EP0370910B1 - Krackverfahren von schweren Kohlenwasserstoff-Einsätzen und Vorrichtung zur Ausführung des Verfahrens - Google Patents

Krackverfahren von schweren Kohlenwasserstoff-Einsätzen und Vorrichtung zur Ausführung des Verfahrens Download PDF

Info

Publication number
EP0370910B1
EP0370910B1 EP89403235A EP89403235A EP0370910B1 EP 0370910 B1 EP0370910 B1 EP 0370910B1 EP 89403235 A EP89403235 A EP 89403235A EP 89403235 A EP89403235 A EP 89403235A EP 0370910 B1 EP0370910 B1 EP 0370910B1
Authority
EP
European Patent Office
Prior art keywords
zone
plasma
bed
fluidized bed
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89403235A
Other languages
English (en)
French (fr)
Other versions
EP0370910A1 (de
Inventor
Jacques Amouroux
Mehrdad Nikravech
Jacques Jean Saint Just
Isabelle Jeanine Vedrenne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Gaz de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaz de France SA filed Critical Gaz de France SA
Priority to AT89403235T priority Critical patent/ATE78287T1/de
Publication of EP0370910A1 publication Critical patent/EP0370910A1/de
Application granted granted Critical
Publication of EP0370910B1 publication Critical patent/EP0370910B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G15/00Cracking of hydrocarbon oils by electric means, electromagnetic or mechanical vibrations, by particle radiation or with gases superheated in electric arcs
    • C10G15/12Cracking of hydrocarbon oils by electric means, electromagnetic or mechanical vibrations, by particle radiation or with gases superheated in electric arcs with gases superheated in an electric arc, e.g. plasma
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/24Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles
    • C10G47/30Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles according to the "fluidised-bed" technique

