EP0374288B1 - Integrated circuit diminishing the inverse current of an inversely polarized transistor - Google Patents
Integrated circuit diminishing the inverse current of an inversely polarized transistor Download PDFInfo
- Publication number
- EP0374288B1 EP0374288B1 EP88121417A EP88121417A EP0374288B1 EP 0374288 B1 EP0374288 B1 EP 0374288B1 EP 88121417 A EP88121417 A EP 88121417A EP 88121417 A EP88121417 A EP 88121417A EP 0374288 B1 EP0374288 B1 EP 0374288B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transistor
- base
- collector
- emitter
- potential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003467 diminishing effect Effects 0.000 title 1
- 238000012544 monitoring process Methods 0.000 claims description 4
- 238000009792 diffusion process Methods 0.000 claims description 2
- 239000003990 capacitor Substances 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000009760 functional impairment Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/565—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
- G05F1/569—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
- G05F1/571—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overvoltage detector
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/565—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
- G05F1/569—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
Definitions
- the present invention relates to a circuit arrangement according to the preamble of patent claim 1.
- the voltage at the output is much higher than for the supply voltage.
- the outputs are usually wired with smoothing capacitors, i.e. Voltage regulators are usually operated with a capacitive load.
- the smoothing capacitors For example, in the event of a short circuit at the input of a low-dropout voltage regulator - caused, for example, by switching off the voltage supply at which other consumers are connected - the voltage at the input of the voltage regulator goes to zero, while at the output the voltage is initially maintained by the smoothing capacitors.
- inverse operation a current flows in the opposite direction to the original direction, also called reverse current, which can lead to a functional impairment or even destruction of the voltage regulator, since the output transistor of the voltage regulator switches through from the output to the input of the voltage regulator in this operating mode, hereinafter referred to as inverse operation .
- a low-dropout voltage regulator known, for example, from "Sanken New Products Information, Low-Dropout Hybrid Voltage Regulator, Sanken Electric Company"
- an external diode is connected between the output and input of the voltage regulator as protection in the case of inverse operation such that it blocks in normal operation and in Inverse operation is leading.
- the return current is thus carried in whole or in part via the diode.
- the disadvantage of this is that the smoothing capacitor is again discharged quickly, just as when operating without a diode, and therefore the voltage at the output of the voltage regulator drops rapidly. However, this is particularly undesirable in the case of power supplies for microcomputer systems.
- the object of the invention is to provide a circuit arrangement which at least reduces the reverse current of an inversely operated transistor.
- the advantage of the invention is that due to the almost complete blocking of the transistor in inverse operation, only a small reverse current flows and the transistor itself is protected against functional impairments or destruction. This is particularly advantageous when used as an output transistor of a low-dropout voltage regulator, since the voltage at the output drops more slowly.
- the exemplary embodiment according to FIG. 1 shows a conventional output stage of a low-dropout voltage regulator with a first transistor 4 of the PNP type, the emitter of which is acted upon by a first potential 1 and the collector of which is acted upon by a second potential 2.
- the base of the first transistor 4, whose base-emitter path is parallel to a resistor 6, is connected to the collector of a second transistor 5 of the NPN type, the emitter of which leads to reference potential 0 and at the base of which a control potential 3 for control in the regular manner Operating case is connected.
- the base-collector path of the first transistor 4 is connected in parallel with a transistor 7 of the PNP type, which is operated as a diode by interconnecting the base and collector and is conductive in inverse operation.
- FIG. 2 shows the embodiment according to FIG. 1 in such a way that the collector of a third transistor 20, whose emitter is connected to the collector and whose base is connected to the base of the first transistor 4, with the base of a fourth transistor 8 of the PNP type, which is on the emitter side at the first potential 1 and on the collector side at the base of the first transistor 4, and is connected to a second and third resistor 9, 10, the first resistor 6 and the transistor 7 operated as a diode from FIG. 1 being eliminated.
- the second resistor 9 is connected to the first potential 1 and the third resistor 10 to the collector of a fifth transistor 11 of the NPN type, the emitter of which is at reference potential O and the base of which is connected to the output of a comparator 12.
- the inverting input of the comparator 12 is supplied with the first potential 1 and the non-inverting input with a reference potential 13.
