EP0374427A1 - Dispositif de correction de temps de propagation de groupe en hyperfréquence - Google Patents

Dispositif de correction de temps de propagation de groupe en hyperfréquence Download PDF

Info

Publication number
EP0374427A1
EP0374427A1 EP89119714A EP89119714A EP0374427A1 EP 0374427 A1 EP0374427 A1 EP 0374427A1 EP 89119714 A EP89119714 A EP 89119714A EP 89119714 A EP89119714 A EP 89119714A EP 0374427 A1 EP0374427 A1 EP 0374427A1
Authority
EP
European Patent Office
Prior art keywords
microwave
door
complex impedance
correction
divider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89119714A
Other languages
German (de)
English (en)
Inventor
Patrick Janer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Original Assignee
Alcatel Telspace SA
Alcatel Transmission par Faisceaux Hertziens SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Telspace SA, Alcatel Transmission par Faisceaux Hertziens SA filed Critical Alcatel Telspace SA
Publication of EP0374427A1 publication Critical patent/EP0374427A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P9/00Delay lines of the waveguide type
    • H01P9/003Delay equalizers

Definitions

  • the present invention relates to a device for correcting group proporation time at microwave.
  • Microwave telecommunications devices using filter elements, amplifiers, mixers, etc. introduce a distortion of the group propagation time.
  • group proporation time or T.P.G.
  • the value of the delay due to an element having a transfer function this delay being proportional to the derivative of the phase with respect to the frequency.
  • this delay has, as a function of the frequency, a shape of a bell curve, and its maximum is located at the cut-off frequency of the filter.
  • Such a correction must be capable, as a function of the frequency, of correcting the phase of the microwave wave without modifying its amplitude, which would be a source of bit errors in the case of digital transmission.
  • the commonly adopted solution generally consists in making the microwave frequency reflect on an unsuitable complex impedance, the phase curve of this complex impedance as a function of the frequency being the curve complementary to the propagation time curve of group to correct.
  • the delay curve added to this variation curve of the T.P.G., gives a uniform delay curve as a function of the frequency.
  • a first form of TPG corrector of known type is that which uses a 3 dB 90 ° coupler and two strictly identical complex impedances.
  • This known corrector is shown schematically in Figure 1 attached. It uses a 3 dB 90 ° coupler, referenced 5.
  • the input microwave signal E is applied to the input door 1 of the coupler 5. It leaves it on doors 3 and 4 of this coupler, respectively offset by 0 degrees and 90 degrees.
  • These two waves are reflected respectively on the complex impedances 6 and 7 of value jX, with phase curve complementary to that to be corrected, to finally recombine in phase on the output gate 2 of the coupler 5 (microwave output S), and in phase opposition on the input door 1 of this coupler.
  • This first form of known corrector has the following drawbacks: . the two complex impedances 6 and 7 must be of strictly identical complex values jX, otherwise the waves no longer recombine in phase opposition on the input gate 1, so that the corrector does not act as a all-pass cell in transmission; . the coupler must be perfect as regards the symmetry of the coupling and the precision of its phase shift by 90 degrees, otherwise the corrector does not act as a all-pass cell; . the adjustment of this corrector is difficult: the two complex impedances 6 and 7 must have the same adjustment in amplitude and in frequency, otherwise the corrector does not again act as a all-pass cell.
  • T.P.G. uses a ferrite microwave circulator and a single complex correction impedance.
  • the diagram of this corrector is also recalled in Figure 2 attached.