Definitions

  • the present invention relates to a process for cracking heavy hydrocarbons into lighter hydrocarbons and to a device for implementing this process.
  • the invention finds particular application in the chemical and energy industries.
  • the object of the present invention is a process for cracking heavy hydrocarbons into lighter hydrocarbons which does not have the drawbacks of the prior techniques and which moreover makes it possible to obtain a selectivity in light hydrocarbons which is higher and with better yields.
  • the method of the present invention consists in fluidizing by a gaseous fluidizing current in said chamber a bed of advantageously catalytic particles and in introducing a jet of plasma preferably containing argon towards a location of said bed; to introduce the charge of heavy hydrocarbons in a place of said fluidized bed distant from the plasma jet in the zone of lower temperature, and to introduce the light alkane such as methane, or the mixture of light alkanes, in the zone of higher temperature located near the place of introduction of the aforementioned plasma jet to effect the cracking of said heavy hydrocarbons by means of quenching and catalysis by said fluidized bed, and to evacuate the products thus obtained downstream of the lower temperature zone.
  • the plasma is introduced at the periphery of the fluidized bed; A determined residence time is imposed on the products obtained in an area downstream from that of lower temperature; The flow rate of the fluidizing gas stream is determined to create a gushing fluidized bed;
  • the fluidizing gas stream comprises at least argon and / or hydrogen;
  • the plasma contains at least 80% by volume of argon and may additionally contain hydrogen;
  • the plasma and the heavy hydrocarbons are introduced on either side of the gushing fluidized bed;
  • the higher temperature reaction zone is at a temperature between about 5000 ° and 1000 ° C;
  • the lower temperature zone is at a temperature between about 900 ° C and 500 ° C; Methane is introduced into the reaction zone, the temperature of which is between approximately 5000 ° C and 1000 ° C;
  • the charge of heavy hydrocarbons is introduced into the fluidized bed gushing into the reaction zone, the temperature of which is between approximately 900 ° C. and 500 ° C.
  • the fluidizing gas is preheated upstream of the fluidized bed to a temperature between 50 ° C and 500 ° C, preferably between 150 ° C and 350 ° C;
  • the charge of heavy hydrocarbons is preheated and vaporized in the reaction chamber;
  • the bed consists of particles of a refractory material chosen in particular from the group consisting of oxides, carbides, nitrides and borides; The particles in the bed have a catalytic effect;
  • the bed also contains a catalyst;
  • the cracking reaction is continued downstream of the lower temperature zone of the fluidized bed in a area with a temperature between about 650 ° C and 550 ° C.
  • the present invention also relates to a device for implementing the above process, this device comprising a reaction chamber 1 comprising a bed of particles 2, means for injecting a gaseous stream of fluidization 3 of the bed located at the bottom of said chamber to produce a gushing fluidized bed, a plasma torch 6 preferably containing argon and adapted to inject the plasma into said reaction chamber towards said fluidized bed, means 4 for introducing the charge of heavy hydrocarbons located at a low temperature reaction zone, means for introducing a light alkane, such as methane, or a mixture of light alkanes into a reaction zone higher temperature and means 7 for continuing the cracking reaction and for removing the lighter hydrocarbons thus obtained.
  • the plasma torch 6 and the means for introducing heavy hydrocarbons 4 are arranged on either side of the gushing fluidized bed;
  • the means for introducing the charge of heavy hydrocarbons consist of an injection pipe or the like;
  • the means for introducing the light alkane, such as methane, or the mixture of light alkanes are constituted by an injection pipe or the like;
  • the means 7 for continuing the cracking reaction and for removing the hydrocarbons obtained consist for example of a tubular reactor;
  • the reaction chamber has a cylindrical, parallelepipedic, spherical or similar shape;
  • the plasma torch is preferably connected to a side wall of the chamber so that the plasma is injected laterally into the fluidized bed;
  • the walls of the reaction chamber are preferably made of a refractory material such as alumina;
  • the bottom 8 of the reaction chamber has an upwardly flared shape at the bottom of which open means 9 for injecting the fluidizing gas.
  • FIG. 1 represents a preferred embodiment of the method and the device of the invention
  • FIG. 2 represents a curve illustrating the influence of the methane flow rate on the cracking rate, d (l / min), signifying the CH4 flow rate and% signifying the cracking rate.
