EP0370910A1 - Procédé de craquage d'une charge d'hydrocarbures lourds en hydrocarbures plus légers et dispositif pour la mise en oeuvre de ce procédé - Google Patents

Procédé de craquage d'une charge d'hydrocarbures lourds en hydrocarbures plus légers et dispositif pour la mise en oeuvre de ce procédé Download PDF

Info

Publication number
EP0370910A1
EP0370910A1 EP89403235A EP89403235A EP0370910A1 EP 0370910 A1 EP0370910 A1 EP 0370910A1 EP 89403235 A EP89403235 A EP 89403235A EP 89403235 A EP89403235 A EP 89403235A EP 0370910 A1 EP0370910 A1 EP 0370910A1
Authority
EP
European Patent Office
Prior art keywords
zone
reaction
temperature
bed
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89403235A
Other languages
German (de)
English (en)
Other versions
EP0370910B1 (fr
Inventor
Jacques Amouroux
Mehrdad Nikravech
Jacques Jean Saint Just
Isabelle Jeanine Vedrenne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Gaz de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaz de France SA filed Critical Gaz de France SA
Priority to AT89403235T priority Critical patent/ATE78287T1/de
Publication of EP0370910A1 publication Critical patent/EP0370910A1/fr
Application granted granted Critical
Publication of EP0370910B1 publication Critical patent/EP0370910B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G15/00Cracking of hydrocarbon oils by electric means, electromagnetic or mechanical vibrations, by particle radiation or with gases superheated in electric arcs
    • C10G15/12Cracking of hydrocarbon oils by electric means, electromagnetic or mechanical vibrations, by particle radiation or with gases superheated in electric arcs with gases superheated in an electric arc, e.g. plasma
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/24Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles
    • C10G47/30Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles according to the "fluidised-bed" technique

