EP0374008A1 - Over the whole spherical space electronically scanning antenna with random and reduced three-dimensional distribution of the antenna elements - Google Patents

Over the whole spherical space electronically scanning antenna with random and reduced three-dimensional distribution of the antenna elements Download PDF

Info

Publication number
EP0374008A1
EP0374008A1 EP89403381A EP89403381A EP0374008A1 EP 0374008 A1 EP0374008 A1 EP 0374008A1 EP 89403381 A EP89403381 A EP 89403381A EP 89403381 A EP89403381 A EP 89403381A EP 0374008 A1 EP0374008 A1 EP 0374008A1
Authority
EP
European Patent Office
Prior art keywords
antenna
elementary
mast
dipoles
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89403381A
Other languages
German (de)
French (fr)
Other versions
EP0374008B1 (en
Inventor
Claude Aubry
Jean-Louis Pourailly
Joseph Roger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0374008A1 publication Critical patent/EP0374008A1/en
Application granted granted Critical
Publication of EP0374008B1 publication Critical patent/EP0374008B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array

Definitions

  • the present invention relates to an antenna with three-dimensional coverage and electronic scanning, of the random rarefied volume array type.
  • antennas which make it possible to obtain three-dimensional coverage (most often hemispherical or quasi-hemispherical coverage) from a configuration of fixed elements combined with electronic scanning, that is to say antennas in which the shape of the radiation diagram is modified (in particular, the pointing of a main lobe) by playing on the individual, adjustable phase shifts, of the various elements constituting the network.
  • the most commonly used configuration in practice, for producing such an antenna, consists in distributing the various elementary antennas of the array on one or more reflecting surfaces, such as for example the surface of a cylinder or a plurality of differently oriented panels.
  • Another type of antenna with three-dimensional coverage and electronic scanning is known in which, unlike multi-panel or cylindrical surface antennas, all of the elementary antennas of the array participate in the formation of the beam and contribute to the gain of the antenna, whatever whatever the direction of the main lobe.
  • These antennas are the so-called “steric” or “solid” antennas in which, unlike surface antennas, the elementary antennas are no longer distributed on the surface of a given plane or volume, but inside d 'a volume (usually a sphere).
  • the elementary antennas are distributed in this volume as irregularly as possible, so as to minimize the mutual coupling between elementary antennas and thus attenuate the network lobes as much as possible; this condition is obtained by distributing the antennas in the volume according to a statistically isotropic random distribution law, and on the other hand by providing an average spacing between elementary antennas which is notably greater than half a wavelength.
  • Such an antenna has in particular been described in DE-A-28 22 845.
  • this document describes a so-called crow's nest antenna, that is to say an antenna formed by a network in which the elementary antennas are open loops or “ turnstile ” antennas, radiating on a horizontal polarization and placed at the top of vertical coaxial feed lines.
  • the length of the coaxial lines the longest of which have a length at least equal to twice the radius of the envelope sphere makes the system mechanically fragile and requires, if we want to have the desired precision of positioning of the different loops inside the sphere and sufficient overall rigidity, to provide additional mechanical means such as nylon threads holding the semi-rigid power cables in position and / or drowning the entire network in a mass of foam (polyurethane foam for example).
  • phase shift which can vary in significant proportions depending on whether it is a short line or a long line and it will be necessary to compensate to avoid the appearance of phase faults independent of the direction pointed.
  • Such a network is very "visible" in terms of radar signature, due to the use of loops or turnstile antennas; however the use of such types of elementary antennas is inevitable because, by nature, a network requires antennas having, in amplitude as in phase, a quasi-omnidirectional diagram in azimuth.
  • this known type of antenna is limited, due to its structure, to operation essentially in horizontal polarization.
  • the present invention relates to a steric type antenna (that is to say of the “random rarefied volume network” type explained above) which overcomes all of the aforementioned drawbacks, while keeping a simple, robust and therefore inexpensive structure. to achieve.
  • This antenna is, in itself known, made up of a fixed network comprising a plurality of elementary antennas with quasi-omnidirectional individual radiation distributed according to a statistically isotropic random distribution law inside an envelope volume of revolution, the average spacing between elementary antennas being notably greater than half a wavelength of the minimum frequency to receive or transmit, each elementary antenna being connected to individually controllable phase-shifting means themselves connected to common distributor means.
  • the elementary antennas consist of vertically oriented dipoles supplied by a supply line comprising a first section, extending horizontally between the respective dipole and a common vertical mast coaxial with the volume envelope of revolution, and a second section extending inside this mast and leading to the distributor means.
  • the volume envelope of revolution can in particular be a sphere.
  • the first sections of the supply lines constitute means, self-supporting, of mechanical support of the dipoles on the common vertical dish.
  • the length of the sections of the supply lines which form the self-supporting means is considerably reduced: the maximum length of these is at most equal to the radius of the sphere (more precisely, it is equal to the radius of the sphere minus the radius of the central cylinder), while in the crow's nest structure of the prior art described above, this length was at least twice the radius of the sphere.
  • the central mast only moderately disturbs the radiation diagram, and in any case has no effect on the isotropy in azimuth of the beam, because of its axial position; in other words, the non-uniformity introduced by the central cylinder will be essentially a non-uniformity in site, where one accepts very well a degradation of the performances of the network in the vicinity of the zenithal region.
  • the central tube may advantageously be constituted by a mast of the ship or by a similar superstructure element, which makes it much easier to find a suitable location for the antenna and makes the mast neutral from a radioelectric point of view, a particularly appreciable advantage on ships, where the superstructure elements close to the antenna always bring significant disturbances to the diagram.
  • the structure of the antenna makes it easy to place, on the supply line, the active modules inside the vertical mast and therefore close to the elementary antennas, which increases their efficiency all the more.
  • the network can be made practically invisible in terms of radar signature by choosing very thin wires for the dipole production, therefore having an equivalent surface. extremely weak reflective (unlike the loops or turnstiles of the prior art).
  • the structure essentially comprises a network 1 formed of a plurality of elementary antennas formed of simple vertical dipoles 3, distributed randomly inside an envelope volume 2, in accordance with the principles of random rarefied networks, which have been explained more high.
  • the dipoles 3 are each connected by a clean supply line 4,5 to an active module 6.
  • active module an electronic module comprising at least one individually controllable phase shifting circuit, but which may further comprise amplifier, filtering circuits, transmission means, reception means, etc. depending on the functions assumed by the antenna and the types of signals it may be required to transmit or receive).
  • the different active modules 6 all lead to an antenna distributor 7 itself connected to the transmission and / or reception circuits 8.
  • the supply lines of each dipole consist of two sections 4 and 5.
  • the first section 4 is essentially horizontal to be transparent (from the radioelectric point of view), taking into account the vertical polarization provided by the antenna.
  • this first section 4 has an essentially rigid structure in order to play, in addition to its role of supplying the dipole 3, a role of mechanical support for this dipole on a central mast 9.
  • the second section 5 of the supply line runs inside the mast 9.
  • the mast 9 is made of a material forming radioelectric shielding, so that the sections 5, which are generally vertical, do not disturb the antenna pattern, the direction of polarization of which is also vertical.
  • the active modules 6 are placed at the end of section 5 of the supply line, near the distributor 7 (generally located at the base of the antenna or at the base of the mast ).
  • the active modules 6 are placed inside the mast 9, at the end of the horizontal section 4.
  • this second configuration requires an increase in the diameter of the mast 9 in order to accommodate the active modules of the various elementary antennas, it has the advantage of minimizing the distance between each elementary antenna and its associated active module, thus allowing a significant improvement. antenna performance, both from the point of view of the signal / noise ratio and of the disturbances introduced by the proper phase shifts of the supply lines.
  • the active modules can also contain transmission and reception means.
  • they are positioned, for example, in the same way as the phase shifting means 6 shown in Figures 1 and 2, the dispensing means no longer appear in this case.
  • the vertical mast 9 can (in particular in the embodiment of FIG. 1) have a very small diameter (less than a wavelength) and consequently only bring a minimal gene to the quasi-hemispherical diagram of each elementary antenna.
  • All the elements of the network can be placed in free space, or inside a protective radome, or even be drowned in an appropriate material such as a polyurethane foam (although this solution, as indicated above, is not satisfactory from the point of view of heat dissipation when the network is used in transmission).
  • the envelope volume in its simplest form, is a sphere.
  • a spherical volume corresponds to a substantially uniform beam whatever the elevation angle, while a flattened shape, close to that of a disc, will obtain the fineness of the beam mainly for large angles of elevation.
  • the number of elementary antennas determines the gain of the antenna in the chosen direction: the greater the number of elementary antennas, the higher this gain;
  • the diameter of the sphere determines the fineness of the beam: the larger the sphere, the more the beam, in the determined direction, is eroit; typically for a fine beam, of the order of 1 ° opening at -3 dB, it is necessary to provide a sphere having a diameter of the order of 70 wavelengths.
  • Figures 3 and 4 illustrate the performance obtained with a network produced according to the teachings of the invention, comprising 377 sources distributed with an average mesh of 3 wavelengths and an average random deviation of ⁇ 1.5 wavelength.
  • the gain G has been plotted as a function of the elevation angle, the azimuth angle being in the two figures fixed at 60 °).
  • Figure 3 corresponds to a pointing of the beam at a site angle of 0 °
  • Figure 4 corresponds to a pointing to a site angle of 60 °.
  • a beam width l of -3 dB of 2.52 ° in the first case and 2.56 ° in the second case is obtained.
  • the excellent performance of beam finesse will be emphasized, although there is both a high elevation angle (60 °) and a high azimuth angle (also 60 °).
  • point A the maximum gain in one case and in the other, which reveals an excellent isotropy in site.
  • the antenna according to the invention lends itself to numerous applications, among which one can indicate: - radars on board ships, where there is typically a need for both hemispherical coverage and vertical polarization to eliminate the effects of reflection on the sea, - IFF radars and tracking radars for weapon systems, for which a continuous rotation of the beam is ill-suited. Indeed, once the threats are located, it is necessary to be able to exchange information sequentially in a plurality of well-defined directions, likely to extend over the entire horizon and with significant angles of site, directions in which it is desirable to be able to access selectively without having to scan the entire horizon, as is currently the case with continuously rotating radars.