  • the method of the invention is implemented using a device of the type shown in FIG. 1 and comprising a reaction chamber 1 having for example the general shape of a rectangular parallelepiped whose bottom 8 has an upward flared shape and connected at its lower part to means 3 for injecting a gaseous fluidization stream, and containing a mass of particles of a material intended to form a fluidized bed 2, and a plasma torch 6 of a gas preferably containing argon, suitable for introducing the plasma inside the reaction chamber and towards the fluidized particle bed.
  • the plasma torch 6 is connected at a side wall of the reaction chamber, so that the plasma is introduced laterally into the fluidized bed.
  • a preferably tubular reactor 7 is connected to the upper part of the reaction chamber 1 so that the reactor 7 communicates with the interior of the reaction chamber.
  • Means 4 for introducing the charge of heavy hydrocarbons are provided and connected to a wall of the reaction chamber 1 in such a way that the heavy hydrocarbons are brought into contact with the fluidized bed in an area of the reaction chamber having a determined temperature between about 900 ° C and 500 ° C.
  • the injection means 4 may in particular comprise an injection rod or the like.
  • Means 5 for injecting a light alkane, such as methane, or a mixture of light alkanes are provided and are connected at the bottom of the reaction chamber 1 so as to introduce the methane into the fluidized bed at a high temperature zone, between about 5000 ° C and 1000 ° C, of the reaction chamber 1.
  • These introduction means 5 can be represented by an injection rod or the like.
  • the reaction chamber 1 has internal walls by example in refractory alumina 4mm thick, externally insulated by a layer of porous bricks 20mm thick bonded with refractory cement on the alumina.
  • the layer of bricks is itself covered by a layer of glass wool about 14 mm thick wrapped in a layer of asbestos.
  • Thermocouples (not shown) are installed in the reaction chamber to measure the fluidized bed temperatures.
  • the means 3 for injecting the gaseous fluidization stream comprise, for example, an opaque silica tube 9 with a length of approximately 300 mm and a diameter of approximately 40 mm opening at the bottom of the reaction chamber 1.
  • the tube is surrounded by a 500 W heating tape (not shown) intended to preheat the fluidizing gas and it is lined with refractory balls with a diameter of approximately 2 to 6 mm favoring the heat exchanges between the gas and the wall of the tube.
  • the lower part of the tube 9 is fitted with a brass injector 11.
  • the tubular reactor 7 is for example constituted by a silica tube of approximately 85 mm in diameter and approximately 500 mm in length.
  • Thermocouples (not shown) are installed in this tube to measure the temperature of the gas stream flowing therein.
  • the outlet of this tube can be connected to a water heat exchanger (not shown) in which the reaction mixture is cooled before being taken for analysis.
  • the plasma torch and the means for introducing heavy hydrocarbons are connected at the level of the reaction chamber so that the plasma and the heavy hydrocarbons are introduced on either side of the fluidized bed on the side opposite to the plasma torch. with respect to the jet of particles from the bed.
  • the angle of introduction of the torch into the chamber is 20 ° relative to the horizontal section of the reaction chamber.
  • this torch consists of two concentric tubes of silica, with an outside diameter of 30 mm, surrounded by five hollow inductive turns of water-cooled copper, traversed by an electric current at high frequency.
  • the bed consists of particles of a material chosen in particular from the group consisting of oxides, carbides, nitrides and borides.
  • a material chosen in particular from the group consisting of oxides, carbides, nitrides and borides.
  • oxides carbides, nitrides and borides.
  • the particles of beds must be able to withstand high temperatures and because they are in contact with the plasma jet.
  • the particles of the bed can themselves act as a catalyst and it is also possible to add another catalyst to them.
  • the particles of the fluidized bed have a diameter of between approximately 250 and 400 ⁇ . The particle size chosen must allow a gushing fluidization without entraining the particles out of the reaction chamber 1.
  • the mass of particles, of determined diameter, which may contain a catalyst, is made to fluidize into a gushing bed, having the shape of a fountain falling on the walls of the reaction chamber, by the constant flow of a fluidizing gas formed. argon or a mixture of argon and hydrogen.
  • the fluidizing gas is preheated in the tube 9 which is lined with balls, for example of alumina.
  • the plasma torch 6 injects a plasma of a gas preferably containing argon towards the fluidized bed of particles where an efficient transfer of heat takes place between the plasma and the fluidized bed.
  • the injection rod 5 injects, for example, methane, inside the fluidized bed in an area close to that of the plasma injection and having a temperature between approximately 5000 ° C. and 1000 ° C. In this relatively high temperature zone, the methane will decompose as follows: CH4 ⁇ CH3 . + H . CH3 ⁇ CH2 . + H . etc ...
  • Radicals favoring the cracking reaction of heavy hydrocarbons are therefore formed in this zone at relatively high temperature.