- the exemplary embodiment according to FIG. 2 is a sixth transistor 14 of the PNP type, a seventh transistor 15 of the PNP type, and an eighth transistor 19 of the NPN type as well as a fourth, fifth and sixth resistor 16, 17, 18.
- the base of the seventh transistor 15 is in turn connected to a fourth resistor 16 leading to the first potential 1 and to a fifth resistor 17 connected to the collector of the eighth transistor 19.
- an additional collector of the third transistor 20 is also connected to the base of the seventh transistor 15.
- the base of the eighth transistor 19 lying on the emitter side at reference potential 0, like the base of the fifth transistor 11, is connected to the output of the comparator 12.
- the collector acts as an inverse emitter and the emitter as an inverse collector. But since according to FIG 1 the basis of the first If transistor 4 is connected to the inverse collector via the first resistor 6, the first transistor 4 is turned on inversely. Through the transistor 7 operated as a diode, however, the base current of the first transistor 4 is reduced to such an extent that the reverse current I R is reduced via the inverse current gain b4 of the first transistor 4.
- the fourth transistor 8 is clamped by the fourth transistor 8 when the first potential 1 is too high, as shown in FIG.
- the fourth transistor 8 is activated by a monitoring circuit with the comparator 12, which compares the first potential 1 with the reference potential 13 and, in the event of an impermissible increase in the first potential 1, via the fifth transistor 11 in conjunction with the second and third resistors 9, 10 turns on the fourth transistor 8.
- the base current I B4 of the fourth transistor 4 is equal to the quotient of the voltage across the second resistor 9 and its resistance value. Adding the third transistor 20 in the manner shown results in a base current I B8 for the fourth transistor 8 that is lower by the amount of the collector current of the third transistor 20. According to the above equation, this results in a lower reverse current I R , since the first transistor 4 is driven less.
- the exemplary embodiment shown in FIG. 3 contains an additional stage with a sixth transistor 14, a seventh transistor 15, an eighth transistor 17, and a fourth, fifth and sixth resistor 16, 17, 18, which in normal operation are by means of the emitter and base of the first Sixth transistor 14 located in transistor 4 acts as an active scraper, comparable to the first resistor 6 from FIG. 1. If an excessively high first potential 1 occurs, the sixth transistor 14 is blocked by the comparator 12 and the subsequent circuit part, while the fourth transistor 8, also controlled by the comparator 12, the first transistor 4 clamps. As a result, the first transistor 4 is blocked, which on the one hand increases its dielectric strength and on the other hand allows a higher current gain for normal operation. A higher current gain in turn improves the efficiency of the circuit arrangement.
- only one further diffusion structure for the collector or collectors of the third transistor 20 is expediently incorporated into the circuit arrangement brought in.
- the base of the first transistor 4 is provided as the base of the third transistor 20 and the collector of the third transistor 20 is provided as the emitter. This has the advantage of low circuitry and less space.
- monitoring circuit is not limited to an embodiment with a comparator.
- circuits with Zener diodes and / or non-linear voltage dividers are also suitable.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Amplifiers (AREA)
- Power Conversion In General (AREA)
- Electronic Switches (AREA)
- Rectifiers (AREA)
- Control Of Direct Current Motors (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft eine Schaltungsanordnung nach dem Oberbegriff des Patentanspruchs 1.The present invention relates to a circuit arrangement according to the preamble of patent claim 1.