Abstract

This antenna is a so-called "steric" antenna, that is to say consisting of a fixed grid (1) comprising a plurality of elementary antennae (3) with quasi-omnidirectional individual radiation, distributed according to a statistically isotropic random distribution law inside a surrounding volume of revolution (2), the average spacing between elementary antennae being considerably greater than a half wavelength of the minimum frequency to be received or emitted, and each elementary antenna being connected to an active module (6) comprising individually controllable dephasing means themselves connected to common distributing means (7). <??>The elementary antennae (3) consist of vertically oriented dipoles supplied by a supply line (4, 5) comprising a first section (4), extending horizontally between the respective dipole and a common vertical mast (9) coaxial with the surrounding volume of revolution (2), and a second section (5) extending inside this mast. <??>The antenna thus produced possesses vertical polarisation, advantageous in numerous cases of pattern (marine, secondary radars) with, by virtue of the use of simple dipoles, a very small equivalent reflecting surface, which renders it very poorly locatable. <??>Furthermore, the first sections (4) of the supply lines can, by virtue of this structure, readily constitute self-supporting means for mechanical support of the dipoles on the common vertical mast (9), for example constituted by the mast of a ship. <IMAGE>

Description

La présente invention concerne une antenne à couverture tridimensionnelle et balayage électronique, du type réseau volumique raréfié aléatoire.The present invention relates to an antenna with three-dimensional coverage and electronic scanning, of the random rarefied volume array type.

On connait plusieurs types d'antennes permettant d'obtenir une couverture tridimensionnelle (le plus souvent, une couverture hémisphérique ou quasi-hémisphérique) à partir d'une configuration d'éléments fixes combinée à un balayage électronique, c'est-à-dire des antennes dans lesquelles on modifie la forme du diagramme de rayonnement (notamment, le pointage d'un lobe principal) en jouant sur les déphasages individuels, ajustables, des différents éléments constituant le réseau.Several types of antennas are known which make it possible to obtain three-dimensional coverage (most often hemispherical or quasi-hemispherical coverage) from a configuration of fixed elements combined with electronic scanning, that is to say antennas in which the shape of the radiation diagram is modified (in particular, the pointing of a main lobe) by playing on the individual, adjustable phase shifts, of the various elements constituting the network.

La configuration la plus couramment utilisée, en pratique, pour réaliser une telle antenne, consiste à répartir les différentes antennes élémentaires du réseau sur une ou plusieurs surfaces réfléchissantes, comme par exemple la surface d'un cylindre ou une pluralité de panneaux différemment orientés.The most commonly used configuration, in practice, for producing such an antenna, consists in distributing the various elementary antennas of the array on one or more reflecting surfaces, such as for example the surface of a cylinder or a plurality of differently oriented panels.

Ces antennes du type dit "à réseau surfacique" ne sont cependant pas à tous égards satisfaisantes. En effet :
- le réseau surfacique cylindrique présente l'inconvénient d'une couverture médiocre pour des angles de site relativement importants, c'est à dire lorsque l'on se rapproche de la direction du zéith ;
- les antennes multipanneaux permettent de remédier à cet inconvénient, en plaçant les différents panneaux (généralement au nombre de quatre) sur les faces d'un tronc de pyramide, ce qui permet d'obtenir une couverture hémisphérique relativement satisfaisante.
These antennas of the so-called "area array" type are however not in all respects satisfactory. Indeed :
- The cylindrical surface network has the disadvantage of poor coverage for relatively large elevation angles, that is to say when one approaches the direction of the zeith;
- the multi-panel antennas make it possible to remedy this drawback, by placing the various panels (generally four in number) on the faces of a trunk pyramid, which makes it possible to obtain a relatively satisfactory hemispherical coverage.

Cependant, ces antennes multipanneaux sont relativement coûteuses car chaque panneau, donc chaque antenne du réseau, ne travaille que dans un seul quadrant (dans le cas d'une antenne à quatre panneaux).However, these multi-panel antennas are relatively expensive because each panel, therefore each antenna of the network, works only in a single quadrant (in the case of a four-panel antenna).

En effet, pour une direction donnée du lobe principal, seul l'un des quatre panneaux est utilisé, les antennes élémentaires des trois autres panneaux ne contribuant en aucune façon à la formation du faisceau dans cette direction.Indeed, for a given direction of the main lobe, only one of the four panels is used, the elementary antennas of the other three panels contributing in no way to the formation of the beam in this direction.