Definitions

  • the present invention relates to a process for cracking heavy hydrocarbons into lighter hydrocarbons and to a device for implementing this process.
  • the invention finds particular application in the chemical and energy industries.
  • the object of the present invention is a process for cracking heavy hydrocarbons into lighter hydrocarbons which does not have the drawbacks of the prior techniques and which moreover makes it possible to obtain a selectivity in light hydrocarbons which is higher and with better yields.
  • the process of the present invention consists in creating in a reaction chamber a bed of advantageously catalytic particles fluidized by a gaseous fluidization stream and in introducing a plasma jet preferably containing argon into the reaction chamber. , the jet being directed towards a determined place of the bed, so as to create a zone of high temperature constituting the reaction zone of higher temperature; consists in introducing a charge of heavy hydrocarbons in a place in the fluidized bed distant from the plasma jet to obtain the reaction zone of lower temperature and in introducing into the zone of higher temperature a light alkane, such as methane, or a mixing of light alkanes to effect the cracking of said heavy hydrocarbons in the fluidized bed, the latter quenching the reaction medium and catalyzing the cracking; and to evacuate the lighter hydrocarbons thus obtained, downstream of the zone of lower temperature.
  • a light alkane such as methane, or a mixing of light alkanes
  • the plasma is introduced at the periphery of the fluidized bed; A determined residence time is imposed on the products obtained in an area downstream from that of lower temperature; The flow rate of the fluidizing gas stream is determined to create a gushing fluidized bed;
  • the fluidizing gas stream comprises at least argon and / or hydrogen;
  • the plasma contains at least 80% by volume of argon and may additionally contain hydrogen;
  • the plasma and the heavy hydrocarbons are introduced on either side of the gushing fluidized bed;
  • the higher temperature reaction zone is at a temperature between about 5000 ° and 1000 ° C;
  • the lower temperature zone is at a temperature between about 900 ° C and 500 ° C; Methane is introduced into the reaction zone, the temperature of which is between approximately 5000 ° C and 1000 ° C;
  • the charge of heavy hydrocarbons is introduced into the fluidized bed gushing into the reaction zone, the temperature of which is between approximately 900 ° C. and 500 ° C.
  • the fluidizing gas is preheated upstream of the fluidized bed to a temperature between 50 ° C and 500 ° C, preferably between 150 ° C and 350 ° C;
  • the charge of heavy hydrocarbons is preheated and vaporized in the reaction chamber;
  • the bed consists of particles of a refractory material chosen in particular from the group consisting of oxides, carbides, nitrides and borides; The particles in the bed have a catalytic effect;
  • the bed also contains a catalyst;
  • the cracking reaction is continued downstream of the lower temperature zone of the fluidized bed in a area with a temperature between about 650 ° C and 550 ° C.
  • the present invention also relates to a device for implementing the above process, this device comprising a reaction chamber 1 comprising a bed of particles 2, means for injecting a gaseous stream of fluidization 3 of the bed located at the bottom of the chamber to produce a gushing fluidized bed, a plasma torch 6 preferably containing argon and adapted to inject the plasma in the reaction chamber towards the fluidized bed to create at least two reaction zones of different temperatures and determining a higher temperature reaction zone and a lower temperature zone, means 4 for introducing the charge of heavy hydrocarbons located at the lower temperature reaction zone, means for introducing 5 of a light alkane, such as methane, or of a mixture of light alkanes in the higher temperature zone and means 7 intended to continue the reaction. cracking and to evacuate the lighter hydrocarbons thus obtained.
  • the plasma torch 6 and the means for introducing heavy hydrocarbons 4 are arranged on either side of the gushing fluidized bed;
  • the means for introducing the charge of heavy hydrocarbons consist of an injection pipe or the like;
  • the means for introducing the light alkane, such as methane, or the mixture of light alkanes are constituted by an injection pipe or the like;
  • the means 7 for continuing the cracking reaction and for removing the hydrocarbons obtained consist for example of a tubular reactor;
  • the reaction chamber has a cylindrical, parallelepipedic, spherical or similar shape;
  • the plasma torch is preferably connected at a side wall of the chamber so that the plasma is injected laterally into the fluidized bed;
  • the walls of the reaction chamber are preferably made of a refractory material such as alumina;
  • the bottom 8 of the reaction chamber has an upwardly flared shape at the bottom of which open means 9 for injecting the fluidizing gas.
  • FIG. 1 represents a preferred embodiment of the method and the device of the invention
  • FIG. 2 represents a curve illustrating the influence of the methane flow rate on the cracking rate, d (l / min), signifying the CH4 flow rate and% signifying the cracking rate.
  • the method of the invention is implemented using a device of the type shown in FIG. 1 and comprising a reaction chamber 1 having for example the general shape of a rectangular parallelepiped whose bottom 8 has an upward flared shape and connected at its lower part to means 3 for injecting a gaseous fluidization stream, and containing a mass of particles of a material intended to form a fluidized bed 2, and a plasma torch 6 of a gas preferably containing argon, suitable for introducing the plasma inside the reaction chamber and towards the fluidized particle bed.
  • the plasma torch 6 is connected at a side wall of the reaction chamber, so that the plasma is introduced laterally into the fluidized bed.
  • a preferably tubular reactor 7 is connected to the upper part of the reaction chamber 1 so that the reactor 7 communicates with the interior of the reaction chamber.
  • Means 4 for introducing the charge of heavy hydrocarbons are provided and connected to a wall of the reaction chamber 1 in such a way that the heavy hydrocarbons are brought into contact with the fluidized bed in an area of the reaction chamber having a determined temperature between about 900 ° C and 500 ° C.
  • the injection means 4 may in particular comprise an injection rod or the like.
  • Means 5 for injecting a light alkane, such as methane, or a mixture of light alkanes are provided and are connected at the bottom of the reaction chamber 1 so as to introduce the methane into the fluidized bed at a high temperature zone, between about 5000 ° C and 1000 ° C, of the reaction chamber 1.
  • These introduction means 5 can be represented by an injection rod or the like.
  • the reaction chamber 1 has internal walls by example in refractory alumina 4mm thick, externally insulated by a layer of porous bricks 20mm thick bonded with refractory cement on the alumina.
  • the layer of bricks is itself covered by a layer of glass wool about 14 mm thick wrapped in a layer of asbestos.
  • Thermocouples (not shown) are installed in the reaction chamber to measure the fluidized bed temperatures.
  • the means 3 for injecting the gaseous fluidization stream comprise, for example, an opaque silica tube 9 with a length of approximately 300 mm and a diameter of approximately 40 mm opening at the bottom of the reaction chamber 1.
  • the tube is surrounded by a 500 W heating tape (not shown) intended to preheat the fluidizing gas and it is lined with refractory balls with a diameter of approximately 2 to 6 mm favoring the heat exchanges between the gas and the wall of the tube.
  • the lower part of the tube 9 is fitted with a brass injector 11.
  • the tubular reactor 7 is for example constituted by a silica tube of approximately 85 mm in diameter and approximately 500 mm in length.
  • Thermocouples (not shown) are installed in this tube to measure the temperature of the gas stream flowing therein.
  • the outlet of this tube can be connected to a water heat exchanger (not shown) in which the reaction mixture is cooled before being taken for analysis.