Werden beispielsweise Verstärker oder Spannungsregler mit einer kapazitiven Last betrieben und bricht währenddessen die Versorgungsspannung zusammen, so ergibt sich für die Spannung am Ausgang ein wesentlich höherer Wert als für die Versorgungsspannung. Bei Spannungsreglern allgemein werden in der Regel die Ausgänge mit Glättungskondensatoren beschaltet, d.h. Spannungsregler werden üblicherweise mit kapazitiver Last betrieben. Beispielsweise bei einem Kurzschluß am Eingang eines Low-Dropout Spannungsreglers - hervorgerufen etwa durch Abschalten der Spannungsversorgung, an der weitere Verbraucher liegen - geht die Spannung am Eingang des Spannungsreglers gegen Null, während an dessen Ausgang die Spannung durch die Glättungskondensatoren zunächst noch aufrechterhalten wird. Es fließt dadurch ein der ursprünglichen Richtung entgegengesetzter Strom, auch Rückstrom genannt, welcher zu einer Funktionsbeeinträchtigung bis hin zur Zerstörung des Spannungsreglers führen kann, da der Ausgangstransistor des Spannungsreglers bei dieser Betriebsform, im folgenden als Inversbetrieb bezeichnet, vom Ausgang auf den Eingang des Spannungsreglers durchschaltet.If, for example, amplifiers or voltage regulators are operated with a capacitive load and the supply voltage collapses in the meantime, the voltage at the output is much higher than for the supply voltage. With voltage regulators in general, the outputs are usually wired with smoothing capacitors, i.e. Voltage regulators are usually operated with a capacitive load. For example, in the event of a short circuit at the input of a low-dropout voltage regulator - caused, for example, by switching off the voltage supply at which other consumers are connected - the voltage at the input of the voltage regulator goes to zero, while at the output the voltage is initially maintained by the smoothing capacitors. As a result, a current flows in the opposite direction to the original direction, also called reverse current, which can lead to a functional impairment or even destruction of the voltage regulator, since the output transistor of the voltage regulator switches through from the output to the input of the voltage regulator in this operating mode, hereinafter referred to as inverse operation .
Aus Electronic Engineering, Vol. 44, No. 535, September 1972, London GB, Seiten 61-63 ist eine Maßnahme zum Schützen eines npn-Transistors angegeben. Aus ihr gehen jedoch keine Maßnahmen zur Rückstromverringerung bei einem invers betriebenen pnp-Transistor hervor. Weitere Schutzmaßnahmemöglichkeiten sind beispielsweise aus Patent abstract of Japan, Vol. 9, No. 44, (P-337) (1767), 23. Februar 1985 JP-A-59 183 419 bekannt.From Electronic Engineering, Vol. 44, No. 535, September 1972, London GB, pages 61-63 is a protective measure specified an npn transistor. However, no measures for reducing the reverse current in an inversely operated pnp transistor result from it. Further protective measures are available, for example, from Patent abstract of Japan, Vol. 9, No. 44, (P-337) (1767), February 23, 1985 JP-A-59 183 419.
Bei einem beispielsweise aus "Sanken New Products Informations, Low-Dropout Hybrid Voltage Regulator, Sanken Electric Company" bekannten Low-Dropout Spannungsregler wird als Schutz bei Inversbetrieb eine externe Diode zwischen Ausgang und Eingang des Spannungsreglers derart geschaltet, daß diese im Normalbetrieb sperrend und im Inversbetrieb leitend ist. Der Rückstrom wird somit ganz oder teilweise über die Diode geführt. Der Nachteil dabei ist jedoch, daß der Glättungskondensator ebenso wie beim Betrieb ohne Diode wiederum rasch entladen wird und deshalb die Spannung am Ausgang des Spannungsreglers schnell abfällt. Dies ist aber insbesondere bei Stromversorgungen von Mikrocomputersystemen unerwünscht.In a low-dropout voltage regulator known, for example, from "Sanken New Products Information, Low-Dropout Hybrid Voltage Regulator, Sanken Electric Company", an external diode is connected between the output and input of the voltage regulator as protection in the case of inverse operation such that it blocks in normal operation and in Inverse operation is leading. The return current is thus carried in whole or in part via the diode. The disadvantage of this, however, is that the smoothing capacitor is again discharged quickly, just as when operating without a diode, and therefore the voltage at the output of the voltage regulator drops rapidly. However, this is particularly undesirable in the case of power supplies for microcomputer systems.
Aufgabe der Erfindung ist es, eine Schaltungsanordnung anzugeben, welche den Rückstrom eines invers betriebenen Transistors mindestens verringert.The object of the invention is to provide a circuit arrangement which at least reduces the reverse current of an inversely operated transistor.
Die Aufgabe wird bei einer gattungsgemäßen Schaltungsanordnung durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Weiterbildungen und Ausgestaltungen des Erfindungsgedankens sind in Unteransprüchen gekennzeichnet.The object is achieved in a generic circuit arrangement by the characterizing features of claim 1. Further developments and refinements of the inventive concept are characterized in the subclaims.