De la sorte, pour disposer d'une couverture complète en azimut il est nécessaire de quadrupler le nombre d'antennes et de modules déphaseurs, grevant de façon corrélative le coût de l'ensemble.In this way, to have complete azimuth coverage, it is necessary to quadruple the number of antennas and phase-shifting modules, correspondingly increasing the cost of the assembly.

On connaît un autre type d'antennes à couverture tridimensionnelle et balayage électronique dans lesquelles, à la différence des antennes surfaciques multipanneaux ou cylindriques, la totalité des antennes élémentaires du réseau participent à la formation du faisceau et contribuent au gain de l'antenne, quelle que soit la direction du lobe principal.Another type of antenna with three-dimensional coverage and electronic scanning is known in which, unlike multi-panel or cylindrical surface antennas, all of the elementary antennas of the array participate in the formation of the beam and contribute to the gain of the antenna, whatever whatever the direction of the main lobe.

Ces antennes sont les antennes dites "stériques" ou "volumiques" dans lesquelles, à la différence des antennes surfaciques, les antennes élémentaires ne sont plus réparties à la surface d'un plan ou d'un volume donné, mais à l'intérieur d'un volume (généralement une sphère).These antennas are the so-called "steric" or "solid" antennas in which, unlike surface antennas, the elementary antennas are no longer distributed on the surface of a given plane or volume, but inside d 'a volume (usually a sphere).

Les antennes élémentaires sont réparties dans ce volume de la façon la plus irrégulière possible, de manière à minimiser le couplage mutuel entre antennes élémentaires et atténuer ainsi au maximum les lobes de réseau ; cette condition est obtenue en répartissant les antennes dans le volume selon une loi de distribution aléatoire statistiquement isotrope, et d'autre part en prévoyant un espacement moyen entre antennes élémentaires qui soit notablement supérieur à une demi-longueur d'onde.The elementary antennas are distributed in this volume as irregularly as possible, so as to minimize the mutual coupling between elementary antennas and thus attenuate the network lobes as much as possible; this condition is obtained by distributing the antennas in the volume according to a statistically isotropic random distribution law, and on the other hand by providing an average spacing between elementary antennas which is notably greater than half a wavelength.

On parle ainsi de "réseau raréfié aléatoire". Dans de tels réseaux :
-la raréfaction permet de faire des économies sur le nombre d'éléments rayonnants pour une dimension donnée du réseau, c'est-à-dire pour une ouverture donnée du faisceau. Elle permet également de réduire fortement les couplages entre sources, qui sont des causes fréquentes de dégradation des performances des antennes réseau ; et
- l'aléa permet d'éliminer les lobes de réseau inhérents aux structures régulières à grands pas.
We thus speak of "random rarefied network". In such networks:
-the rarefaction makes it possible to save on the number of radiating elements for a given dimension of the network, that is to say for a given opening of the beam. It also makes it possible to greatly reduce the coupling between sources, which are frequent causes of degradation in the performance of network antennas; and
- the hazard makes it possible to eliminate the lobes of the network inherent in regular structures with large steps.

Une telle antenne a notamment été décrite dans le DE-A-28 22 845.Such an antenna has in particular been described in DE-A-28 22 845.

Plus précisément, ce document décrit une antenne dite crow's nest, c'est à dire une antenne formée d'un réseau dans lequel les antennes élémentaires sont des boucles ouvertes ou des antennes « tourniquet », rayonnant sur une polarisation horizontale et placées au sommet de lignes coaxiales verticales d'alimentation.More specifically, this document describes a so-called crow's nest antenna, that is to say an antenna formed by a network in which the elementary antennas are open loops or turnstile antennas, radiating on a horizontal polarization and placed at the top of vertical coaxial feed lines.

Bien qu'il apparaisse comme une solution théoriquement très intéressante d'antenne à couverture tridimensionnelle et balayage électronique ce type d'antenne, bien que proposé depuis plus de dix ans, n'a jusqu'à présent fait l'objet que de réalisations expérimentales, sans application effective aux différents domaines où un tel type d'antenne s'avèrerait particulièrement souhaitable : défense aérienne, marine, radar pour systèmes d'armes, radars secondaires pour l'aviation, etc.Although it appears as a theoretically very interesting solution of antenna with three-dimensional coverage and electronic scanning, this type of antenna, although proposed for more than ten years, has so far been the subject only of experimental realizations , without effective application to the various fields where such a type of antenna would prove to be particularly desirable: air defense, marine, radar for weapons systems, secondary radars for aviation, etc.

En effet, en premier lieu, la longueur des lignes coaxiales dont les plus longues ont une longueur au moins égale au double du rayon de la sphère enveloppe rend le système mécaniquement fragile et oblige, si l'on veut avoir la précision voulue de positionnement des différentes boucles à l'intérieur de la sphère et une rigidité d'ensemble suffisante, à prévoir des moyens mécaniques supplémentaires tels que des fils de nylon maintenant en position les câbles d'alimentation semi-rigides et/ou en noyant l'ensemble du réseau dans une masse de mousse (mousse polyuréthane par exemple).In fact, first of all, the length of the coaxial lines, the longest of which have a length at least equal to twice the radius of the envelope sphere makes the system mechanically fragile and requires, if we want to have the desired precision of positioning of the different loops inside the sphere and sufficient overall rigidity, to provide additional mechanical means such as nylon threads holding the semi-rigid power cables in position and / or drowning the entire network in a mass of foam (polyurethane foam for example).

Outre les difficultés de mise en oeuvre mécanique, dans ce dernier cas la présence de mousse joue le rôle d'isolant thermique qui empêche l'évacuation des calories au cas où l'antenne est utilisée en émission, ce qui limite cette solution à des antennes de réception ou d'émission à faible puissance, le problème de l'évacuation calorique n'étant pas résolu.In addition to the difficulties of mechanical implementation, in the latter case the presence of foam plays the role of thermal insulator which prevents the evacuation of calories in the event that the antenna is used in emission, which limits this solution to antennas receiving or transmitting at low power, the problem of caloric evacuation not being resolved.

Un second inconvénient, également lié à la longueur importante des lignes d'alimentation, est le déphasage propre introduit par celles-ci, déphasage qui peut varier dans des proportions importantes selon qu'il s'agit d'une ligne courte ou d'une ligne longue et qu'il sera nécessaire de compenser pour éviter l'apparition de défauts de phase indépendants de la direction pointée.A second drawback, also linked to the long length of the supply lines, is the own phase shift introduced by them, phase shift which can vary in significant proportions depending on whether it is a short line or a long line and it will be necessary to compensate to avoid the appearance of phase faults independent of the direction pointed.

Ces inconvénients, tant mécaniques qu'électriques, liés à la longueur importante des lignes d'alimentation sont d'autant plus gênants que les dimensions de la sphère sont importantes par rapport à la longueur d'onde. Or, comme la finesse du faisceau (angle d'ouverture du lobe principal) est directement liée à la dimension (exprimée en longueurs d'onde) de la sphère, on est conduit à limiter ainsi les performances du système en ce qui concerne sa finesse de faisceau.These drawbacks, both mechanical and electrical, related to the long length of the supply lines are all the more troublesome as the dimensions of the sphere are large relative to the wavelength. However, as the fineness of the beam (opening angle of the main lobe) is directly linked to the dimension (expressed in wavelengths) of the sphere, we are thus led to limit the performance of the system with regard to its fineness of beam.