  • the plasma torch and the means for introducing heavy hydrocarbons are connected at the level of the reaction chamber so that the plasma and the heavy hydrocarbons are introduced on either side of the fluidized bed on the side opposite to the plasma torch. with respect to the jet of particles from the bed.
  • the angle of introduction of the torch into the chamber is 20 ° relative to the horizontal section of the reaction chamber.
  • this torch consists of two concentric tubes of silica, with an outside diameter of 30 mm, surrounded by five hollow inductive turns of water-cooled copper, traversed by an electric current at high frequency.
  • the bed consists of particles of a material chosen in particular from the group consisting of oxides, carbides, nitrides and borides.
  • oxides aluminum Al2O3 magnesium MgO calcium
  • - carbides silicon SiC thorium ThC boron B4C - nitrides boron BN hafnium HfN zirconium ZrN - borides thorium ThB4 niobium NbB2 zirconium ZrB2.
  • the particles of beds must be able to withstand high temperatures and because they are in contact with the plasma jet.
  • the particles of the bed can themselves act as a catalyst and it is also possible to add another catalyst to them.
  • the particles of the fluidized bed have a diameter of between approximately 250 and 400 ⁇ . The particle size chosen must allow a gushing fluidization without entraining the particles out of the reaction chamber 1.
  • the mass of particles, of determined diameter, which may contain a catalyst, is made to fluidize into a gushing bed, having the shape of a fountain falling on the walls of the reaction chamber, by the constant flow of a fluidizing gas formed. argon or a mixture of argon and hydrogen.
  • the fluidizing gas is preheated in the tube 9 which is lined with balls, for example of alumina.
  • the plasma torch 6 injects a plasma of a gas preferably containing argon towards the fluidized bed of particles where an efficient transfer of heat takes place between the plasma and the fluidized bed.
  • the injection rod 5 injects, for example, methane, inside the fluidized bed in an area close to that of the plasma injection and having a temperature between approximately 5000 ° C. and 1000 ° C. In this relatively high temperature zone, the methane will decompose as follows: CH4 ⁇ CH3 . + H. CH3 ⁇ CH2 . + H. etc ...
  • Radicals favoring the cracking reaction of heavy hydrocarbons are therefore formed in this zone at relatively high temperature.
  • the heavy hydrocarbon injection pipe 4 makes it possible to introduce them into the fluidized bed in a determined region having a temperature between approximately 900 ° C. and 500 ° C. and lying approximately opposite the plasma injection zone. .
  • the methane will convert as described above inside the fluidized bed.
  • the radicals thus formed will cross the fluidized bed in the direction of the zone of lower temperature at the level of which the charge of heavy hydrocarbons is introduced and will initiate the cracking reaction of the latter.
  • the primary advantage of this type of device is that it makes it possible to use methane directly to promote cracking and for this purpose the device has a reaction space at two zones of different temperatures by means of the jet of particles which allows to separate the reaction space into these two zones.
  • a fluidized bed of this type in the process of the present invention has significant advantages for the following reasons: - its heat transfer properties allow efficient quenching of the plasma; - Its viscosity substantially equal to that of the plasma ensures a very good mixture between it and the fluidized bed; and - its possible catalytic properties can ensure the direct transformation of the reactants to be converted.
  • the methane will be converted in the fluidized bed in a region close to the plasma injection and in which the quenching carried out by the fluidized bed makes it possible to have a temperature suitable for the transformation of methane into radicals.
  • These radicals from the higher temperature zone will favor the cracking reaction of heavy hydrocarbons at a temperature lower than that of the higher temperature zone, while avoiding the formation of carbon black.
  • the reaction for converting heavy hydrocarbons into lighter hydrocarbons will continue in an area located downstream from the lower temperature area of the fluidized bed.
  • a temperature gradient is created from the region downstream from the fluidized bed to the tubular reactor 7 varying from about 650 ° C to 550 ° C and thus allowing the completion of the cracking reaction.
  • an aliphatic C16 hydrocarbon was treated at a rate of about 14 to 25 g / minute to carry out the cracking reaction and the products were analyzed by chromatography using a flame ionization detector equipped with a 10% SE 30 column for the separation of liquid hydrocarbons and a 7% squalane column for the separation of gaseous and light hydrocarbons.
  • the plasma torch operates at a frequency of 5 MHz for an actual power of 2.38 kW.
  • the injection angle is 20 °.
  • the plasma gases introduced are argon at a flow rate of 27 l / min and hydrogen at a flow rate of 6 l / min.
  • the bed is made up of alumina particles (650g) with a mean diameter of 300 ⁇ .
  • the particles of the bed are fluidized by a mixture of argon at a flow rate of 10 l / min and hydrogen at a flow rate of 14 l / min.
  • the fluidizing gases are preheated to a temperature between 50 ° C and 500 ° C, preferably between 150 ° C and 350 ° C.
  • the average cracking temperature is 727 ° C.
  • Methane is introduced at a flow rate of 1 l / min.
  • the plasma torch operates at a frequency of 5 MHz for an actual power of 2.52 kW.
  • the injection angle is 20 °.
  • the plasma gases introduced are argon, at a flow rate of 27 l / min and hydrogen at a flow rate of 6 l / min.
  • the bed is made up of alumina particles (650g) with a mean diameter of 300 ⁇ .
  • the particles of the bed are put in fluidization with a mixture of argon, at a flow rate of 10 l / min and of hydrogen at a flow rate of 14 l / min.
  • the fluidizing gases are preheated to a temperature between 50 and 500 ° C, preferably between 150 ° C and 350 ° C.
  • the average cracking temperature is 730 ° C.
  • Methane is introduced at a flow rate of 0.46 l / min.
  • the plasma torch operates at a frequency of 5 MHz for an actual power of 2.45 kW.
  • the injection angle is 20 °.
  • the plasma gases introduced are argon, at a flow rate of 27 l / min and hydrogen at a flow rate of 6 l / min.
  • the bed is made up of alumina particles (650g) with a mean diameter of 300 ⁇ .
  • the particles of the bed are fluidized by a mixture of argon at a flow rate of 10 l / min and hydrogen at a flow rate of 14 l / min.
  • the fluidizing gases are preheated to a temperature between 50 and 100 ° C, preferably between 150 ° C and 350 ° C.
  • the average cracking temperature is 725 ° C.
  • Methane is introduced at a flow rate of 0.15 l / min.
  • the plasma torch operates at a frequency of 5 MHz for an actual power of 2.45 kW.
  • the injection angle is 20 °.
  • the plasma gases introduced are argon at a flow rate of 27 l / min and hydrogen at a flow rate of 6 l / min.
  • the bed is made up of alumina particles (650g) with a mean diameter of 300 ⁇ .
  • the particles of the bed are fluidized by a mixture of argon at a flow rate of 10 l / min and hydrogen at a flow rate of 14 l / min.
  • the fluidizing gases are preheated to a temperature between 50 and 500 ° C, preferably between 150 ° C and 300 ° C.
  • the average cracking temperature is 720 ° C. We does not inject methane.
  • FIG. 2 shows the evolution of the cracking rate as a function of the methane flow rate.
  • BOARD products (g) / 100 g cracked cracking rate (%)
  • the method and the device of the present invention allow rigorous control of the temperature in the cracking zone by the combined effects of the electric power supplied to the plasma, the angle of injection of the plasma, the flow rate of hydrocarbons. heavy and the fluidization gas flow.
  • the plasma used can be produced in any way, in particular by blown, transferred electric arc or even by induction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

