-20
EP0374679B1 (en) 1995-03-15
DD290504A5 (en) 1991-05-29
HUT52893A (en) 1990-08-28

Similar Documents

Publication Publication Date Title
DE2835904C2 (en) Use of an assembly consisting of an electrode and a supply line
DE19710204A1 (en) Arc-discharge tube with glass tube made of quartz used for lighting
EP0386588B1 (en) Low-pressure mercury discharge lamp
EP0374679B1 (en) Method for producing a two-sided high-pressure discharge lamp
DE19928996A1 (en) Quartz glass arc tube and pinch seals for an arc discharge lamp
EP0374677B1 (en) Method for producing a two-sided high-pressure discharge lamp
EP0374676B1 (en) Method for producing a two-sided high-pressure discharge lamp
DE2732060C2 (en) Electric fluorescent lamp
DE19623499A1 (en) Process for producing a halogen incandescent lamp
EP0591777A2 (en) Process for manufacturing a low power, high pressure discharge lamp having a single pinch, and high pressure discharge lamps
DE3320919C2 (en)
DE3112821A1 (en) ELECTRIC LAMP WITH A BOTTLE MELTING DESIGNED AS A CRUSH AND ITS DEVICE AND METHOD FOR THE PRODUCTION THEREOF
DE2529004A1 (en) OBJECT WITH A GLASS PART INTO WHICH A METAL PART IS MELTED
EP1754238B1 (en) Method for machining a lamp and lamp machined by said method
EP0219860B1 (en) Process for manufacturing a metal halide high-pressure discharge lamp having a single pinch, and a lamp manufactured according to this process
CH621889A5 (en)
EP0369370B1 (en) Method of manufacturing a lamp vessel
DE975461C (en) Electron beam tubes, in particular television picture tubes, with a tube piston made of metal
DE19647827B4 (en) Method for producing a fluorescent lamp
DE10117664C1 (en) Connecting sleeve used as a component of a low pressure glass refining device comprises a supporting core made from high temperature resistant material, and a sleeve surrounding the core
DE10150452C1 (en) Process for the production of a vitreous body and use of the vitreous body
EP0676910B1 (en) Method for manufacturing curved radiators, especially incandescent halogen lamps
DE1004732B (en) Process for the production of a partially mirrored, tubular incandescent lamp
DE3838696A1 (en) METHOD FOR PRODUCING A LAMP VESSEL
EP1196937B1 (en) Method for producing a lamp

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19901220

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL SE

17Q First examination report despatched

Effective date: 19930628

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 58909112

Country of ref document: DE

Date of ref document: 19950420

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950605

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051205

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051208

Year of fee payment: 17

Ref country code: SE

Payment date: 20051208

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051216

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061231

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070701

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061211

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090220

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071211