  • the input microwave frequency E is applied to the door 10 of the circulator 8. It leaves it on the second door 11, is reflected on the complex impedance 9, of value jX, again enters the circulator 8 through this door 11, and leaves in S on the third door 12 of this circulator.
  • This other known corrector has the following drawbacks: . its adjustment is difficult for low amplitudes of TPG, because a ferrite circulator has a fairly large clean TPG; . such a circulator is difficult to integrate with circuits in microstrip technology, especially if the frequency of the microwave wave is of the order of Gigahertz; . the cost of a ferrite circulator is quite high, which is a serious issue the price of a GPT corrector of this type.
  • the invention aims to remedy these drawbacks.
  • a microwave propagation group time corrector which uses a complex impedance to, by reflection of the microwave wave on this complex impedance, carry out a correction of T.P.G. without affecting the amplitude transmission curve.
  • This corrector uses a power divider, for example of the Wilkinson type, which has a power input and two outputs isolated from each other.
  • the aforementioned complex impedance is connected to the "input" door of this divider, while the microwave input wave is applied to one of the two "output” doors of this same divider and the output wave is taken on its other "exit" door.
  • the reference 13 designates a power divider of the Wilkinson type.
  • This divider 13 has, in a manner well known per se, an "entry” door 14 and two “exit” doors 15 and 16.
  • the entry door 14 is connected to the two exit doors 15 and 16 respectively by two quarter-wave lines 17 and 18, and the two output gates 15 and 16 are connected to each other by a balancing resistor 19.
  • a microwave wave which would be applied to the input 14 of the Wilkinson divider 13 leaves it symmetrically divided , and attenuated by 3 dB, at 15 and 16.
  • these outputs 15 and 16 are isolated from each other, that is to say that a wave applied at 15 can theoretically only exit at 14 and not in 16, and vice versa.
  • the power divider 13 is used in a very particular way. Its gate 14, which is normally the entrance gate, is not used here as well, but it is connected to a complex impedance 20, the value jX of which is adjusted to allow the realization of the correction of group time desired.
  • the microwave wave E to be corrected is applied to the door 15, therefore to one of the two "exit" doors of the divider. It comes out, as in the aforementioned case of using a ferrite circulator, through door 14, is reflected on the complex impedance 20 which corrects it in phase, is reintroduced into the divider by this door 14, and comes out , symmetrically attenuated by 3 dB, through doors 15 and 16, the corrected useful wave S being taken on door 16 as indicated in the drawing.
  • FIG. 4 shows a practical example of embodiment of the complex impedance 20, applied to a T.P.G. corrector. operating in the 2 Gigahertz band.
  • This complex impedance is composed of a transmission line 23 and two adjustable capacitors 21 and 22 placed at its two ends, including an upstream capacitor 21 used for adjusting the amplitude of the delay, and a downstream capacitor 22 which is used for adjusting the frequency of the delay introduced by this corrector.
  • the TPG corrector just described has the following advantages: . it has a great ease of adjustment, on the one hand by the fact that it uses a single complex impedance, and on the other hand by the fact that, the power divider being passive, it brings very little residual TPG, which which facilitates adjustment for small delays; . it has a flat amplitude transmission curve: there are no signals on the recombination input whose phases depend on the setting; . its integration is easy, because a power divider is easily achievable in microstrip technology for example, and this integration is facilitated by the small size of the power divider; . its cost price is low, because it uses a single complex impedance and, moreover, a single component constituted by a resistor.