  • the heavy hydrocarbon injection pipe 4 makes it possible to introduce them into the fluidized bed in a determined region having a temperature between approximately 900 ° C. and 500 ° C. and lying approximately opposite the plasma injection zone. .
  • the methane will convert as described above inside the fluidized bed.
  • the radicals thus formed will cross the fluidized bed in the direction of the zone of lower temperature at the level of which the charge of heavy hydrocarbons is introduced and will initiate the cracking reaction of the latter.
  • the primary advantage of this type of device is that it makes it possible to use methane directly to promote cracking and for this purpose the device has a reaction space at two zones of different temperatures by means of the jet of particles which allows to separate the reaction space into these two zones.
  • the methane will be converted in the fluidized bed in a region close to the plasma injection and in which the quenching carried out by the fluidized bed makes it possible to have a temperature suitable for the transformation of methane into radicals.
  • These radicals from the higher temperature zone will favor the cracking reaction of heavy hydrocarbons at a temperature lower than that of the higher temperature zone, while avoiding the formation of carbon black.
  • the reaction for converting heavy hydrocarbons into lighter hydrocarbons will continue in an area located downstream from the lower temperature area of the fluidized bed.
  • a temperature gradient is created from the region downstream from the fluidized bed to the tubular reactor 7 varying from about 650 ° C to 550 ° C and thus allowing the completion of the cracking reaction.
  • an aliphatic C16 hydrocarbon was treated at a rate of about 14 to 25 g / minute to carry out the cracking reaction and the products were analyzed by chromatography using a flame ionization detector equipped with a 10% SE 30 column for the separation of liquid hydrocarbons and a 7% squalane column for the separation of gaseous and light hydrocarbons.
  • the plasma torch operates at a frequency of 5 MHz for an actual power of 2.38 kW.
  • the injection angle is 20 °.
  • the plasma gases introduced are argon at a flow rate of 27 l / min and hydrogen at a flow rate of 6 l / min.
  • the bed is made up of alumina particles (650g) with a mean diameter of 300 ⁇ .
  • the particles of the bed are fluidized by a mixture of argon at a flow rate of 10 l / min and hydrogen at a flow rate of 14 l / min.
  • the fluidizing gases are preheated to a temperature between 50 ° C and 500 ° C, preferably between 150 ° C and 350 ° C.
  • the average cracking temperature is 727 ° C.
  • Methane is introduced at a flow rate of 1 l / min.
  • the plasma torch operates at a frequency of 5 MHz for an actual power of 2.52 kW.
  • the injection angle is 20 °.
  • the plasma gases introduced are argon, at a flow rate of 27 l / min and hydrogen at a flow rate of 6 l / min.
  • the bed is made up of alumina particles (650g) with a mean diameter of 300 ⁇ .
  • the particles of the bed are put in fluidization with a mixture of argon, at a flow rate of 10 l / min and of hydrogen at a flow rate of 14 l / min.
  • the fluidizing gases are preheated to a temperature between 50 and 500 ° C, preferably between 150 ° C and 350 ° C.
  • the average cracking temperature is 730 ° C.
  • Methane is introduced at a flow rate of 0.46 l / min.
  • the plasma torch operates at a frequency of 5 MHz for an actual power of 2.45 kW.
  • the injection angle is 20 °.
  • the plasma gases introduced are argon, at a flow rate of 27 l / min and hydrogen at a flow rate of 6 l / min.
  • the bed is made up of alumina particles (650g) with a mean diameter of 300 ⁇ .
  • the particles of the bed are fluidized by a mixture of argon at a flow rate of 10 l / min and hydrogen at a flow rate of 14 l / min.
  • the fluidizing gases are preheated to a temperature between 50 and 100 ° C, preferably between 150 ° C and 350 ° C.
  • the average cracking temperature is 725 ° C.
  • Methane is introduced at a flow rate of 0.15 l / min.
  • the plasma torch operates at a frequency of 5 MHz for an actual power of 2.45 kW.
  • the injection angle is 20 °.
  • the plasma gases introduced are argon at a flow rate of 27 l / min and hydrogen at a flow rate of 6 l / min.
  • the bed is made up of alumina particles (650g) with a mean diameter of 300 ⁇ .
  • the particles of the bed are fluidized by a mixture of argon at a flow rate of 10 l / min and hydrogen at a flow rate of 14 l / min.
  • the fluidizing gases are preheated to a temperature between 50 and 500 ° C, preferably between 150 ° C and 300 ° C.
  • the average cracking temperature is 720 ° C. We does not inject methane.
  • FIG. 2 shows the evolution of the cracking rate as a function of the methane flow rate.
  • the method and the device of the present invention allow rigorous control of the temperature in the cracking zone by the combined effects of the electric power supplied to the plasma, the angle of injection of the plasma, the flow rate of hydrocarbons. heavy and the fluidization gas flow.
  • the plasma used can be produced in any way, in particular by blown, transferred electric arc or even by induction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Claims (27)