La présente invention se rapporte à un procédé de craquage d'hydrocarbures lourds en hydrocarbures plus légers et à un dispositif pour la mise en oeuvre de ce procédé. Ce procédé consiste à utiliser un lit de particules avantageusement catalytique dans une chambre de réaction, à introduire un gaz de fluidisation du lit suivant un débit prédéterminé pour réaliser un lit fluidisé jaillissant et à introduire un jet de plasma, contenant de préférence de l'argon dans la chambre, le jet étant dirigé vers un endroit déterminé du lit de façon à créer un espace de réaction ayant au moins deux zones de réaction de températures différentes, la zone de température plus élevée étant celle où est dirigée le jet de plasma à introduire des hydrocarbures lourds dans la zone de réaction de moindre température et à introduire de préférence dans la zone de température plus élevée un ou des alcanes légers pour réaliser le craquage des hydrocarbures lourds dans le lit fluidisé, ce dernier effectuant une trempe du milieu réactionnel et catalysant le craquage et consiste à évacuer les produits obtenus en aval de la zone de moindre température. L'invention trouve notamment application dans les industries chimiques et énergétiques.

Description

  • La présente invention se rapporte à un procédé de craquage d'hydrocarbures lourds en hydrocarbures plus légers et à un dispositif pour la mise en oeuvre de ce procédé.
  • L'invention trouve notamment application dans les industries chimiques et énergétiques.
  • Il existe actuellement plusieurs types de procédés de craquage tels que le craquage thermique, l'hydrocraquage et le craquage catalytique. Cependant ces procédés présentent tous des inconvénients liés à la difficulté du contrôle de la réaction, à la consommation excessive d'hydrogène et à la nécessité d'une régénération fréquente des catalyseurs.
  • On connaît également par la demande de brevet européen N° 0 120 625 un procédé de craquage d'hydrocarbures lourds en hydrocarbures plus légers répondant au préambule de la revendication 1. Cependant, le procédé de ce document a pour inconvénient de nécessiter une zone de température élevée pour la formation d'espèces radicalaires qui vont participer à la réaction de craquage et une zone mécaniquement séparée de la première, de température plus basse pour la réaction de craquage proprement dite.
  • Aussi, la présente invention a pour but un procédé de craquage d'hydrocarbures lourds en hydrocarbures plus légers qui ne présente pas les inconvénients des techniques antérieures et qui de plus, permet d'obtenir une sélectivité en hydrocarbures légers supérieure et de meilleurs rendements.
  • A cet effet, le procédé de la présente invention consiste à créer dans une chambre de réaction un lit de particules avantageusement catalytique fluidisé par un courant gazeux de fluidisation et à introduire un jet de plasma contenant de préférence de l'argon dans la chambre de réaction, le jet étant dirigé vers un endroit déterminé du lit, de façon à créer une zone de température élevée constituant la zone de réaction de température plus élevée ; consiste à introduire une charge d'hydrocarbures lourds dans un endroit du lit fluidisé éloigné du jet de plasma pour obtenir la zone de réaction de moindre température et à introduire dans la zone de température plus élevée un alcane léger, tel que du méthane, ou un mélange d'alcanes légers pour réaliser le craquage desdits hydrocarbures lourds dans le lit fluidisé, ce dernier effectuant une trempe du milieu réactionnel et catalysant le craquage ; et à évacuer les hydrocarbures plus légers ainsi obtenus, en aval de la zone de moindre température.
  • Suivant d'autres caractéristiques du procédé de l'invention :
    Le plasma est introduit à la périphérie du lit fluidisé ;
    On impose un temps de séjour déterminé aux produits obtenus dans une zone en aval de celle de moindre température ;
    Le débit du courant gazeux de fluidisation est déterminé pour créer un lit fluidisé jaillissant ;
    Le courant gazeux de fluidisation comprend au moins de l'argon et/ou de l'hydrogène ;
    Le plasma contient au moins 80% en volume d'argon et peut contenir de plus de l'hydrogène ;
    Le plasma et les hydrocarbures lourds sont introduits de part et d'autre du lit fluidisé jaillissant ;
    La zone de réaction de température plus élevée est à une température comprise entre environ 5000° et 1000°C ;
    La zone de moindre température est à une température comprise entre environ 900°C et 500°C ;
    Le méthane est introduit dans la zone de réaction dont la température est comprise entre environ 5000°C et 1000°C ;
    La charge des hydrocarbures lourds est introduite dans le lit fluidisé jaillissant dans la zone de réaction dont la température est comprise entre environ 900°C et 500°C.
  • Le gaz de fluidisation est préchauffé en amont du lit fluidisé à une température comprise entre 50°C et 500°C, de préférence entre 150°C et 350°C ;
    La charge d'hydrocarbures lourds est préchauffée et vaporisée dans la chambre de réaction ;
    Le lit est constitué de particules d'un matériau réfractaire choisi notamment dans le groupe consistant en oxydes, carbures, nitrures et borures ;
    Les particules du lit possèdent un effet catalytique ;
    Le lit contient de plus un catalyseur ;
    La réaction de craquage est poursuivie en aval de la zone de moindre température du lit fluidisé dans une zone présentant une température comprise entre environ 650°C et 550°C.