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Microwave Amplifiers (AREA)
  • Transmitters (AREA)
  • Waveguide Connection Structure (AREA)
  • Amplifiers (AREA)

Abstract

Correcteur de T.P.G. en hyperfréquence, utilisant la réflexion de l'onde hyperfréquence sur une impédance complexe correctrice (jX). Il utilise un diviseur de puissance (13), par exemple du type Wilkinson. L'impédance complexe (20) est branchée sur la porte (14) qui est habituellement la porte d'entrée du diviseur (13). L'onde (E) est appliquée sur une des deux autres portes (15), et l'autre porte (16) est utilisée comme porte de sortie de l'onde hyperfréquence (S) corrigée en phase.

Description

  • La présente invention se rapporte à un dispositif de correc­tion de temps de propogation de groupe en hyperfréquence.
  • Les dispositifs de télécommunication en hyperfréquence utili­sant des éléments filtres, amplificateurs, mélangeurs,... , intro­duisent une distorsion du temps de propogation de groupe. On appelle "temps de propogation de groupe", ou T.P.G., la valeur du retard dû à un élément ayant une fonction de transfert, ce retard étant propor­tionnel à la dérivée de la phase par rapport à la fréquence. Pour un filtre passe-bas par exemple, ce retard a en fonction de la fréquence, une forme de courbe en cloche, et son maximum est situé à la fréquence de coupure du filtre.
  • Dans le cas des transmissions par faisceaux hertziens numéri­ques en particulier, il est important, pour éviter les erreurs-bits, de pouvoir corriger ce temps de propagation de groupe. La correction s'effectue généralement en fréquence intermédiaire, ou quelquefois en bande de base lorsque la distorsion est symétrique. Dans le cas où la démodulation est effectuée directement en hyperfréquence, en l'absence de fréquence intermédiaire, il s'avère nécessaire de corriger le temps de propagation de groupe directement en hyperfréquence.
  • Une telle correction doit être capable, en fonction de la fré­quence, de corriger la phase de l'onde hyperfréquence sans modification de son amplitude, ce qui serait source d'erreurs-bit dans le cas d'une transmission numérique. La solution couramment adoptée consiste d'une manière générale à faire se réfléchir l'onde hyperfréquence sur une im­pédance complexe non adaptée, la courbe de phase de cette impédance complexe en fonction de la fréquence étant la courbe complémentaire de la courbe du temps de propagation de groupe à corriger. La courbe de retard, additionnée à cette courbe de variation du T.P.G., donne une courbe de retard uniforme en fonction de la fréquence.
  • Une première forme de correcteur de T.P.G. de type connu est celle qui utilise un coupleur 3 dB 90° et deux impédances complexes rigoureusement identiques. Ce correcteur connu est représenté schéma­tiquement sur la figure 1 annexée. Il utilise un coupleur 3 dB 90°, référencé 5. Le signal hyperfréquence d'entrée E est appliqué sur la porte d'entrée 1 du coupleur 5. Il en sort sur les portes 3 et 4 de ce coupleur, respectivement déphasé de 0 degrés et de 90 degrés. Ces deux ondes se réfléchissent respectivement sur les impédances comple­xes 6 et 7 de valeur jX, à courbe de phase complémentaire de celle à corriger, pour finalement se recombiner en phase sur la porte de sor­tie 2 du coupleur 5 (sortie hyperfréquence S), et en opposition de phase sur la porte d'entrée 1 de ce coupleur.
  • Cette première forme de correcteur connu présente les incon­vénients suivants :
    . les deux impédances complexes 6 et 7 doivent être de valeurs comple­xes jX rigoureusement identiques, sinon les ondes ne se recombinent plus en opposition de phase sur la porte d'entrée 1, de sorte que le correcteur n'agit pas comme une cellule passe-tout en transmission ;
    . le coupleur doit être parfait en ce qui concerne la symétrie du coupla­ge et la précision de son déphasage de 90 degrés, sinon le correcteur n'agit pas comme une cellule passe-tout ;
    . le réglage de ce correcteur est difficile : les deux impédances comple­xes 6 et 7 doivent avoir le même réglage en amplitude et en fréquen­ce, sinon le correcteur n'agit là encore pas comme une cellule passe-­tout.
  • Une autre forme de correcteur de T.P.G. de type connu utilise un circulateur hyperfréquence à ferrite et une seule impédance complexe de correction. Le schéma de ce correcteur est lui-aussi rappe­lé sur la figure 2 annexée.
  • L'onde hyperfréquence d'entrée E est appliquée sur la porte 10 du circulateur 8. Elle en sort sur la deuxième porte 11, se réfléchit sur l'impédance complexe 9, de valeur jX, pénètre à nouveau dans le circulateur 8 par cette porte 11, et en sort en S sur troisième porte 12 de ce circulateur.
  • Cet autre correcteur connu présente les inconvénients sui­vants :
    . son réglage est difficile pour de faibles amplitudes de T.P.G., car un circulateur à ferrite possède un T.P.G. propre assez important ;