1. Verfahren zum Kracken einer Ladung von schweren Kohlenwasserstoffen in leichtere Kohlenwasserstoffe in einer Reaktionskammer, dass darin besteht, ein leichtes Alkan oder eine Mischung von leichten Alkanen in einen Reaktionsbereich hoher Temperatur einzuführen, um freie Radikale zu erzeugen, die zu krackenden schweren Kohlenwasserstoffe in die Reaktionskammer einzuspritzen und die freien Radikale mit den besagten schweren Kohlenwasserstoffen zum Kracken der letzteren in einem Bereich niedrigerer Temperatur reagieren zu lassen, dadurch gekennzeichnet, dass es darin besteht, in der besagten Kammer mit einem Fluidisierungsgastrom ein vorteilhaft katalytisches Bett von Teilchen zu fluidisieren und einen vorzugsweise Argon enthaltenden Plasmastrahl zu einer Stelle des besagten Bettes hin einzuführen; dass es darin besteht, die Ladung schwerer Kohlenwasserstoffe in einer von dem Plasmastrahl entfernten Stelle des besagten Wirbelschichtfliessbettes in dem Bereich niedrigerer Temperatur einzuführen und das leichte Alkan, wie Methan oder die Mischung von leichten Alkanen in den neben der Einführungsstelle des vorgenannten Plasmastrahls liegenden Bereich höherer Temperatur einzuführen, um das Kracken der besagten schweren Kohlenwasserstoffe mittels eines Abschreckens und einer Katalyse durch das besagte Wirbelschichtfliessbett durchzuführen, und dass es darin besteht, die somit erhaltenen Erzeugnisse stromabwärts des Bereiches niedrigerer Temperatur abzuführen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Plasma an dem Umfang des Wirbelschichtfliessbettes eingeführt wird.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die schweren Kohlenwasserstoffe und das Plasma beiderseits des Wirbelschichtfliessbettes eingeführt werden.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man eine bestimmte Verweilzeit den gewonnenen Erzeugnissen in einem Bereich, der stromabwärts desjenigen niedrigerer Temperatur gelegen ist, auferlegt.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Durchsatzmenge des Fluidisierungsgasstromes bestimmt wird, um ein quellendes Wirbelschichtfliessbett zu schaffen.
6. Verfahren nach einem der Ansprüche 1 und 5, dadurch gekennzeichnet, dass der Fluidisierungsgasstrom wenigstens Argon und/oder Wasserstoff umfasst.
7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Plasma wenigstens 80 Volumenprozent an Argon enthält.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Plasma Wasserstoff enthält.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Reaktionsbereich höherer Temperatur eine zwischen ungefähr 5000° und 1000°C liegende Temperatur aufweist.
10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Bereich niedrigerer Temperatur eine zwischen ungefähr 900° und 500°C liegende Temperatur aufweist.
11. Verfahren nach einem der Ansprüche 1 oder 9, dadurch gekennzeichnet, dass das Methan in denjenigen Reaktionsbereich, dessen Temperatur zwischen ungefähr 5000°C und 1000°C liegt, eingeführt wird.
12. Verfahren nach einem der Ansprüche 1 und 10, dadurch gekennzeichnet, dass die Ladung schwerer Kohlenwasserstoffe in das quellende Wirbelschichtfliessbett in den Reaktionsbereich, dessen Temperatur zwischen ungefähr 900°C und 500°C liegt, eingeführt wird.
13. Verfahren nach irgendeinem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Fluidisierungsgas stromaufwärts des Wirbelschichtfliessbettes bis auf eine zwischen 50°C und 500°C, vorzugsweise zwischen 150°C und 350°C liegende Temperatur vorerwärmt wird.
14. Verfahren nach irgendeinem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es darin besteht, die Ladung schwerer Kohlenwasserstoffe vor Einführung in die Reaktionskammer, vorzuwärmen und zu verdämpfen.