  • La présente invention a également pour objet un dispositif pour la mise en oeuvre du procédé ci-dessus, ce dispositif comprenant une chambre de réaction 1 comportant un lit de particules 2, des moyens d'injection d'un courant gazeux de fluidisation 3 du lit situés au niveau du fond de la chambre pour réaliser un lit fluidisé jaillissant, une torche à plasma 6 contenant de préférence de l'argon et adaptée pour injecter le plasma dans la chambre de réaction vers le lit fluidisé pour créer au moins deux zones de réaction de températures différentes et déterminant une zone de réaction de température plus élevée et une zone de moindre température, des moyens d'introduction 4 de la charge d'hydrocarbures lourds situés au niveau de la zone de réaction de moindre température, des moyens d'introduction 5 d'un alcane léger, tel que du méthane, ou d'un mélange d'alcanes légers dans la zone de température plus élevée et des moyens 7 destinés à poursuivre la réaction de craquage et à évacuer les hydrocarbures plus légers ainsi obtenus.
  • Suivant d'autres caractéristiques du dispositif de l'invention ;
    La torche à plasma 6 et les moyens d'introduction des hydrocarbures lourds 4 sont disposés de part et d'autre du lit fluidisé jaillissant ;
    Les moyens d'introduction de la charge d'hydrocarbures lourds sont constitués d'une canne d'injection ou analogues ;
    Les moyens d'introduction de l'alcane léger, tel que du méthane, ou du mélange d'alcanes légers sont constitués par une canne d'injection ou analogues ;
    Les moyens 7 pour poursuivre la réaction de craquage et pour évacuer les hydrocarbures obtenus sont constitués par exemple d'un réacteur tubulaire ;
    La chambre de réaction présente une forme cylindrique, parallélépipèdique, sphérique ou analogues ;
    La torche à plasma est raccordée de préférence au niveau d'une paroi latérale de la chambre de façon à ce que le plasma soint injecté latéralement dans le lit fluidisé ;
    Les parois de la chambre de réaction sont de préférence en un matériau réfractaire tel que l'alumine ;
    Le fond 8 de la chambre de réaction présente une forme évasée vers le haut à la partie inférieure duquel débouchent des moyens d'injection 9 du gaz de fluidisation.
  • L'invention sera mieux comprise et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative qui va suivre faite en référence aux figures 1 et 2 annexées, et dans lesquelles la figure 1 représente un mode de réalisation préférentiel du procédé et du dispositif de l'invention ; et la figure 2 représente une courbe illustrant l'influence du débit du méthane sur le taux de craquage, d(l/min), signifiant le débit de CH₄ et % signifiant le taux de craquage.
  • Le procédé de l'invention est mis en oeuvre à l'aide d'un dispositif du type de celui représenté à la figure 1 et comprenant une chambre de réaction 1 présentant par exemple la forme générale d'un parallélépipède rectangle dont le fond 8 présente une forme évasée vers le haut et raccordée au niveau de sa partie inférieure à des moyens d'injection 3 d'un courant gazeux de fluidisation, et contenant une masse de particules d'un matériau destinées à former un lit fluidisé 2, et une torche à plasma 6 d'un gaz contenant de préférence de l'argon, adaptée pour introduire le plasma à l'intérieur de la chambre de réaction et vers le lit de particules fluidisé. De préférence la torche à plasma 6 est raccordée au niveau d'une paroi latérale de la chambre de réaction, de façon à ce que le plasma soit introduit latéralement dans le lit fluidisé.
  • Un réacteur de préférence tubulaire 7 est raccordé à la partie supérieure de la chambre de réaction 1 de telle manière que le réacteur 7 communique avec l'intérieur de la chambre de réaction.
  • Des moyens d'introduction 4 de la charge d'hydrocarbures lourds sont prévus et raccordés à une paroi de la chambre de réaction 1 de telle façon que les hydrocarbures lourds soient mis en contact avec le lit fluidisé dans une zone de la chambre de réaction présentant une température déterminée comprise entre environ 900°C et 500°C. Les moyens d'injection 4 peuvent notamment comprendre une canne à injection ou analogues.
  • Des moyens d'injection 5 d'un alcane léger, tel que du méthane, ou d'un mélange d'alcanes légers sont prévus et sont raccordés au niveau de la partie inférieure de la chambre de réaction 1 de façon à introduire le méthane dans le lit fluidisé au niveau d'une zone de température élevée, comprise entre environ 5000°C et 1000°C, de la chambre de réaction 1. Ces moyens d'introduction 5 peuvent être représentés par une canne à injection ou analogues.
  • La chambre de réaction 1 a des parois internes par exemple en alumine réfractaire de 4mm d'épaisseur, calorifugées extérieurement par une couche de briques poreuses de 20 mm d'épaisseur collées par un ciment réfractaire sur l'alumine. La couche de briques est elle même recouverte par une couche de laine de verre d'environ 14 mm d'épaisseur enveloppée d'une couche d'amiante. Des thermocouples (non représentés) sont installés dans la chambre de réaction pour mesurer les températures de lit fluidisé.
  • Les moyens d'injection 3 du courant gazeux de fluidisation comprennent par exemple un tube de silice opaque 9 d'une longueur d'environ 300 mm et d'un diamètre d'environ 40 mm débouchant au fond de la chambre de réaction 1. Le tube est entouré d'un ruban chauffant de 500 W (non représenté) destiné à préchauffer le gaz de fluidisation et il est garni de billes réfractaires d'un diamètre d'environ 2 à 6 mm favorisant les échanges thermiques entre le gaz et la paroi du tube. La partie inférieure du tube 9 est équipée d'un injecteur 11 en laiton.