Vorteil der Erfindung ist es, daß durch das nahezu vollständige Sperren des Transistors im Inversbetrieb nur ein geringer Rückstrom fließt und der Transistor selbst vor Funktionsbeeinträchtigungen oder Zerstörung geschützt wird. Dies ist insbesondere bei der Anwendung als Ausgangstransistor eines Low-Dropout Spannungsreglers vorteilhaft, da die Spannung am Ausgang langsamer abfällt.The advantage of the invention is that due to the almost complete blocking of the transistor in inverse operation, only a small reverse current flows and the transistor itself is protected against functional impairments or destruction. This is particularly advantageous when used as an output transistor of a low-dropout voltage regulator, since the voltage at the output drops more slowly.
Die Erfindung wird nachfolgend anhand von den in den Figuren der Zeichnung dargestellten Ausführungsbeispielen näher erläutert, wobei gleiche Elemente mit gleichen Bezugszeichen versehen sind. Es zeigt:
- FIG 1
- eine erste Ausführungsform einer erfindungsgemäßen Schaltungsanordnung;
- FIG 2
- eine zweite, weitergebildete Ausführungsform einer erfindungsgemäßen Schaltungsanordnung mit höherer Spannungsfestigkeit;
- FIG 3
- eine Weiterbildung der Ausführungsform nach FIG 2.
- FIG. 1
- a first embodiment of a circuit arrangement according to the invention;
- FIG 2
- a second, further developed embodiment of a circuit arrangement according to the invention with higher dielectric strength;
- FIG 3
- a further development of the embodiment according to FIG. 2.
Das Ausführungsbeispiel gemäß FIG 1 zeigt eine übliche Ausgangsstufe eines Low-Dropout Spannungsreglers mit einem ersten Transistor 4 vom PNP-Typ, dessen Emitter mit einem ersten Potential 1 und dessen Kollektor mit einem zweiten Potential 2 beaufschlagt ist. Die Basis des ersten Transistors 4, dessen Basis-Emitter-Strecke parallel zu einem Widerstand 6 liegt, ist mit dem Kollektor eines zweiten Transistors 5 vom NPN-Typ, dessen Emitter auf Bezugspotential 0 geführt und an dessen Basis ein Steuerpotential 3 zur Ansteuerung im regulären Betriebsfall gelegt ist, verbunden. Erfindungsgemäß ist der Basis-Kollektor-Strecke des ersten Transistors 4 ein durch Zusammenschalten von Basis und Kollektor als Diode betriebener und im Inversbetrieb leitender Transistor 7 vom PNP-Typ parallel geschaltet.The exemplary embodiment according to FIG. 1 shows a conventional output stage of a low-dropout voltage regulator with a
FIG 2 zeigt das Ausführungsbeispiel nach FIG 1 dahingehend weitergebildet, daß der Kollektor eines dritten Transistors 20, dessen Emitter mit dem Kollektor und dessen Basis mit der Basis des ersten Transistors 4 verbunden ist, mit der Basis eines vierten Transistors 8 vom PNP-Typ, der emitterseitig an dem ersten Potential 1 und kollektorseitig an der Basis des ersten Transistors 4 liegt, sowie mit einem zweiten und dritten Widerstand 9, 10 verschaltet ist, wobei der erste Widerstand 6 und der als Diode betriebene Transistor 7 aus FIG 1 entfallen. Der zweite Widerstand 9 ist auf das erste Potential 1 und der dritte Widerstand 10 auf den Kollektor eines fünften Transistors 11 vom NPN-Typ geführt, dessen Emitter auf Bezugspotential O liegt und dessen Basis mit dem Ausgang eines Komparators 12 verbunden ist. Der invertierende Eingang des Komparators 12 ist mit dem ersten Potential 1 und der nichtinvertierende Eingang mit einem Referenzpotential 13 beaufschlagt.2 shows the embodiment according to FIG. 1 in such a way that the collector of a