    . un tel circulateur est difficilement intégrable avec des circuits en technologie microruban, surtout si la fréquence de l'onde hyperfré­quence est de l'ordre du Gigahertz ;
    . le coût d'un circulateur à ferrite est assez important, ce qui grève le prix d'un correcteur de T.P.G. de ce type.
  • L'invention vise à remédier à ces inconvénients. Elle se rap­porte à cet effet à un correcteur de temps de propagation de groupe en hyperfréquence qui utilise une impédance complexe pour, par réflexion de l'onde hyperfréquence sur cette impédance complexe, effectuer une correction de T.P.G. sans affecter la courbe de transmission de l'am­plitude. Ce correcteur utilise un diviseur de puissance, par exemple de type Wilkinson, qui possède une entrée de puissance, et deux sorties isolées l'une de l'autre. L'impédance complexe précitée est branchée sur la porte "d'entrée" de ce diviseur, tandis que l'onde hyperfréquen­ce d'entrée est appliquée sur une des deux portes "de sortie" de ce même diviseur et que l'onde de sortie est prise sur son autre porte "de sortie".
  • L'invention sera bien comprise, et ses avantages et autres caractéristiques ressortiront, au cours de la description suivante d'un exemple non limitatif de réalisation de ce correcteur de temps de pro­pagation de groupe en hyperfréquence, en référence au dessin schéma­tique annexé dans lequel :
    • - Figure 3 est un schéma électrique de ce correcteur de T.P.G. ; et
    • - Figure 4 montre un exemple d'impédance complexe utilisable.
  • En se référant à la figure 3, la référence 13 désigne un divi­seur de puissance du type Wilkinson. Ce diviseur 13 possède, de maniè­re en soi bien connue, une porte "d'entrée" 14 et deux portes "de sortie" 15 et 16. La porte d'entrée 14 est reliée aux deux portes de sortie 15 et 16 respectivement par deux lignes quart d'onde 17 et 18, et les deux portes de sortie 15 et 16 sont reliées entre elles par une résistance d'équilibrage 19. Une onde hyperfréquence qui serait appli­quée sur l'entrée 14 du diviseur de Wilkinson 13 en sort symétrique­ment divisée, et atténuée de 3 dB, en 15 et 16. En revanche, ces sor­ties 15 et 16 sont isolées l'une de l'autre, c'est à dire qu'une onde appliquée en 15 ne peut théoriquement sortir qu'en 14 et non pas en 16, et vice-versa.
  • Ici, le diviseur de puissance 13 est utilisé de façon très par­ticulière. Sa porte 14, qui est normalement la porte d'entrée, n'est pas ici utilisée ainsi, mais elle est reliée à une impédance complexe 20, dont la valeur jX est ajustée pour permettre de réaliser la correction de temps de groupe souhaitée. L'onde hyperfréquence E à corriger est appliquée sur la porte 15, donc sur une des deux portes "de sortie" du diviseur. Elle sort, comme dans le cas précité d'utilisa­tion d'un circulateur à ferrite, par la porte 14, se réfléchit sur l'impé­dance complexe 20 qui la corrige en phase, est réintroduite dans le diviseur par cette porte 14, et en ressort, symétriquement atténuée de 3 dB, par les portes 15 et 16, l'onde utile corrigée S étant prise sur la porte 16 comme indiqué sur le dessin.
  • La figure 4 montre un exemple pratique de réalisation de l'impédance complexe 20, appliquée à un correcteur de T.P.G. fonction­nant dans la bande des 2 Gigahertz. Cette impédance complexe est composée d'une ligne de transmission 23 et de deux capacités ajustables 21 et 22 placées à ses deux extrémités, dont une capacité amont 21 servant au réglage de l'amplitude du retard, et une capacité aval 22 qui sert au réglage de la fréquence du retard introduit par ce correc­teur.
  • Le correcteur de T.P.G. qui vient d'être décrit présente les avantages suivants :
    . il possède une grande facilité de réglage, d'une part par le fait qu'il utilise une seule impédance complexe, et d'autre part par le fait que, le diviseur de puissance étant passif, il apporte très peu de T.P.G. résiduel, ce qui facilite le réglage pour les retards faibles ;
    . il possède une courbe de transmission plate en amplitude : il n'y a pas sur l'entrée de recombinaison de signaux dont les phases dépen­dent du réglage ;
    . son intégration est aisée, car un diviseur de puissance est facilement réalisable en technologie microruban par exemple, et cette intégration est facilitée par le faible encombrement du diviseur de puissance ;
    . son prix de revient est faible, car il utilise une seule impédance complexe et, en outre, un seul composant constitué par une résis­tance.
  • L'inconvénient dû au fait qu'une partie de l'énergie est réflé­chie vers la porte 15 est aisément surmontable grâce aux techniques d'intégration actuelles. En amont de cette entrée 15, on peut par exem­ple placer un petit atténuateur 5 dB, précédé d'un petit amplificateur.
  • Comme il va de soi, l'invention n'est pas limitée à l'exemple de réalisation qui vient d'être décrit et, par exemple, un diviseur de puissance autre que le diviseur de Wilkinson pourrait aussi bien être utilisé.