  • Le réacteur tubulaire 7 est par exemple constitué par un tube de silice d'environ 85 mm de diamètre et d'environ 500 mm de longueur. Des thermocouples (non représentés) sont installés dans ce tube pour mesurer la température du courant gazeux y circulant. La sortie de ce tube peut être reliée à un échangeur thermique à eau (non représenté) dans lequel le mélange réactionnel est refroidi avant d'être prélevé pour analyse.
  • La torche à plasma et les moyens d'introduction des hydrocarbures lourds sont raccordés au niveau de la chambre de réaction de façon que le plasma et les hydrocarbures lourds soient introduits de part et d'autre du lit fluidisé du côté opposé à la torche à plasma par rapport au jet de particules du lit. On peut faire varier l'angle d'introduction de la torche dans la chambre de 0° à 90°. De préférence l'angle d'introduction de la torche dans la chambre est de 20° par rapport à la section horizontale de la chambre de réaction. Typiquement, cette torche est constituée de deux tubes concentriques en silice, d'un diamètre extérieur de 30 mm, entourés de cinq spires inductives creuses en cuivre refroidies à l'eau, parcourues par un courant électrique à fréquence élevée.
  • Le lit est constitué de particules d'un matériau choisi notamment dans le groupe consistant en oxydes, carbures, nitrures et borures. On peut en dresser à titre d'exemple la liste suivante :
    - oxydes d'aluminium Al₂O₃
    de magnésium MgO
    de calcium CaO
    de béryllium BeO
    de cérium CeO
    de thorium ThO₂
    d'hafnium HfO₂
    de lanthane La₂O₃
    et autres oxydes mixtes.
    - carbures de silicium SiC
    de thorium ThC
    de bore B₄C
    - nitrures de bore BN
    d'hafnium HfN
    de zirconium ZrN
    - borures de thorium ThB₄
    de niobium NbB₂
    de zirconium ZrB₂.
    - carbone (graphite) C
  • Quelle que soit la nature des matériaux utilisés, ceux-ci doivent être réfractaires car les particules du lit doivent pouvoir résister à des températures élevées et parce qu'elles sont en contact avec le jet du plasma. Les particules du lit peuvent elles-mêmes jouer le rôle de catalyseur et il est également possible de leur adjoindre un autre catalyseur. Les particules du lit fluidisé ont un diamètre compris entre environ 250 et 400 µ. La granulométrie choisie doit permettre une fluidisation jaillissante sans entraîner les particules hors de la chambre de réaction 1.
  • Il faut bien comprendre que le mot "catalyseur" est pris dans son sens large c'est-à-dire que les particules peuvent accélérer certaines réactions souhaitées ou inhiber certaines réactions non souhaitées comme la formation de noir de carbone ou coke.
  • En service, le fonctionnement du dispositif qui vient d'être décrit est le suivant. La masse de particules, de diamètre déterminé, pouvant contenir un catalyseur est mise en fluidisation en un lit jaillissant, présentant la forme d'une fontaine retombant sur les parois de la chambre de réaction, par le débit constant d'un gaz de fluidisation formé d'argon ou d'un mélange d'argon et d'hydrogène. Le gaz de fluidisation est préchauffé dans le tube 9 qui est garni de billes par exemple d'alumine.
  • La torche à plasma 6 injecte un plasma d'un gaz contenant de préférence de l'argon vers le lit de particules fluidisé où s'effectue un transfert efficace de la chaleur entre le plasma et le lit fluidisé.
  • La canne d'injection 5 injecte par exemple, du méthane, à l'intérieur du lit fluidisé dans une zone voisine de celle de l'injection du plasma et présentant une température comprise entre environ 5000°C et 1000°C. Dans cette zone de température relativement élevée, le méthane va se décomposer de la façon suivante :
    CH₄ → CH₃. + H.
    CH₃ → CH₂. + H.
    etc...
  • Il se forme donc dans cette zone à température relativement élevée des radicaux favorisant la réaction de craquage des hydrocarbures lourds.
  • La canne d'injection 4 des hydrocarbures lourds permet de les introduire dans le lit fluidisé dans une région déterminée présentant une température comprise entre environ 900°C et 500°C et se situant approximativement à l'opposé de la zone d'injection du plasma.
  • La nature du lit, le débit du courant gazeux de fluidisation et l'introduction de la torche à plasma dans une région opposée à celle de l'introduction des hydrocarbures lourds permettent de créer un espace de réaction ayant au moins lesdites deux zones de températures différentes précitées.
  • Ainsi, dans la zone de température la plus élevée, le méthane va se convertir comme décrit précédemment à l'intérieur du lit fluidisé. Les radicaux ainsi formés vont traverser le lit fluidisé en direction de la zone de moindre température au niveau de laquelle est introduite la charge d'hydrocarbures lourds et vont initier la réaction de craquage de ces derniers.
  • L'intérêt primordial de ce type de dispositif est qu'il permet d'utiliser directement du méthane pour favoriser le craquage et à cet effet le dispositif possède un espace de réaction à deux zones de températures différentes par l'intermédiaire du jet de particules qui permet de séparer l'espace de réaction en ces deux zones.
  • L'utilisation d'un lit fluidisé de ce type dans le procédé de la présente invention présente des avantages importants pour les raisons suivantes :
    - ses propriétés de transfert de chaleur permettent une trempe efficace du plasma ;
    - sa viscosité sensiblement égale à celle du plasma assure un très bon mélange entre celui-ci et le lit fluidisé ; et
    - ses propriétés catalytiques éventuelles peuvent assurer la transformation directe des réactifs à convertir.