En troisième lieu, un tel réseau est très "visible" en termes de signature radar, du fait de l'utilisation de boucles ou d'antennes tourniquets ; or l'utilisation de tels types d'antennes élémentaires est inévitable du fait que, par nature, un réseau nécessite des antennes présentant, en amplitude comme en phase, un diagramme quasi-omnidirectionnel en azimut.Third, such a network is very "visible" in terms of radar signature, due to the use of loops or turnstile antennas; however the use of such types of elementary antennas is inevitable because, by nature, a network requires antennas having, in amplitude as in phase, a quasi-omnidirectional diagram in azimuth.

En quatrième lieu, ce type connu d'antenne est limité, de fait de sa structure, à un fonctionnement essentiellement en polarisation horizontale.Fourth, this known type of antenna is limited, due to its structure, to operation essentially in horizontal polarization.

Or de nombreuses applications nécessitent absolument une polarisation verticale, par exemple les antennes pour radar embarqués sur des navires (la polarisation verticale élimine en effet les effets de réflexion sur la mer), ou encore les antennes pour radars secondaires, notamment les radars IFF (Identification Friend or Foe : identification ami/ennemi).However, many applications absolutely require vertical polarization, for example antennas for radar on board ships (vertical polarization eliminates indeed the effects of reflection on the sea), or even antennas for secondary radars, in particular IFF radars (Identification Friend or Foe: friend / enemy identification).

Ces différentes raisons expliquent pourquoi, malgré ses avantages théoriques évidents et le besoin de disposer d'une antenne à couverture tridimensionnelle et balayage électronique dans de nombreux domaines d'application, ce type connu d'antenne n'a jusqu'à présent pas dépassé le stade expérimental.These different reasons explain why, despite its obvious theoretical advantages and the need for an antenna with three-dimensional coverage and electronic scanning in many fields of application, this known type of antenna has so far not exceeded the experimental stage.

La présente invention a pour objet une antenne de type stérique (c'est à dire du type "réseau volumique raréfié aléatoire" explicité plus haut) qui pallie l'ensemble des inconvénients précités, tout en gardant une structure simple, robuste et donc peu coûteuse à réaliser.The present invention relates to a steric type antenna (that is to say of the “random rarefied volume network” type explained above) which overcomes all of the aforementioned drawbacks, while keeping a simple, robust and therefore inexpensive structure. to achieve.

Cette antenne est, de manière en elle-même connue, constituée d'un réseau fixe comprenant une pluralité d'antennes élémentaires à rayonnement individuel quasi-­omnidirectionnel réparties selon une loi de distribution aléatoire statistiquement isotrope à l'intérieur d'un volume enveloppe de révolution, l'espacement moyen entre antennes élémentaires étant notablement supérieur à une demi-longueur d'onde de la fréquence minimale à recevoir ou émettre, chaque antenne élémentaire étant reliée à des moyens déphaseurs individuellement contrôlables eux-mêmes reliés à des moyens distributeurs communs.This antenna is, in itself known, made up of a fixed network comprising a plurality of elementary antennas with quasi-omnidirectional individual radiation distributed according to a statistically isotropic random distribution law inside an envelope volume of revolution, the average spacing between elementary antennas being notably greater than half a wavelength of the minimum frequency to receive or transmit, each elementary antenna being connected to individually controllable phase-shifting means themselves connected to common distributor means.

De façon caractéristique de l'invention, les antennes élémentaires sont constituées de dipôles orientés verticalement et alimentés par une ligne d'alimentation comprenant une première section, s'étendant horizontalement entre le dipôle respectif et un mât vertical commun coaxial au volume enveloppe de révolution, et une seconde section s'étendant à l'intérieur de ce mât et aboutissant aux moyens distributeurs.Characteristically of the invention, the elementary antennas consist of vertically oriented dipoles supplied by a supply line comprising a first section, extending horizontally between the respective dipole and a common vertical mast coaxial with the volume envelope of revolution, and a second section extending inside this mast and leading to the distributor means.

Le volume enveloppe de révolution peut notamment être une sphère.The volume envelope of revolution can in particular be a sphere.

Très avantageusement, les premières sections des lignes d'alimentation constituent des moyens, autoporteurs, de support mécanique des dipôles sur le met vertical commun.Very advantageously, the first sections of the supply lines constitute means, self-supporting, of mechanical support of the dipoles on the common vertical dish.

Par rapport à une antenne crow's nest, on réduit ainsi de façon importante la longueur des sections des lignes d'alimentation qui forment les moyens autoporteurs : la longueur maximale de ceux-ci est au plus égale au rayon de la sphère (plus précisément, elle est égale au rayon de la sphère moins le rayon du cylindre central), tandis que dans la structure crow's nestde l'art antérieur décrite plus haut, cette longueur était au moins égale au double du rayon de la sphère.Compared to a crow's nest antenna, the length of the sections of the supply lines which form the self-supporting means is considerably reduced: the maximum length of these is at most equal to the radius of the sphere (more precisely, it is equal to the radius of the sphere minus the radius of the central cylinder), while in the crow's nest structure of the prior art described above, this length was at least twice the radius of the sphere.

Compte tenu de la longueur réduite, il n'est plus nécessaire de noyer le réseau dans une mousse ou de prévoir des moyens auxilaires de maintien.Given the reduced length, it is no longer necessary to drown the network in a foam or to provide auxiliary holding means.

Du point de vue radioélectrique, le mât central ne perturbe que modérément le diagramme de rayonnement, et en tout cas est sans incidence sur l'isotropie en azimut du faisceau, du fait de sa position axiale ; en d'autres termes, la non-uniformité introduite par le cylindre central sera essentiellement une non-uniformité en site, où l'on accepte fort bien une dégradation des performances du réseau au voisinage de la région zénithale.From the radioelectric point of view, the central mast only moderately disturbs the radiation diagram, and in any case has no effect on the isotropy in azimuth of the beam, because of its axial position; in other words, the non-uniformity introduced by the central cylinder will be essentially a non-uniformity in site, where one accepts very well a degradation of the performances of the network in the vicinity of the zenithal region.

En outre, dans le cas d'un radar pour la marine, le tube central peut être avantageusement constitué par un mât du navire ou par un élément de superstructure analogue, ce qui rend beaucoup plus facile la recherche d'un emplacement approprié pour l'antenne et rend le mât neutre du point du vue radioélectrique, avantage particulièrement appréciable sur les navires, où les éléments de superstructure proches de l'antenne apportent toujours des perturbations importantes au diagramme.In addition, in the case of a radar for the navy, the central tube may advantageously be constituted by a mast of the ship or by a similar superstructure element, which makes it much easier to find a suitable location for the antenna and makes the mast neutral from a radioelectric point of view, a particularly appreciable advantage on ships, where the superstructure elements close to the antenna always bring significant disturbances to the diagram.

Par ailleurs, la structure de l'antenne permet aisément de placer, sur la ligne d'alimentation, les modules actifs à l'intérieur du mât vertical et donc à proximité des antennes élémentaires, ce qui augmente d'autant leur efficacité.Furthermore, the structure of the antenna makes it easy to place, on the supply line, the active modules inside the vertical mast and therefore close to the elementary antennas, which increases their efficiency all the more.

Enfin, du fait de l'utilisation de simples dipôles comme antennes élémentaires, le réseau peut être rendu pratiquement invisible en termes de signature radar en choisissant pour la réalisation des dipôles des fils très fins, donc présentant une surface équivalente réfléchissante extrêmement faible (à la différence des boucles ou tourniquets de l'art antérieur).Finally, due to the use of simple dipoles as elementary antennas, the network can be made practically invisible in terms of radar signature by choosing very thin wires for the dipole production, therefore having an equivalent surface. extremely weak reflective (unlike the loops or turnstiles of the prior art).