Claims (3)

1 - Dispositif de correction de temps de propagation de grou­pe en hyperfréquence, ce dispositif utilisant une impédance complexe (jX) pour, par réfléxion de l'onde hyperfréquence sur cette impédance complexe, effectuer une correction de temps de propagation de groupe sans affecter la courbe de transmission en amplitude, caractérisé en ce qu'il utilise un diviseur de puissance (13) ayant une porte "d'entrée" (14) et deux portes "de sortie" (15, 16) isolées l'une de l'autre, et en ce que cette impédance complexe (20) est branchée sur ladite porte "d'entrée" (14), tandis que l'onde hyperfréquence d'entrée (E) est appliquée sur une de ces portes "de sortie" (15) et que l'onde hyper­fréquence de sortie (S) est prélevée sur l'autre porte "de sortie" (16) de ce diviseur (13).
2 - Dispositif de correction selon la revendication 1, caracté­risé en ce que le diviseur de puissance (13) est un diviseur du type Wilkinson.
3 - Dispositif de correction selon la revendication 1 ou la revendication 2, caractérisé en ce que l'impédance complexe 20 est composée d'une ligne de transmission (23) et de deux capacités ajusta­bles (21, 22) placées respectivement à chacune des extrémités de cette ligne.
EP89119714A 1988-10-27 1989-10-24 Dispositif de correction de temps de propagation de groupe en hyperfréquence Withdrawn EP0374427A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8814027A FR2638571B1 (fr) 1988-10-27 1988-10-27 Dispositif de correction de temps de propagation de groupe en hyperfrequence
FR8814027 1988-10-27

Publications (1)

Publication Number Publication Date
EP0374427A1 true EP0374427A1 (fr) 1990-06-27

Family

ID=9371316

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89119714A Withdrawn EP0374427A1 (fr) 1988-10-27 1989-10-24 Dispositif de correction de temps de propagation de groupe en hyperfréquence

Country Status (5)

Country Link
US (1) US4988962A (fr)
EP (1) EP0374427A1 (fr)
JP (1) JPH02179034A (fr)
CA (1) CA2001483C (fr)
FR (1) FR2638571B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104798249A (zh) * 2012-11-15 2015-07-22 高通股份有限公司 具有灵活输出间距的紧凑功率分配器/合成器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100285728B1 (ko) * 1997-12-02 2001-04-02 윤종용 반파장전송선로를이용한고주파신호상쇄회로
US6317013B1 (en) 1999-08-16 2001-11-13 K & L Microwave Incorporated Delay line filter
WO2001018959A1 (fr) * 1999-09-02 2001-03-15 Fujitsu Limited Egaliseur a amplitude variable
JP4497669B2 (ja) * 2000-07-26 2010-07-07 日本無線株式会社 信号無移相供給回路
WO2002080301A1 (fr) 2001-03-30 2002-10-10 K & L Microwave Inc. Filtres de lignes a retard utilisant des coupleurs multiples en ligne a quatre entrees
US6600388B2 (en) 2001-03-30 2003-07-29 Delaware Capital Formation, Inc. Electronic variable delay line filters using two in-line varactor-controlled four-input couplers allowing variable delay
US6856215B2 (en) * 2001-08-24 2005-02-15 Powerwave Technologies, Inc. System and method for adjusting group delay
US7049907B2 (en) * 2001-08-24 2006-05-23 Powerwave Technologies, Inc. System and method for adjusting group delay
US20030197577A1 (en) * 2002-04-22 2003-10-23 K&L Microwave, Inc. Single port delay element
KR100689967B1 (ko) * 2006-02-03 2007-03-08 삼성전자주식회사 개선된 멀티 모듈 메모리 버스 구조를 가진 메모리 시스템
CN113540738A (zh) * 2020-04-15 2021-10-22 深圳市大富科技股份有限公司 一种威尔金森功分器及pcb板
CN113193322A (zh) * 2021-04-09 2021-07-30 电子科技大学 一种改进型威尔金森功分器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699480A (en) * 1969-12-15 1972-10-17 Microwave Ass Variable rf group delay equalizer
FR2365243A1 (fr) * 1976-09-21 1978-04-14 Nippon Electric Co Compensateur de retard pour microondes comprenant une paire d'elements a constantes reparties en tant que coupleur directionnel
DE2747871A1 (de) * 1976-11-26 1979-05-03 Philips Patentverwaltung Breitbandiger 180 grad-phasenschieber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906409A (en) * 1974-05-23 1975-09-16 Us Navy Variable impedance delay line correlator
US4367445A (en) * 1981-03-30 1983-01-04 Motorola Inc. Impedance transforming three port power divider