  • Ainsi, le méthane va être converti dans le lit fluidisé dans une région voisine de l'injection du plasma et dans laquelle la trempe réalisée par le lit fluidisé permet d'avoir une température propice à la transformation du méthane en radicaux. Ces radicaux provenant de la zone de température plus élevée favoriseront la réaction de craquage des hydrocarbures lourds à une température inférieure à celle de la zone de température plus élevée, tout en évitant la formation de noir de carbone.
  • La réaction de conversion des hydrocarbures lourds en hydrocarbures plus légers va se poursuivre dans une zone située en aval de la zone de moindre température du lit fluidisé. En fait, il se créé un gradient de températures de la région en aval du lit fluidisé vers le réacteur tubulaire 7 variant d'environ 650°C à 550°C et permettant ainsi l'achèvement de la réaction de craquage.
  • Les exemples suivant illustrent la mise en oeuvre du procédé de la présente invention.
  • Dans ces exemples, on a traité un hydrocarbure aliphatique en C₁₆ à un débit d'environ 14 à 25 g/minute pour effectuer la réaction de craquage et on a analysé les produits par chromatographie à l'aide d'un détecteur à ionisation de flamme équipé d'une colonne SE 30 à 10% pour la séparation des hydrocarbures liquides et d'une colonne squalane à 7% pour la séparation des hydrocarbures gazeux et légers.
  • Exemple 1.
  • La torche à plasma fonctionne à une fréquence de 5 MHz pour une puissance réelle de 2,38 kW. L'angle d'injection est de 20°. Les gaz plasmagènes introduits sont de l'argon à un débit de 27 l/min et de l'hydrogène à un débit de 6 l/min. Le lit est constitué de particules d'alumine (650g) de 300 µ de diamètre moyen. Les particules du lit sont mises en fluidisation par un mélange d'argon à un débit de 10 l/min et d'hydrogène à un débit de 14 l/min. Les gaz de fluidisation sont préchauffés à une température comprise entre 50°C et 500°C, de préférence entre 150°C et 350°C. La température moyenne de craquage est de 727°C. Le méthane est introduit à un débit de 1 l/mn.
  • Exemple 2.
  • La torche à plasma fonctionne à une fréquence de 5 MHz pour une puissance réelle de 2,52 kW. L'angle d'injection est de 20°. Les gaz plasmagènes introduits sont de l'argon, a un débit de 27 l/min et de l'hydrogène à un débit de 6 l/min. Le lit est constitué de particules d'alumine (650g) de 300 µ de diamètre moyen. Les particules du lit sont mises en fluidisation par un mélange d'argon, à un débit de 10 l/min et d'hydrogène à un débit de 14 l/min. Les gaz de fluidisation sont préchauffés à une température comprise entre 50 et 500°C, de préférence entre 150°C et 350°C. La température moyenne de craquage est de 730°C. Le méthane est introduit à un débit de 0,46 l/min.
  • Exemple 3.
  • La torche à plasma fonctionne à une fréquence de 5 MHz pour une puissance réelle de 2,45 kW. L'angle d'injection est de 20°. Les gaz plasmagènes introduits sont de l'argon, à un débit de 27 l/min et de l'hydrogène à un débit de 6 l/min. Le lit est constitué de particules d'alumine (650g) de 300 µ de diamètre moyen. Les particules du lit sont mises en fluidisation par un mélange d'argon à un débit de 10 l/min et d'hydrogène à un débit de 14 l/min. Les gaz de fluidisation sont préchauffés à une température comprise entre 50 et 100°C, de préférence entre 150°C et 350°C. La température moyenne de craquage est de 725°C. Le méthane est introduit à un débit de 0,15 l/min.
  • Exemple 4.
  • La torche à plasma fonctionne à une fréquence de 5 MHz pour une puissance réelle de 2,45 kW. L'angle d'injection est de 20°. Les gaz plasmagènes introduits sont de l'argon à un débit de 27 l/min et de l'hydrogène à un débit de 6 l/min. Le lit est constitué de particules d'alumine (650g) de 300 µ de diamètre moyen. Les particules du lit sont mises en fluidisation par un mélange d'argon à un débit de 10 l/min et d'hydrogène à un débit de 14 l/min. Les gaz de fluidisation sont préchauffés à une température comprise entre 50 et 500°C, de préférence entre 150°C et 300°C. La température moyenne de craquage est de 720°C. On n'injecte pas de méthane.
  • Les résultats des exemples 1 à 4 sont listés dans le tableau suivant et la figure 2 montre l'évolution du taux de craquage en fonction du débit du méthane. TABLEAU
    produits (g)/100 g craqués taux de craquage (%)
    Exemples méthane C H + C H acétylène propane propylène butane C H C C C C -C
    1 25,44 35,96 2,92 0,64 18,32 0,41 8,11 4,54 1,01 1,16 2,58 94,73
    2 11,82 41,94 0,59 0,94 21,33 0 10,07 3,86 1,84 1,35 6,26 84,49
    3 9,56 39,56 1,12 0,69 19,38 0,41 10,01 3,61 2,75 2,85 10,05 76,94
    4 8,34 36,66 0,22 0,68 18,50 0,35 8,30 4,76 5 4,1 13,08 74,60
  • Comme il ressort du tableau ci-dessus et de la figure 2, on constate que l'introduction de méthane favorise le taux de craquage. Quant aux produits de la réaction on obtient essentiellement de l'éthylène, du propylène et du butène.
  • De plus, le procédé et le dispositif de la présente invention permettent un contrôle rigoureux de la température dans la zone de craquage par les effets conjugués de la puissance électrique fournie au plasma, de l'angle d'injection du plasma, du débit des hydrocarbures lourds et du débit des gaz de fluidisation.
  • Bien entendu, l'invention n'est nullement limitée aux modes de réalisation décrits et illustrés qui ne sont donnés qu'à titre d'exemple.
  • Il est bien entendu également que le plasma utilisé peut être produit de façon quelconque, notamment par arc électrique soufflé, transféré ou bien encore par induction.