In Figur 3 der Zeichnung ist das Ausführungsbeispiel nach Figur 2 um einen sechsten Transistor 14 vom PNP-Typ, einen siebten Transistor 15 vom PNP-Typ, einen achten Transistor 19 vom NPN-Typ sowie um einen vierten, fünften und sechsten Widerstand 16, 17, 18 erweitert. Der sechste Transistor 14, der emitterseitig an dem ersten Potential 1 und kollektorseitig an der Basis des ersten Transistors 4 liegt, ist über seine Basis zum einen mit einem auf Bezugspotential 0 führenden sechsten Widerstand 18 und zum anderen mit dem Kollektor des emitterseitig an dem ersten Potential 1 angeschlossenen siebten Transistors 15 verbunden. Die Basis des siebten Transistors 15 ist seinerseits mit einem auf das erste Potential 1 führenden vierten Widerstand 16 und mit einem an den Kollektor des achten Transistors 19 angeschlossenen fünften Widerstand 17 verschaltet. Darüber hinaus ist ein zusätzlicher Kollektor des dritten Transistors 20 ebenfalls mit der Basis des siebten Transistors 15 verbunden. Die Basis des emitterseitig auf Bezugspotential 0 liegenden achten Transistors 19 ist ebenso wie bereits die Basis des fünften Transistors 11 an den Ausgang des Komparators 12 angeschlossen.In FIG. 3 of the drawing, the exemplary embodiment according to FIG. 2 is a
Durch die Vorgabe des jeweiligen Leitungstyps bei den Transistoren in den Ausführungsbeispielen ergeben sich für das erste und zweite Potential 1, 2, das Referenzpotential 13, sowie das Ansteuerpotential 3 gegenüber dem Bezugspotential 0 jeweils positive Werte. Im regulären Betriebsfall weist dabei das erste Potential 1 einen höheren Wert auf als das zweite Potential 2.By specifying the respective conduction type for the transistors in the exemplary embodiments, positive values are obtained for the first and second potentials 1, 2, the reference potential 13 and the drive potential 3 with respect to the
Nachdem zuvor der prinzipielle Aufbau der in den Figuren der Zeichnung dargestellten Ausführungsbeispiele erläutert worden ist, sei nunmehr auf deren Wirkungsweise näher eingegangen.After the basic structure of the exemplary embodiments shown in the figures of the drawing has been explained, their mode of operation will now be discussed in more detail.
Beim Inversbetrieb des ersten Transistors 4, wenn also das zweite Potential 2 größer ist als das erste Potential 1, wirkt der Kollektor als Inversemitter und der Emitter als Inverskollektor. Da aber gemäß FIG 1 die Basis des ersten Transistors 4 über den ersten Widerstand 6 mit dem Inverskollektor verbunden ist, wird der erste Transistor 4 invers durchgesteuert. Durch den als Diode betriebenen Transistor 7 wird jedoch der Basisstrom des ersten Transistors 4 soweit herabgesetzt, daß sich über die Inversstromverstärkung b₄ des ersten Transistors 4 eine Verringerung des Rückstromes IR ergibt.During the inverse operation of the
Zur Erhöhung der Spannungsfestigkeit des ersten Transistors 4 wird dieser, wie in FIG 2 gezeigt, bei einem zu hohen ersten Potential 1 durch den vierten Transistor 8 geklemmt. Die Ansteuerung des vierten Transistors 8 erfolgt durch eine Überwachungsschaltung mit dem Komparator 12, der das erste Potential 1 mit dem Referenzpotential 13 vergleicht und bei einer unzulässigen Erhöhung des ersten Potentials 1 über den fünften Transistor 11 in Verbindung mit dem zweiten und dritten Widerstand 9, 10 den vierten Transistor 8 durchschaltet.To increase the dielectric strength of the
Für den Fall, daß das zweite Potential 2 höher ist als das erste Potential 1, sind der erste Transistor 4 und der vierte Transistor 8 invers leitend. Für den Rückstrom IR ergibt sich in Abhängigkeit vom Basisstrom IB8 des vierten Transistors 8 sowie von den Inversstromverstärkungen b₄, b₈ von erstem und viertem Transistor 4, 8 folgender Zusammenhang:
Ohne Berücksichtigung des dritten Transistors 20 ist der Basisstrom IB4 des vierten Transistors 4 gleich dem Quotienten aus der Spannung über dem zweiten Widerstand 9 und dessen Widerstandswert. Durch Hinzufügen des dritten Transistors 20 in der gezeigten Weise ergibt sich ein um den Betrag des Kollektorstromes des dritten Transistors 20 geringerer Basisstrom IB8 für den vierten Transistor 8. Gemäß obiger Gleichung resultiert daraus ein geringerer Rückstrom IR, da der erste Transistor 4 weniger stark ausgesteuert wird. Der Vorteil besteht nun darin, daß zwei sich bisher widersprechende Forderungen an einen Ausgangstransistor, nämlich höhere Spannungsfestigkeit im Normalbetrieb und geringerer Rückstrom bei Inversbetrieb, unter Beibehaltung seiner elektrischen Eigenschaften im Normalbetrieb bei einer erfindungsgemäßen Schaltungsanordnung erfüllt werden.Without taking into account the