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée ci-dessous, faite en référence aux dessins annexés sur lesquels :

  • - la figure 1 montre, de façon schématique, un mode de réalisation de l'antenne selon les enseignements de la présente invention,
  • - la figure 2 est une variante de réalisation de la figure 1, dans laquelle les modules actifs sont placés dans le mât central, au voisinage de leurs antennes élémentaires respectives associées,
  • - les figures 3 et 4 sont des diagrammes donnant le gain en fonction de l'angle de site du réseau selon l'invention.
Other characteristics and advantages of the invention will appear on reading the detailed description below, made with reference to the appended drawings in which:
  • FIG. 1 schematically shows an embodiment of the antenna according to the teachings of the present invention,
  • FIG. 2 is an alternative embodiment of FIG. 1, in which the active modules are placed in the central mast, in the vicinity of their respective associated elementary antennas,
  • - Figures 3 and 4 are diagrams giving the gain as a function of the angle of elevation of the network according to the invention.

Sur les figures 1 et 2, on a représenté schématiquement le réseau selon l'invention.In Figures 1 and 2, there is shown schematically the network according to the invention.

On notera que, pour la clarté du dessin, les proportions respectives entre la longueur des diférentes antennes élémentaires (une demi-longueur d'onde), leurs espacements relatifs (de l'ordre de plusieurs longueurs d'onde), le diamètre du volume enveloppe (de l'ordre de plusieurs longueurs d'onde ou plusieurs dizaines de longueurs d'onde) et le diamètre du mât central (de l'ordre d'une longueur d'onde ou d'une fraction de longueur d'onde) n'ont pas été respectées.It will be noted that, for the clarity of the drawing, the respective proportions between the length of the different elementary antennas (half a wavelength), their relative spacings (of the order of several wavelengths), the diameter of the volume envelope (of the order of several wavelengths or several tens of wavelengths) and the diameter of the central mast (of the order of a wavelength or of a fraction of wavelength) have not been met.

Par ailleurs, comme le verra plus loin, les différentes dimensions que l'on vient d'indiquer peuvent varier dans des proportions importantes en fonction des performances souhaitées pour le réseau (gain, finesse du faisceau, etc.).Furthermore, as will be seen below, the different dimensions which have just been indicated can vary in significant proportions as a function of the performance desired for the network (gain, fineness of the beam, etc.).

La structure comporte essentiellement un réseau 1 formé d'une pluralitéd'antennes élémentaires formées de dipôles simples verticaux 3, répartis de façon aléatoire à l'intérieur d'un volume enveloppe 2, conformément aux principes des réseaux raréfiés aléatoires, qui ont été explicités plus haut.The structure essentially comprises a network 1 formed of a plurality of elementary antennas formed of simple vertical dipoles 3, distributed randomly inside an envelope volume 2, in accordance with the principles of random rarefied networks, which have been explained more high.

Les dipôles 3 sont reliés chacun par une ligne d'alimentation propre 4,5 à un module actif 6.The dipoles 3 are each connected by a clean supply line 4,5 to an active module 6.

(Par « module actif » on entendra un module électronique comportant au moins un circuit déphaseur individuellement contrôlable, mais pouvant comprendre en outre des circuits amplificateurs, de filtrage, des moyens d'émission, des moyens de réception, etc ... selon les fonctions assumées par l'antenne et les types de signaux qu'elle pourra être amenée àémettre ou recevoir).(By active module is meant an electronic module comprising at least one individually controllable phase shifting circuit, but which may further comprise amplifier, filtering circuits, transmission means, reception means, etc. depending on the functions assumed by the antenna and the types of signals it may be required to transmit or receive).

Les différents modules actifs 6 aboutissent tous à un répartiteur d'antenne 7 lui-même relié aux circuits 8 d'émission et/ou de réception.The different active modules 6 all lead to an antenna distributor 7 itself connected to the transmission and / or reception circuits 8.

Les lignes d'alimentation de chaque dipôle sont constituées de deux sections 4 et 5.The supply lines of each dipole consist of two sections 4 and 5.

La première section 4 est essentiellement horizontale pour être transparente (du point de vue radioélectrique), compte tenu de la polarisation verticale procurée par l'antenne.The first section 4 is essentially horizontal to be transparent (from the radioelectric point of view), taking into account the vertical polarization provided by the antenna.

Par ailleurs, du point de vue mécanique, ctte première section 4 est de structure essentiellement rigide afin de jouer, outre son rôle d'alimentation du dipôle 3, un rôle de support mécanique de ce dipôle sur un mât central 9.Furthermore, from the mechanical point of view, this first section 4 has an essentially rigid structure in order to play, in addition to its role of supplying the dipole 3, a role of mechanical support for this dipole on a central mast 9.

La seconde section 5 de la ligne d'alimentation court à l'intérieur du mât 9.The second section 5 of the supply line runs inside the mast 9.

Le mât 9 est réalisé en un matériau formant blindage radioélectrique, afin que les sections 5, qui sont généralement verticales, ne perturbent pas le diagramme de l'antenne, dont la direction de polarisation est également verticale.The mast 9 is made of a material forming radioelectric shielding, so that the sections 5, which are generally vertical, do not disturb the antenna pattern, the direction of polarization of which is also vertical.

Dans le mode de réalisation de la figure 1, les modules actifs 6 sont placés en bout de la section 5 de la ligne d'alimentation, à proximité du répartiteur 7 (généralement situé à la base de l'antenne ou à la base du mât).In the embodiment of FIG. 1, the active modules 6 are placed at the end of section 5 of the supply line, near the distributor 7 (generally located at the base of the antenna or at the base of the mast ).

En revanche, dans le mode de réalisation de la figure 2, les modules actifs 6 sont placés à l'intérieur du mât 9, à l'extrémité de la section horizontale 4.On the other hand, in the embodiment of FIG. 2, the active modules 6 are placed inside the mast 9, at the end of the horizontal section 4.

Bien que cette seconde configuration nécessite une augmentation de diamètre du mât 9 pour pouvoir loger les modules actifs des différentes antennes élémentaires, elle présente l'avantage de réduire au minimum la distance entre chaque antenne élémentaire et son module actif associé, permettant ainsi une amélioration sensible des performances de l'antenne, tant du point de vue du rapport signal/bruit que des perturbations introduites par les déphasages propres des lignes d'alimentation.Although this second configuration requires an increase in the diameter of the mast 9 in order to accommodate the active modules of the various elementary antennas, it has the advantage of minimizing the distance between each elementary antenna and its associated active module, thus allowing a significant improvement. antenna performance, both from the point of view of the signal / noise ratio and of the disturbances introduced by the proper phase shifts of the supply lines.

Dans une variante non représentée, les modules actifs peuvent également contenir des moyens d'émission et de réception. Dans ce cas, ils sont positionnés, par exemple, de la même manière que les moyens déphaseurs 6 représentés sur les figures 1 et 2, les moyens distributeurs n'apparaissent plus dans ce cas de figure.In a variant not shown, the active modules can also contain transmission and reception means. In this case, they are positioned, for example, in the same way as the phase shifting means 6 shown in Figures 1 and 2, the dispensing means no longer appear in this case.