15. Verfahren nach irgendeinem der vorangehenden Ansprüche dadurch gekennzeichnet, dass das Bett aus Teilchen aus einem insbesondere in der aus Oxiden, Karbiden, Nitriden und Boriden bestehenden Gruppe gewählten feuerfesten Stoff besteht.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass die Teilchen eine katalytische Wirkung besitzen.
17. Verfahren nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, dass das Bett ausserdem einen Katalysator enthält.
18. Verfahren nach irgendeinem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Krackenreaktion stromabwärts des Bereiches niedrigerer Temperatur des Wirbelschichtfliessbettes in einem, eine zwischen ungefähr 650°C und 550°C liegende Temperatur aufweisenden Bereich fortgesetzt wird.
19. Vorrichtung zur Durchführung des Verfahrens nach irgendeinem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass sie eine ein Bett von Teilchen (2) aufweisende Reaktionskammer (1), im Bereich des Bodens der besagten Kammer zu Herstellung eines quellenden Wirbelschichtfliessbettes liegende Mittel (3) zum Einspritzen eines Gastromes zur Fluidisierung des besagten Bettes, einen vorzugsweise Argon enthaltenden und zum Einspritzen des Plasmas in die besagte Reaktionskammer zu dem besagten Wirbelschichtfliessbett hin angepassten Plasmabrenner (6), in der Höhe des Reaktionsbereiches schwacher Temperatur liegende Mittel (4) zur Einführung der Ladung schwerer Kohlenwasserstoffe, Mittel (5) zur Einführung eines leichten Alkans, wie Methans oder einer Mischung von leichten Alkanen in einen Reaktionsbereich höherer Temperatur und zur Fortsetzung der Krackenreaktion und zur Abführung der somit erzielten leichteren Kohlenwasserstoffe bestimmte Mittel (7) aufweist.
20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass der Plasmabrenner (6) und die Mittel (4) zur Einführung der schweren Kohlenwasserstoffe beiderseits des quellenden Wirbelschichtfliessbettes angeordnet sind.
21. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass die Mittel zur Einführung der Ladung schwerer Kohlenwasserstoffe aus einem Einspritzrohr oder dergleichen bestehen.
22. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass die Mittel zur Einführung des leichten Alkans, wie Methans oder der Mischung von leichten Alkanen aus einem Einspritzrohr oder dergleichen bestehen.
23. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass die Mittel (7) zur Fortsetzung der Krackenreaktion und zur Abführung der gewonnenen Kohlenwasserstoffe zum Beispiel aus einem rohrförmigen Reaktor bestehen.
24. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass die Reaktionskammer eine zylindrische, quaderförmige, kugelförmige Gestalt oder dergleichen aufweist.
25. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Plasmabrenner vorzugsweise im Bereich einer Seitenwand der Reaktionskammer angeschlossen ist, damit das Plasma seitlich in das Wirbelschichtfliessbett eingespritzt wird.
26. Vorrichtung nach irgendeinem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Wandungen der Reaktionskammer vorzugsweise aus einem feuerfesten Stoff wie Aluminiumoxid bestehen.
27. Vorrichtung nach irgendeinem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Boden (8) der Reaktionskammer eine nach oben trichterförmig erweiterte Gestalt aufweist, an dessen oberen Teil die Mittel (9) zum Einspritzen des Fluidisierungsgases münden.
EP89403235A 1988-11-24 1989-11-22 Krackverfahren von schweren Kohlenwasserstoff-Einsätzen und Vorrichtung zur Ausführung des Verfahrens Expired - Lifetime EP0370910B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89403235T ATE78287T1 (de) 1988-11-24 1989-11-22 Krackverfahren von schweren kohlenwasserstoffeins|tzen und vorrichtung zur ausfuehrung des verfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8815363A FR2639354B1 (fr) 1988-11-24 1988-11-24 Procede de craquage d'une charge d'hydrocarbures lourds en hydrocarbures plus legers et dispositif pour la mise en oeuvre de ce procede
FR8815363 1988-11-24