Das in FIG 3 dargestellte Ausführungsbeispiel enthält gegenüber FIG 2 eine zusätzliche Stufe mit sechstem Transistor 14, siebtem Transistor 15, achtem Transistor 17, sowie viertem, fünftem und sechstem Widerstand 16, 17, 18, welche im Normalbetrieb mittels des zwischen Emitter und Basis des ersten Transistors 4 liegenden sechsten Transistors 14 als aktiver Ausräumer wirkt, vergleichbar mit dem ersten Widerstand 6 aus FIG 1. Beim Auftreten eines zu hohen ersten Potentials 1 wird der sechste Transistor 14 durch den Komparator 12 und den nachfolgenden Schaltungsteil gesperrt, während der vierte Transistor 8, ebenfalls durch den Komparator 12 angesteuert, den ersten Transistor 4 klemmt. Dadurch wird der erste Transistor 4 gesperrt, was zum einen dessen Spannungsfestigkeit erhöht und zum anderen eine höhere Stromverstärkung für den Normalbetrieb zuläßt. Eine höhere Stromverstärkung wiederum verbessert den Wirkungsgrad der Schaltungsanordnung. Bei Inversbetrieb sind sowohl der erste Transistor 4 als auch der vierte Transistor 8, der dritte Transistor 5 und der sechste Transistor 14 weitgehend gesperrt, wodurch sich nur ein sehr geringer Rückstrom IR ergibt. Der Vorteil dieser Ausgestaltung einer erfindungsgemäßen Schaltungsanordnung liegt also darin, daß neben einem geringen Rückstrom im Inversbetrieb eine erhöhte Spannungsfestigkeit bei höherem Wirkungsgrad im Normalbetrieb erzielt wird.Compared to FIG. 2, the exemplary embodiment shown in FIG. 3 contains an additional stage with a
Zweckmäßigerweise wird in Ausgestaltung der Erfindung lediglich jeweils eine weitere Diffussionsstruktur für den bzw. die Kollektoren des dritten Transistors 20 in die Schaltungsanordnung eingebracht. Als Basis des dritten Transistors 20 ist die Basis des ersten Transistors 4 und als Emitter der Kollektor des dritten Transistors 20 vorgesehen. Das bringt den Vorteil eines niedrigen Schaltungsaufwandes und eines geringeren Platzbedarfes mit sich.In an embodiment of the invention, only one further diffusion structure for the collector or collectors of the
Abschließend sei bemerkt, daß die Überwachungsschaltung nicht nur auf eine Ausführungsform mit Komparator beschränkt ist. Beispielsweise eignen sich auch Schaltungen mit Zenerdioden und/oder nichtlinearen Spannungsteilern.Finally, it should be noted that the monitoring circuit is not limited to an embodiment with a comparator. For example, circuits with Zener diodes and / or non-linear voltage dividers are also suitable.
Claims (4)
- Integrable circuit arrangement having a first transistor (4) of the p-conduction type to whose emitter a first potential (1) is applied and to whose collector a second potential (2) is applied, in parallel with whose base/emitter path a first resistor (6) is connected and whose base is provided, for the purpose of drive, with a second transistor (5) of the n-conduction type, characterized in that, to reduce the reverse current in the case of inverse operation of the first transistor (4), a diode (7) is connected in parallel with its base/collector path in such a way that the latter is conducting during inverse operation.
- Circuit arrangement according to Claim 1, characterized in that the base of a fourth transistor (8) of the one conduction type whose emitter/collector path is connected in parallel with the emitter/base path of the first transistor (4) is connected, directly or via further switching elements, to a monitoring circuit (12, 13) in such a way that, if an unacceptably high first potential (1) occurs, the fourth transistor (8) is turned on, and in that, instead of the diode (7), the base/emitter path of a third transistor (20) of the one conduction type is connected in parallel with the base/collector path of the first transistor (4), the collector of the third transistor (20) being connected to the base of the fourth transistor (8).