Le mât vertical 9 peut (notamment dans le mode de réalisation de la figure 1) avoir un diamètre très faible (moins d'une longueur d'onde) et par conséquent n'apporter qu'une gène minime au diagramme quasi- hémisphérique de chaque antenne élémentaire.The vertical mast 9 can (in particular in the embodiment of FIG. 1) have a very small diameter (less than a wavelength) and consequently only bring a minimal gene to the quasi-hemispherical diagram of each elementary antenna.

L'ensemble des éléments du réseau peut être placé en espace libre, ou bien à l'intérieur d'un radôme de protection, ou bien encore être noyé dans un matériau approprié tel qu'une mousse polyuréthane (bien que cette solution, comme on l'a indiqué plus haut, ne soit pas satisfaisante du point de vue de la dissipation thermique lorsque le réseau est utilisé en émission).All the elements of the network can be placed in free space, or inside a protective radome, or even be drowned in an appropriate material such as a polyurethane foam (although this solution, as indicated above, is not satisfactory from the point of view of heat dissipation when the network is used in transmission).

Le volume enveloppe 1, dans sa forme la plus simple, est une sphère.The envelope volume 1, in its simplest form, is a sphere.

Cette forme n'est cependant pas limitative et l'on pourrait envisager aussi bien d'autres formes de volume enveloppe, c'est-à-dire avec un ratio hauteur/diamètre principal qui soit différent de 1, dès lors que ces formes sont des forme de révolution.This form is not, however, limiting and one could also consider other forms of envelope volume, that is to say with a principal height / diameter ratio which is different from 1, as soon as these forms are forms of revolution.

Ce choix dépend en fait de la finesse du faisceau désirée en fonction de l'angle de site : un volume sphérique correspond à un faisceau sensiblement uniforme quelque soit l'angle de site, tandis qu'une forme aplatie, proche de celle d'un disque, permettra d'obtenir la finesse du faisceau essentiellement pour les angles de site importants.This choice in fact depends on the fineness of the beam desired as a function of the elevation angle: a spherical volume corresponds to a substantially uniform beam whatever the elevation angle, while a flattened shape, close to that of a disc, will obtain the fineness of the beam mainly for large angles of elevation.

En d'autres termes, c'est le contour apparent du volume enveloppe, vu de la cible, qui déterminera la finesse du faisceau.In other words, it is the apparent outline of the envelope volume, seen from the target, which will determine the fineness of the beam.

En ce qui concerne le nombre de dipôles dans le réseau, l'espacement moyen relatif entre ceux-ci et le diamètre du volume enveloppe, ces paramètres peuvant varier de façon importante en fonction des performances désirées.Regarding the number of dipoles in the network, the relative average spacing between them and the diameter of the envelope volume, these parameters can vary significantly depending on the desired performance.

Essentiellement :
- le nombre d'antennes élémentaires détermine le gain de l'antenne dans la direction choisie : plus le nombre d'antennes élémentaires est important, plus ce gain est élevé ;
- et le diamètre de la sphère détermine la finesse du faisceau : plus la sphère est de grande taille, plus le faisceau, dans la direction déterminée, est éroit ; typiquement pour un faisceau fin, de l'ordre de 1° d'ouverture à -3 dB, il est nécessaire de prévoir une sphère ayant un diamètre de l'ordre de 70 longueurs d'onde.
Basically:
- the number of elementary antennas determines the gain of the antenna in the chosen direction: the greater the number of elementary antennas, the higher this gain;
- and the diameter of the sphere determines the fineness of the beam: the larger the sphere, the more the beam, in the determined direction, is eroit; typically for a fine beam, of the order of 1 ° opening at -3 dB, it is necessary to provide a sphere having a diameter of the order of 70 wavelengths.

Les figures 3 et 4 illustrent les performances obtenues avec un réseau réalisé selon les enseignements de l'invention, comportant 377 sources réparties avec une maille moyenne de 3 longueurs d'onde et un écart aléatoire moyen de ± 1,5 longueur d'onde.Figures 3 and 4 illustrate the performance obtained with a network produced according to the teachings of the invention, comprising 377 sources distributed with an average mesh of 3 wavelengths and an average random deviation of ± 1.5 wavelength.

Sur les deux diagrammes, on a porté le gain G en fonction de l'angle de site, l'angle d'azimut étant dans les deux figures fixé à 60°).On the two diagrams, the gain G has been plotted as a function of the elevation angle, the azimuth angle being in the two figures fixed at 60 °).

La figure 3 correspond à un pointage du faisceau sur un angle de site de 0°, tandis que la figure 4 correspond à un pointage sur un angle de site de 60°.Figure 3 corresponds to a pointing of the beam at a site angle of 0 °, while Figure 4 corresponds to a pointing to a site angle of 60 °.

On obtient une largeur l du faisceau à - 3 dB de 2,52° dans le premier cas et de 2,56° dans le second cas. On soulignera, dans ce second cas, les performances excellentes de finesse du faisceau, bien que l'on ait à la fois un angle de site élevé (60°) et un angle d'azimut élevé (60° également). On notera également l'absence de variation du gain maximal (point A) dans un cas et dans l'autre, ce qui révèle une excellente isotropie en site.A beam width l of -3 dB of 2.52 ° in the first case and 2.56 ° in the second case is obtained. In this second case, the excellent performance of beam finesse will be emphasized, although there is both a high elevation angle (60 °) and a high azimuth angle (also 60 °). Note also the absence of variation of the maximum gain (point A) in one case and in the other, which reveals an excellent isotropy in site.

L'antenne selon l'invention se prête à des nombreuses applications, parmi lesquelles on peut indiquer :
- les radars embarqués sur des navires, où l'on a typiquement besoin à la fois d'une couverture hémisphérique et d'une polarisation verticale pour éliminer les effets de réflexion sur la mer,
- les radars IFF et les radars de poursuite pour systèmes d'armes, pour lesquels une rotation continue du faisceau est mal adaptée. En effet, une fois les menaces localisées, il est nécessaire de pouvoir échanger des informations séquentiellement dans une pluralité de directions bien déterminées, susceptibles de s'étendre sur tout l'horizon et avec des angles de site importants, directions auxquelles il est souhaitable de pouvoir accéder sélectivement sans avoir à balayer tout l'horizon, comme c'est le cas actuellement avec les radars à rotation continue.
The antenna according to the invention lends itself to numerous applications, among which one can indicate:
- radars on board ships, where there is typically a need for both hemispherical coverage and vertical polarization to eliminate the effects of reflection on the sea,
- IFF radars and tracking radars for weapon systems, for which a continuous rotation of the beam is ill-suited. Indeed, once the threats are located, it is necessary to be able to exchange information sequentially in a plurality of well-defined directions, likely to extend over the entire horizon and with significant angles of site, directions in which it is desirable to be able to access selectively without having to scan the entire horizon, as is currently the case with continuously rotating radars.