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699480A (en) * 1969-12-15 1972-10-17 Microwave Ass Variable rf group delay equalizer
FR2365243A1 (fr) * 1976-09-21 1978-04-14 Nippon Electric Co Compensateur de retard pour microondes comprenant une paire d'elements a constantes reparties en tant que coupleur directionnel
DE2747871A1 (de) * 1976-11-26 1979-05-03 Philips Patentverwaltung Breitbandiger 180 grad-phasenschieber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RADIO AND ELECTRONIC ENGINEER, vol. 54, no. 11/12, novembre-décembre 1984, pages 473-489, Londres, GB; R.G. MANTON: "Hybrid networks and their uses in radio-frequency circuits" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104798249A (zh) * 2012-11-15 2015-07-22 高通股份有限公司 具有灵活输出间距的紧凑功率分配器/合成器
CN104798249B (zh) * 2012-11-15 2019-04-09 高通股份有限公司 具有灵活输出间距的紧凑功率分配器/合成器

Also Published As

Publication number Publication date
CA2001483A1 (fr) 1990-04-27
JPH02179034A (ja) 1990-07-12
US4988962A (en) 1991-01-29
FR2638571A1 (fr) 1990-05-04
CA2001483C (fr) 1993-10-05
FR2638571B1 (fr) 1990-11-30

Similar Documents

Publication Publication Date Title
EP0374427A1 (fr) Dispositif de correction de temps de propagation de groupe en hyperfréquence
CH615534A5 (fr)
FR3065339B1 (fr) Ligne de transmission avec dispositif de limitation des pertes par desadaptation
WO2011047699A1 (fr) Dispositif et procede d'essai pour mesurer un bruit de phase d'un signal d'essai
EP1429458A2 (fr) Transformateur à changement de mode sélectif en fréquences
FR2523375A1 (fr) Dispositif de compensation des distorsions des reflecteurs pour antennes de reception et/ou transmission d'ondes a faisceaux multiples
CA1260082A (fr) Dispositif a joint tournant hyperfrequence
EP0074295A1 (fr) Duplexeur d'ondes électromagnétiques passif à semi-conducteur
EP0472483A1 (fr) Duplexeur bidirectionnel pour ondes hyperfréquences polarisées réalisable notamment en technologie monolithique sur arséniure de gallium
EP1417750B1 (fr) Circuit melangeur a rejection de frequence image, notamment pour un recepteur rf a frequence intermediaire nulle ou faible
EP0486094A1 (fr) Dispositif de réception formé d'une pluralité de branches de réception
EP0792027A1 (fr) Appareil de radio-téléphonie multibande
EP0862813A1 (fr) Transducteur a ondes acoustiques de surface attaque en differentiel
FR2658964A1 (fr) Liaison de puissance, protegee par redondance, pour signaux hyperfrequence.
FR2818444A1 (fr) Dispositif de separation de signaux d'emission et de reception
EP0760553B1 (fr) Dispositif démodulateur d'un signal modulé en fréquence
EP0321331B1 (fr) Dispositif de couplage d'énergies
FR2478908A1 (fr)
FR2772991A1 (fr) Antenne fixe g.s.m.
FR2474786A2 (fr) Dispositif discriminateur de frequence associe a un oscillateur et oscillateur le comprenant
Smith Programmable Low Loss Orthogonal Frequency Coded Surface Acoustic Wave Correlator Filters
EP1286416A1 (fr) Fermeture et déphasage d'une antenne
FR2589298A1 (fr) Modulateur par deplacement de phase maq 22n et, en particulier, modulateur mdp4
FR2490430A1 (fr) Dispositif de correction des distorsions d'amplitude des signaux radioelectriques et recepteur comportant un tel dispositif
FR2641131A1 (en) Power attenuator for microwaves

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19901227

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL TELSPACE

17Q First examination report despatched

Effective date: 19930714

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19940125