- Circuit arrangement according to Claim 2, characterized in that the base of a further transistor (14) of the one conduction type whose emitter/collector path is connected in parallel with the emitter/base path of the first transistor (4) is connected, directly or via further switching elements, to the monitoring circuit (12, 13) in such a way that, if an unduly high first potential (1) occurs, the further transistor (14), which is otherwise conducting to a certain extent, is turned off, and in that a further collector of the third transistor (20) is connected, directly or via further switching elements, to the base of the further transistor (14) in such a way that the further transistor (14), which is otherwise conducting to a certain extent, is turned off.
- Circuit arrangement according to one of Claims 1 to 3, characterized in that, for the third transistor (7) the base of the first transistor (4) is provided as base and the collector of the first transistor (4) as emitter, together with a further diffusion structure as collector or collectors in each case.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3851839T DE3851839D1 (en) | 1988-12-21 | 1988-12-21 | Integrable circuit arrangement for reducing the reverse current in an inversely operated transistor. |
EP88121417A EP0374288B1 (en) | 1988-12-21 | 1988-12-21 | Integrated circuit diminishing the inverse current of an inversely polarized transistor |
AT88121417T ATE112868T1 (en) | 1988-12-21 | 1988-12-21 | INTEGRABLE CIRCUIT ARRANGEMENT FOR REVERSE CURRENT REDUCTION IN AN INVERSE TRANSISTOR. |
US07/455,553 US4945444A (en) | 1988-12-21 | 1989-12-18 | Integratable circuit configuration for reverse current reduction in an inversely operated transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP88121417A EP0374288B1 (en) | 1988-12-21 | 1988-12-21 | Integrated circuit diminishing the inverse current of an inversely polarized transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0374288A1 EP0374288A1 (en) | 1990-06-27 |
EP0374288B1 true EP0374288B1 (en) | 1994-10-12 |
Family
ID=8199697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88121417A Expired - Lifetime EP0374288B1 (en) | 1988-12-21 | 1988-12-21 | Integrated circuit diminishing the inverse current of an inversely polarized transistor |
Country Status (4)
Country | Link |
---|---|
US (1) | US4945444A (en) |
EP (1) | EP0374288B1 (en) |
AT (1) | ATE112868T1 (en) |
DE (1) | DE3851839D1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005011653A1 (en) * | 2005-03-14 | 2006-09-28 | Infineon Technologies Ag | Circuit arrangement with a transistor with reduced reverse current |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5179492A (en) * | 1990-03-30 | 1993-01-12 | Pioneer Electronic Corporation | Protection circuit for detachable operating unit used in audio device |
FR2700647B1 (en) * | 1993-01-15 | 1995-03-31 | Legrand Sa | Static switch with integrated protection for coupling a load to an electrical source, comprising a bipolar transistor with insulated gate. |
JP3272298B2 (en) * | 1998-04-27 | 2002-04-08 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Switch circuit having discharge circuit and electronic device |
US6675304B1 (en) * | 1999-11-29 | 2004-01-06 | Intel Corporation | System for transitioning a processor from a higher to a lower activity state by switching in and out of an impedance on the voltage regulator |
US6611410B1 (en) | 1999-12-17 | 2003-08-26 | Siemens Vdo Automotive Inc. | Positive supply lead reverse polarity protection circuit |
US6188212B1 (en) * | 2000-04-28 | 2001-02-13 | Burr-Brown Corporation | Low dropout voltage regulator circuit including gate offset servo circuit powered by charge pump |
TWI330353B (en) * | 2006-06-30 | 2010-09-11 | Chimei Innolux Corp | Power supplying and discharging circuit for liquid crystal panel |
TWI339481B (en) * | 2007-01-29 | 2011-03-21 | Chimei Innolux Corp | Power supplying and discharging circuit |
CN203166467U (en) * | 2013-03-20 | 2013-08-28 | 向智勇 | Overvoltage protection circuit |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3970869A (en) * | 1975-03-03 | 1976-07-20 | The United States Of America As Represented By The Secretary Of The Navy | Low power driver |
US4420786A (en) * | 1981-11-16 | 1983-12-13 | Motorola, Inc. | Polarity guard circuit |