Publications (2)

Publication Number Publication Date
EP0370910A1 EP0370910A1 (de) 1990-05-30
EP0370910B1 true EP0370910B1 (de) 1992-07-15

Family

ID=9372213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403235A Expired - Lifetime EP0370910B1 (de) 1988-11-24 1989-11-22 Krackverfahren von schweren Kohlenwasserstoff-Einsätzen und Vorrichtung zur Ausführung des Verfahrens

Country Status (11)

Country Link
US (1) US5026949A (de)
EP (1) EP0370910B1 (de)
AT (1) ATE78287T1 (de)
AU (1) AU627244B2 (de)
CA (1) CA2003619A1 (de)
DE (1) DE68902132T2 (de)
ES (1) ES2034717T3 (de)
FR (1) FR2639354B1 (de)
GR (1) GR3005786T3 (de)
NO (1) NO894672L (de)
NZ (1) NZ231496A (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9216509D0 (en) * 1992-08-04 1992-09-16 Health Lab Service Board Improvements in the conversion of chemical moieties
CA2248993A1 (en) 1996-03-14 1997-09-18 Johnson & Johnson Consumer Companies, Inc. Cleansing and moisturizing surfactant compositions
AR058345A1 (es) 2005-12-16 2008-01-30 Petrobeam Inc Craqueo autosostenido en frio de hidrocarburos
US11021661B2 (en) * 2012-02-21 2021-06-01 Battelle Memorial Institute Heavy fossil hydrocarbon conversion and upgrading using radio-frequency or microwave energy
US9862892B2 (en) 2012-02-21 2018-01-09 Battelle Memorial Institute Heavy fossil hydrocarbon conversion and upgrading using radio-frequency or microwave energy
WO2020217466A1 (ja) * 2019-04-26 2020-10-29 株式会社Fuji プラズマ処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2542004B1 (fr) * 1983-03-02 1985-06-21 British Petroleum Co Procede de conversion assistee a l'electricite de produits carbones lourds
FR2615523B1 (fr) * 1987-05-22 1990-06-01 Electricite De France Procede d'hydrocraquage d'une charge d'hydrocarbures et installation d'hydrocraquage pour la mise en oeuvre de ce procede
FR2622894B1 (fr) * 1987-11-10 1990-03-23 Electricite De France Procede et installation d'hydropyrolyse d'hydrocarbures lourds par jet de plasma,notamment de plasma d'h2/ch4

Also Published As

Publication number Publication date
FR2639354B1 (fr) 1993-01-22
AU4552189A (en) 1990-06-28
EP0370910A1 (de) 1990-05-30
DE68902132D1 (de) 1992-08-20
GR3005786T3 (de) 1993-06-07
US5026949A (en) 1991-06-25
NZ231496A (en) 1992-03-26
ATE78287T1 (de) 1992-08-15
NO894672D0 (no) 1989-11-23
AU627244B2 (en) 1992-08-20
CA2003619A1 (en) 1990-05-24
DE68902132T2 (de) 1993-03-04
NO894672L (no) 1990-05-25
FR2639354A1 (fr) 1990-05-25
ES2034717T3 (es) 1993-04-01