Claims (7)

1. Une antenne à couverture tridimensionnelle et balayage électronique, du type réseau volumique raréfié aléatoire, constituée d'un réseau fixe (1) comprenant une pluralité d'antennes élémentaires (3) à rayonnement individuel quasi-omnidirectionnel réparties selon une loi de distribution aléatoire statistiquement isotrope à l'intérieur d'un volume enveloppe de révolution (2), l'espacement moyen entre antennes élémentaires étant notablement supérieur à une demi-longueur d'onde de la fréquence minimale à recevoir ou émettre, chaque antenne élémentaire étant reliée à des moyens déphaseurs individuellement contrôlables, caractérisée en ce que les antennes élémentaires (3) sont constituées de dipôles orientés verticalement et alimentés par une ligne d'alimentation (4,5) comprenant une première section (4), s'étendant horizontalement entre le dipôle respectif et un mât vertical commun (9) coaxial au volume enveloppe de révolution (2).1. An antenna with three-dimensional coverage and electronic scanning, of the random rarefied volume array type, consisting of a fixed array (1) comprising a plurality of elementary antennas (3) with quasi-omnidirectional individual radiation distributed according to a law of random distribution statistically isotropic inside an envelope volume of revolution (2), the average spacing between elementary antennas being notably greater than half a wavelength of the minimum frequency to receive or transmit, each elementary antenna being connected to individually controllable phase shifting means, characterized in that the elementary antennas (3) consist of vertically oriented dipoles and supplied by a supply line (4,5) comprising a first section (4), extending horizontally between the dipole respective and a common vertical mast (9) coaxial with the volume envelope of revolution (2). 2. L'antenne de la revendication 1, dans laquelle le volume enveloppe de révolution (2) est une sphère.2. The antenna of claim 1, wherein the volume envelope of revolution (2) is a sphere. 3. L'antenne de la revendication 1, dans laquelle les premières sections (4) des lignes d'alimentation constituent des moyens, autoporteurs, de support mécanique des dipôles sur le màt vertical commun (9).3. The antenna of claim 1, wherein the first sections (4) of the supply lines constitute means, self-supporting, of mechanical support of the dipoles on the common vertical mast (9). 4. Antenne selon la revendication 1 dans laquelle la ligne d'alimentation constituée de la première section (4) comprend une seconde section (5) s'étendant à l'intérieur du mât (9) et aboutissant aux moyens déphaseurs individuellement contrôlables.4. Antenna according to claim 1 in which the feed line consisting of the first section (4) comprises a second section (5) extending inside the mast (9) and leading to the individually controllable phase shifting means. 5. Antenne selon la revendication 1 dans laquelle chaque antenne élémentaire est reliée à un module actif (6) comprenant les moyens déphaseurs.5. Antenna according to claim 1 in which each elementary antenna is connected to an active module (6) comprising the phase shifting means. 6. L'antenne de la revendication 5, dans laquelle les modules actifs (6) sont placés, sur la ligne d'alimentation, à l'intérieur du mât vertical (9).6. The antenna of claim 5, in which the active modules (6) are placed, on the supply line, inside the vertical mast (9). 7. Antenne selon la revendication 1, dans laquelle les dipôles des antennes élémentaires (3) sont des fils fins.7. Antenna according to claim 1, in which the dipoles of the elementary antennas (3) are fine wires.
EP89403381A 1988-12-16 1989-12-06 Over the whole spherical space electronically scanning antenna with random and reduced three-dimensional distribution of the antenna elements Expired - Lifetime EP0374008B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8816622 1988-12-16
FR8816622A FR2640821B1 (en) 1988-12-16 1988-12-16 ANTENNA WITH THREE-DIMENSIONAL COVERAGE AND ELECTRONIC SCANNING, OF THE RAREFIELD RANDOM VOLUME NETWORK TYPE

Publications (2)

Publication Number Publication Date
EP0374008A1 true EP0374008A1 (en) 1990-06-20
EP0374008B1 EP0374008B1 (en) 1993-07-14

Family

ID=9373036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403381A Expired - Lifetime EP0374008B1 (en) 1988-12-16 1989-12-06 Over the whole spherical space electronically scanning antenna with random and reduced three-dimensional distribution of the antenna elements

Country Status (4)

Country Link
US (1) US5038149A (en)
EP (1) EP0374008B1 (en)
DE (1) DE68907575T2 (en)
FR (1) FR2640821B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0755090A1 (en) * 1995-07-18 1997-01-22 Nortel Networks Corporation An antenna downlink beamsteering arrangement
EP0755094A1 (en) * 1995-07-18 1997-01-22 Nortel Networks Corporation An antenna array configuration

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672436B1 (en) * 1991-01-31 1993-09-10 Europ Agence Spatiale DEVICE FOR ELECTRONICALLY MONITORING THE RADIATION DIAGRAM OF AN ANTENNA WITH ONE OR MORE VARIABLE STEERING AND / OR WIDTH BEAMS.
US5194873A (en) * 1991-10-11 1993-03-16 General Electric Company Antenna system providing a spherical radiation pattern
FR2697949B1 (en) * 1992-11-06 1995-01-06 Thomson Csf Antenna for radar, in particular for designation and trajectography.
FR2702090B1 (en) * 1993-02-26 1995-05-19 Thomson Csf Deviation measurement antenna for monopulse radar.
FR2715511B1 (en) * 1994-01-21 1996-02-23 Thomson Csf Device for compensating for pointing errors caused by breakdowns of phase shifters of electronically scanned antennas or of coefficients of beam-forming antennas by calculation.
FR2725075B1 (en) * 1994-09-23 1996-11-15 Thomson Csf METHOD AND DEVICE FOR ENLARGING THE RADIATION DIAGRAM OF AN ACTIVE ANTENNA
US5969689A (en) * 1997-01-13 1999-10-19 Metawave Communications Corporation Multi-sector pivotal antenna system and method
US6081536A (en) 1997-06-20 2000-06-27 Tantivy Communications, Inc. Dynamic bandwidth allocation to transmit a wireless protocol across a code division multiple access (CDMA) radio link
US6542481B2 (en) 1998-06-01 2003-04-01 Tantivy Communications, Inc. Dynamic bandwidth allocation for multiple access communication using session queues
US9525923B2 (en) 1997-12-17 2016-12-20 Intel Corporation Multi-detection of heartbeat to reduce error probability
US7394791B2 (en) 1997-12-17 2008-07-01 Interdigital Technology Corporation Multi-detection of heartbeat to reduce error probability
US7936728B2 (en) 1997-12-17 2011-05-03 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US6222832B1 (en) 1998-06-01 2001-04-24 Tantivy Communications, Inc. Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system
FR2775347B1 (en) * 1998-02-24 2000-05-12 Thomson Csf METHOD FOR DETERMINING THE SETTING ERROR OF THE RADIANT FACE OF AN ELECTRONICALLY SCANNED NETWORK ANTENNA
US8134980B2 (en) 1998-06-01 2012-03-13 Ipr Licensing, Inc. Transmittal of heartbeat signal at a lower level than heartbeat request
US7773566B2 (en) 1998-06-01 2010-08-10 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US6404386B1 (en) 1998-09-21 2002-06-11 Tantivy Communications, Inc. Adaptive antenna for use in same frequency networks
US6100843A (en) 1998-09-21 2000-08-08 Tantivy Communications Inc. Adaptive antenna for use in same frequency networks
US6989797B2 (en) * 1998-09-21 2006-01-24 Ipr Licensing, Inc. Adaptive antenna for use in wireless communication systems
NL1010657C1 (en) * 1998-11-26 2000-05-30 Hollandse Signaalapparaten Bv Array antenna and method for operating an array antenna.
NL1011421C2 (en) 1999-03-02 2000-09-05 Tno Volumetric phased array antenna system.
DE19962461B4 (en) * 1999-12-22 2005-07-21 Eads Deutschland Gmbh antenna array
AU3673001A (en) 2000-02-07 2001-08-14 Tantivy Communications, Inc. Minimal maintenance link to support synchronization
US6326926B1 (en) 2000-05-18 2001-12-04 Telxon Corporation Method of operating a wireless and a short-range wireless connection in the same frequency
US8155096B1 (en) 2000-12-01 2012-04-10 Ipr Licensing Inc. Antenna control system and method
US6954448B2 (en) 2001-02-01 2005-10-11 Ipr Licensing, Inc. Alternate channel for carrying selected message types
US7551663B1 (en) 2001-02-01 2009-06-23 Ipr Licensing, Inc. Use of correlation combination to achieve channel detection
EP2479904B1 (en) 2001-06-13 2017-02-15 Intel Corporation Apparatuses for transmittal of heartbeat signal at a lower level than heartbeat request
WO2003071569A2 (en) * 2002-02-20 2003-08-28 University Of Washington Analytical instruments using a pseudorandom array of sample sources, such as a micro-machined mass spectrometer or monochromator
EP1721330A2 (en) * 2004-03-05 2006-11-15 Oi Corporation Focal plane detector assembly of a mass spectrometer
US8456374B1 (en) 2009-10-28 2013-06-04 L-3 Communications, Corp. Antennas, antenna systems and methods providing randomly-oriented dipole antenna elements
US8743015B1 (en) * 2010-09-29 2014-06-03 Rockwell Collins, Inc. Omni-directional ultra wide band miniature doubly curved antenna array
US11115792B2 (en) 2017-06-15 2021-09-07 Jiejun Kong Vehicular high-speed network system
US20180367210A1 (en) * 2017-06-15 2018-12-20 Jiejun Kong Portable vehicular long-distance broadband communication system using horizontally-placed sector antennas against unbounded gradual yaw-rotations and up to +-60 degrees abrupt pitch-rotations
CN108959806B (en) * 2018-07-23 2022-03-15 电子科技大学 Equivalent radiation modeling method based on spherical surface near-field measurement and spherical mode source
US11435438B2 (en) * 2019-12-30 2022-09-06 Woven Planet North America, Inc. Dynamic sparse radar array for scenarios
DE102021115986A1 (en) 2021-06-21 2022-12-22 Hochschule Heilbronn Körperschaft des öffentlichen Rechts Method and receiving device for detecting an electromagnetic wave