DE3505986A1 (en) * | 1985-02-21 | 1986-08-21 | Deutsche Thomson-Brandt Gmbh, 7730 Villingen-Schwenningen | SHORT-CIRCUIT-RESISTANT POWER SUPPLY, IN PARTICULAR FOR A TELEVISION RECEIVER |
NL8601718A (en) * | 1986-07-02 | 1988-02-01 | Philips Nv | TRANSISTOR SWITCH. |
-
1988
- 1988-12-21 EP EP88121417A patent/EP0374288B1/en not_active Expired - Lifetime
- 1988-12-21 AT AT88121417T patent/ATE112868T1/en not_active IP Right Cessation
- 1988-12-21 DE DE3851839T patent/DE3851839D1/en not_active Expired - Lifetime
-
1989
- 1989-12-18 US US07/455,553 patent/US4945444A/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005011653A1 (en) * | 2005-03-14 | 2006-09-28 | Infineon Technologies Ag | Circuit arrangement with a transistor with reduced reverse current |
DE102005011653B4 (en) * | 2005-03-14 | 2007-12-06 | Infineon Technologies Ag | Circuit arrangement with a transistor with reduced reverse current |
US7362157B2 (en) | 2005-03-14 | 2008-04-22 | Infineon Technologies Ag | Circuit arrangement with a transistor having a reduced reverse current |
Also Published As
Publication number | Publication date |
---|---|
ATE112868T1 (en) | 1994-10-15 |
US4945444A (en) | 1990-07-31 |
EP0374288A1 (en) | 1990-06-27 |
DE3851839D1 (en) | 1994-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69423488T2 (en) | VOLTAGE REGULATOR | |
DE69723415T2 (en) | Protection of an integrated power supply | |
EP0281684B1 (en) | Over-voltage-protected darlington switch | |
DE2407333C3 (en) | Surge protection circuitry | |
DE3342735C2 (en) | ||
DE19817767A1 (en) | Semiconductor power circuit | |
DE69329484T2 (en) | Control electrode shutdown circuit for a power transistor | |
EP0374288B1 (en) | Integrated circuit diminishing the inverse current of an inversely polarized transistor | |
DE102014108576A1 (en) | Driver circuit with Miller-Clamping functionality for power semiconductor switch, power semiconductor switch and inverter bridge | |
DE69206335T2 (en) | Current mirror operated at low voltage. | |
DE3700071A1 (en) | SEMICONDUCTOR SWITCH | |
DE69532423T2 (en) | Gate driver circuit for controlling a semiconductor device | |
DE69726328T2 (en) | Surge protection for a telephone line interface | |
DE2233260C2 (en) | Quasi-complementary circuit | |
DE2506196A1 (en) | DC SWITCHING DEVICE | |
DE3602551C2 (en) | Operational amplifier | |
DE2816314B2 (en) | MOSFET source follower circuit | |
EP0604485B1 (en) | Device for generating intermediate voltages | |
DE19838109B4 (en) | Control circuit for inductive loads | |
DE2156564A1 (en) | Protection circuit for an output stage of a signal amplifier | |
DE69005649T2 (en) | Voltage generator circuit. | |
DE10314514B4 (en) | Power device control circuit | |
DE2431487C2 (en) | Trigger circuit | |
DE4428115A1 (en) | Control unit with a circuit arrangement for protecting the control unit when the control unit mass is interrupted | |
DE3536447C2 (en) | Short-circuit and overload-proof transistor output stage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT DE FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19901205 |
|
ITF | It: translation for a ep patent filed | ||
17Q | First examination report despatched |
Effective date: 19930428 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 112868 Country of ref document: AT Date of ref document: 19941015 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3851839 Country of ref document: DE Date of ref document: 19941117 |
|
ITF | It: translation for a ep patent filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 88121417.5 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950106 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19961127 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19961210 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19961217 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980701 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980701 |
|
EUG | Se: european patent has lapsed |
Ref document number: 88121417.5 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20071222 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20071218 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080219 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20071217 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20081220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20081220 |