Similar Documents

Publication Publication Date Title
US5131993A (en) Low power density plasma excitation microwave energy induced chemical reactions
EP0292391B1 (de) Hydrokrackverfahren von Kohlenwasserstoffen und Vorrichtung zur Ausführung des Verfahrens
CA2019103C (fr) Procede et dispositif de regulation ou controle du niveau thermique d'un solide pulverulent, comportant un echangeur de chaleur a compartiments en lit fluidise ou mobile
EP0370910B1 (de) Krackverfahren von schweren Kohlenwasserstoff-Einsätzen und Vorrichtung zur Ausführung des Verfahrens
CA1293466C (fr) Procede et appareil de craquage catalytique d'une charge hydrocarbonee soumise a un pretraitement par des particules de solides peu actives
FR2473553A1 (fr) Procede et appareil pour effectuer la reduction d'une matiere a base d'oxyde de fer dans un lit fluidise
EP0326478B1 (de) Einrichtung für die katalytische Wirbelschichtspaltung eines Kohlenwasserstoffeinsatzes
CA2236839C (fr) Procede et dispositif de craquage catalytique en lit fluidise d'une charge d'hydrocarbures, mettant en oeuvre une zone de mise en contact amelioree
CA2077083C (fr) Methode de fabrication de produits chimiques
EA011643B1 (ru) Способ и устройство для пиролитического облагораживания углеводородного сырья
EP0370909B1 (de) Verfahren zur Umsetzung von Erdgas oder von leichten Alkanen in ungesättigte Kohlenwasserstoffe
EP0573316B1 (de) Verfahren und Einrichtung zum katalytischen Kracken in zwei aufeinanderfolgenden Reaktionszonen
FR2615199A1 (fr) Procede de vapocraquage dans une zone reactionnelle en lit fluide
EP0127520B1 (de) Gerät zur Reaktion auf hohe Temperatur
FR2520354A1 (fr) Procede de methanisation des matieres carbonees solides
FR2639346A1 (fr) Procede de production d'(alpha)-olefines
FR2566792A1 (fr) Procede de pyrolyse eclair de particules solides contenant du carbone
CH614132A5 (en) High temp. reactor
FR2687142A1 (fr) Procede de transformation de gaz naturel en produit d'interet notamment l'acetylene et dispositif pour mettre en óoeuvre ledit procede.
FR2517321A1 (fr) Procede pour preparer des olefines a partir d'huile de petrole lourd
FR2582542A1 (fr) Procede de traitement d'un lit fluidise dans un reacteur et installation pour la mise en oeuvre de ce procede
FR2633848A1 (fr) Procede et dispositif de regeneration d'un catalyseur use avec echange thermique en lit fluidise
FR2745063A1 (fr) Bruleur radiant pour la combustion a l'oxygene
FR2555195A1 (fr) Installation pour la gazeification de matiere carbonee, notamment du charbon, sur metal liquide
FR2655351A1 (fr) Dispositif de conversion d'hydrocarbures dans un reacteur chauffe par un lit fluidise de particules et son utilisation.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901116

17Q First examination report despatched

Effective date: 19910508

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 78287

Country of ref document: AT

Date of ref document: 19920815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68902132

Country of ref document: DE

Date of ref document: 19920820

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3005786

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2034717

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931112

Year of fee payment: 5

Ref country code: AT

Payment date: 19931112

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931117

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931129

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931130

Year of fee payment: 5

Ref country code: GR

Payment date: 19931130

Year of fee payment: 5

Ref country code: ES

Payment date: 19931130

Year of fee payment: 5

Ref country code: BE

Payment date: 19931130

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19931201

Year of fee payment: 5

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941122

Ref country code: GB

Effective date: 19941122

Ref country code: AT

Effective date: 19941122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941123

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941130

Ref country code: CH

Effective date: 19941130

Ref country code: BE

Effective date: 19941130

EAL Se: european patent in force in sweden

Ref document number: 89403235.8

BERE Be: lapsed

Owner name: GAZ DE FRANCE

Effective date: 19941130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3005786

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950801

EUG Se: european patent has lapsed

Ref document number: 89403235.8

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19951214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051122