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1591060A1 (en) * 1966-09-21 1970-08-20 Csf Electronic scanning antenna
US3653057A (en) * 1970-12-24 1972-03-28 Itt Simplified multi-beam cylindrical array antenna with focused azimuth patterns over a wide range of elevation angles
DE2822845C2 (en) * 1978-05-24 1983-12-01 Siemens AG, 1000 Berlin und 8000 München Group antenna with electronically controlled beam swivel
EP0207511A2 (en) * 1985-07-05 1987-01-07 Siemens Aktiengesellschaft Electronically scanned phased-array antenna
US4792808A (en) * 1982-12-14 1988-12-20 Harris Corp. Ellipsoid distribution of antenna array elements for obtaining hemispheric coverage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052723A (en) * 1976-04-26 1977-10-04 Westinghouse Electric Corporation Randomly agglomerated subarrays for phased array radars
GB8602246D0 (en) * 1986-01-30 1986-03-05 British Telecomm Omnidirectional antenna
JPS62203402A (en) * 1986-03-04 1987-09-08 Kokusai Denshin Denwa Co Ltd <Kdd> Antenna system for mobile satellite communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1591060A1 (en) * 1966-09-21 1970-08-20 Csf Electronic scanning antenna
US3653057A (en) * 1970-12-24 1972-03-28 Itt Simplified multi-beam cylindrical array antenna with focused azimuth patterns over a wide range of elevation angles
DE2822845C2 (en) * 1978-05-24 1983-12-01 Siemens AG, 1000 Berlin und 8000 München Group antenna with electronically controlled beam swivel
US4792808A (en) * 1982-12-14 1988-12-20 Harris Corp. Ellipsoid distribution of antenna array elements for obtaining hemispheric coverage
EP0207511A2 (en) * 1985-07-05 1987-01-07 Siemens Aktiengesellschaft Electronically scanned phased-array antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0755090A1 (en) * 1995-07-18 1997-01-22 Nortel Networks Corporation An antenna downlink beamsteering arrangement
EP0755094A1 (en) * 1995-07-18 1997-01-22 Nortel Networks Corporation An antenna array configuration
US5778324A (en) * 1995-07-18 1998-07-07 Northern Telecom Limited Antenna downlink beamsteering arrangement
US6002947A (en) * 1995-07-18 1999-12-14 Nortel Networks Corporation Antenna array configuration

Also Published As

Publication number Publication date
FR2640821B1 (en) 1991-05-31
DE68907575T2 (en) 1994-01-27
US5038149A (en) 1991-08-06
EP0374008B1 (en) 1993-07-14
FR2640821A1 (en) 1990-06-22
DE68907575D1 (en) 1993-08-19

Similar Documents

Publication Publication Date Title
EP0374008B1 (en) Over the whole spherical space electronically scanning antenna with random and reduced three-dimensional distribution of the antenna elements
EP0237429B1 (en) Controlled-phase reflector array, and antenna comprising such an array
CA2681548C (en) Reflector network and antenna comprising such a reflector network
CA2243603C (en) Radiating structure
EP2202846B1 (en) Planar radiating element with dual polarisation and network antenna comprising such a radiating element
EP0239069B1 (en) Printed-circuit antenna array
EP1568104B1 (en) Multiple-beam antenna with photonic bandgap material
EP0524622A1 (en) Antenna array for ultra-high frequencies
FR2795240A1 (en) Base station antenna has dielectric focussing is compact and multiband
EP0548876B1 (en) An active offset antenna having two reflectors
EP0512487B1 (en) Antenna with shaped lobe and high gain
WO2004040696A1 (en) Multibeam antenna with photonic bandgap material
EP0131512B1 (en) Dual reflector antenna with quasitoroidal coverage
FR2794290A1 (en) VERTICAL POLARIZATION ANTENNA
WO1991018428A1 (en) Planar orientable antenna operating in the microwave band
FR2945674A1 (en) Beam misaligning device for beam scanning antenna in airplane, has prisms positioned in angular manner along radiation axis and producing inflexion of beam of antenna with variable amplitude relative to angular positioning between prisms
EP0477102B1 (en) Directional network with adjacent radiator elements for radio communication system and unit with such a directional network
WO2003065507A1 (en) Receiving antenna for multibeam coverage
FR3102311A1 (en) NETWORK ANTENNA
FR2738397A1 (en) METHOD FOR ENLARGING THE BEAM OF A STERILE ANTENNA
EP0088681B1 (en) Dual-reflector antenna with incorporated polarizer
FR2943466A1 (en) Radiating element i.e. single pulse bipolarization radiating element, for e.g. Cassegrain reflector antenna of radar, has polarization filters set along direction parallel to dipole branches placed above plane of openings of waveguides
EP0897201A1 (en) Cylindrical reflector with sliding radiating elements
EP4092831A1 (en) Antenna with lacunary distribution network
FR2779873A1 (en) Electronic phase control of scanning polarized wave antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19901108

17Q First examination report despatched

Effective date: 19921027

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930714

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REF Corresponds to:

Ref document number: 68907575

Country of ref document: DE

Date of ref document: 19930819

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930913

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THOMSON-CSF

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041201

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041202

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041208

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

Ref country code: FR

Ref legal event code: AU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051206

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060831