Claims (27)

1. Procédé de craquage d'une charge d'hydrocarbures lourds en hydrocarbures plus légers dans une chambre de réaction consistant à introduire un alcane léger ou un mélange d'alcanes légers dans une zone de réaction de température élevée pour produire des radicaux libres, à injecter les hydrocarbures lourds à craquer dans la chambre de réaction et à faire réagir les radicaux libres avec lesdits hydrocarbures lourds pour le craquage de ces derniers dans une zone de moindre température, caractérisé en ce qu'il consiste à créer dans ladite chambre de réaction un lit de particules avantageusement catalytique fluidisé par un courant gazeux de fluidisation et à introduire un jet de plasma contenant de préférence de l'argon dans ladite chambre de réaction, ledit jet étant dirigé vers un endroit dudit lit de façon à créer une zone de température élevée constituant ladite zone de température plus élevée précitée ; en ce qu'il consiste à introduire la charge d'hydrocarbures lourds dans un endroit dudit lit fluidisé éloigné du jet de plasma pour obtenir la zone de moindre température et à introduire dans la zone de température plus élevée l'alcane léger, tel que du méthane, ou le mélange d'alcanes légers pour réaliser le craquage desdits hydrocarbures lourds dans ledit lit fluidisé, ce dernier effectuant une trempe du milieu réactionnel et catalysant le craquage, et en ce qu'il consiste à évacuer les produits ainsi obtenus en aval de la zone de moindre température.
2. Procédé selon la revendication 1, caractérisé en ce que le plasma est introduit à la périphérie du lit fluidisé.
3. Procédé selon les revendications 1 et 2, caractérisé en ce que les hydrocarbures lourds et le plasma sont introduits de part et d'autre du lit fluidisé.
4. Procédé selon la revendication 1, caractérisé en ce que l'on impose un temps de séjour déterminé aux produits obtenus dans une zone en aval de celle de moindre température.
5. Procédé selon la revendication 1, caractérisé en ce que le débit du courant gazeux de fluidisation est déterminé pour créer un lit fluidisé jaillissant.
6. Procédé selon l'une des revendications 1 et 5, caractérisé en ce que le courant gazeux de fluidisation comprend au moins de l'argon et/ou de l'hydrogène.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que le plasma contient au moins 80% en volume d'argon.
8. Procédé selon la revendication 7, caractérisé en ce que le plasma contient de l'hydrogène.
9. Procédé selon la revendication 1, caractérisé en ce que la zone de réaction de température plus élevée est à une température comprise entre environ 5000° et 1000°C.
10. Procédé selon la revendication 1, caractérisé en ce que la zone de moindre température est à une température comprise entre environ 900° et 500°C.
11. Procédé selon l'une des revendications 1 ou 9, caractérisé en ce que le méthane est introduit dans la zone de réaction dont la température est comprise entre environ 5000°C et 1000°C.
12. Procédé selon l'une des revendications 1 et 10, caractérisé en ce que la charge d'hydrocarbures lourds est introduite dans le lit fluidisé jaillissant dans la zone de réaction dont la température est comprise entre environ 900°C et 500°C.
13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le gaz de fluidisation est préchauffé en amont du lit fluidisé à une température comprise entre 50°C et 500°C, de préférence entre 150°C et 350°C.
14. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il consiste à préchauffer et à vaporiser la charge d'hydrocarbures lourds avant introduction dans la chambre de réaction.
15. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le lit est constitué de particules d'un matériau réfractaire choisi notamment dans le groupe consistant en oxydes, carbures, nitrures et borures.
16. Procédé selon la revendication 15, caractérisé en ce que les particules possèdent un effet catalytique.
17. Procédé selon l'une des revendications 15 ou 16, caractérisé en ce que le lit contient de plus un catalyseur.
18. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la réaction de craquage est poursuivie en aval de la zone de moindre température du lit fluidisé dans une zone présentant une température comprise entre environ 650°C et 550°C.
19. Dispositif pour la mise en oeuvre du procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une chambre de réaction (1) comportant un lit de particules (2), des moyens d'injection d'un courant gazeux de fluidisation (3) dudit lit situés au niveau du fond de ladite chambre pour réaliser un lit fluidisé jaillissant, une torche à plasma (6), contenant de préférence de l'argon et adaptée pour injecter le plasma dans ladite chambre de réaction vers ledit lit fluidisé pour créer au moins deux zones de réaction de températures différentes déterminant une zone de réaction de température plus élevée et une zone de réaction de moindre température, des moyens d'introduction (4) de la charge d'hydrocarbures lourds situés au niveau de la zone de réaction de moindre température, des moyens d'introduction (5) d'un alcane léger, tel que du méthane, ou d'un mélange d'alcanes légers dans la zone de température plus élevée et des moyens (7) destinés à poursuivre la réaction de craquage et à évacuer les hydrocarbures plus légers ainsi obtenus.
20. Dispositif selon la revendication 19, caractérisé en ce que la torche à plasma (6) et les moyens d'introduction des hydrocarbures lourds (4) sont disposés de part et d'autre du lit fluidisé jaillissant.
21. Dispositif selon la revendication 19, caractérisé en ce que les moyens d'introduction de la charge des hydrocarbures lourds sont constitués d'une canne d'injection ou analogues.
22. Dispositif selon la revendication 19, caractérisé en ce que les moyens d'introduction de l'alcane léger, tel que le méthane, ou du mélange d'alcanes légers sont constitués par une canne d'injection ou analogues.
23. Dispositif selon la revendication 19, caractérisé en ce que les moyens (7) pour poursuivre la réaction de craquage et pour évacuer les hydrocarbures obtenus sont constitués par exemple d'un réacteur tubulaire.
24. Dispositif selon la revendication 19, caractérisé en ce que la chambre de réaction présente une forme cylindrique, parallélépipèdique, sphérique ou analogues.
25. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la torche à plasma est raccordée de préférence au niveau d'une paroi latérale de la chambre de réaction de façon à ce que le plasma soit injecté latéralement dans le lit fluidisé.
26. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les parois de la chambre de réaction sont de préférence en un matériau réfractaire tel que de l'alumine.
27. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le fond (8) de la chambre de réaction présente une forme évasée vers le haut à la partie inférieure duquel débouche des moyens d'injection (9) du gaz de fluidisation.
EP89403235A 1988-11-24 1989-11-22 Procédé de craquage d'une charge d'hydrocarbures lourds en hydrocarbures plus légers et dispositif pour la mise en oeuvre de ce procédé Expired - Lifetime EP0370910B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89403235T ATE78287T1 (de) 1988-11-24 1989-11-22 Krackverfahren von schweren kohlenwasserstoffeins|tzen und vorrichtung zur ausfuehrung des verfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8815363A FR2639354B1 (fr) 1988-11-24 1988-11-24 Procede de craquage d'une charge d'hydrocarbures lourds en hydrocarbures plus legers et dispositif pour la mise en oeuvre de ce procede
FR8815363 1988-11-24

Publications (2)

Publication Number Publication Date
EP0370910A1 true EP0370910A1 (fr) 1990-05-30
EP0370910B1 EP0370910B1 (fr) 1992-07-15

Family

ID=9372213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403235A Expired - Lifetime EP0370910B1 (fr) 1988-11-24 1989-11-22 Procédé de craquage d'une charge d'hydrocarbures lourds en hydrocarbures plus légers et dispositif pour la mise en oeuvre de ce procédé

Country Status (11)

Country Link
US (1) US5026949A (fr)
EP (1) EP0370910B1 (fr)
AT (1) ATE78287T1 (fr)
AU (1) AU627244B2 (fr)
CA (1) CA2003619A1 (fr)
DE (1) DE68902132T2 (fr)
ES (1) ES2034717T3 (fr)
FR (1) FR2639354B1 (fr)
GR (1) GR3005786T3 (fr)
NO (1) NO894672L (fr)
NZ (1) NZ231496A (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192591B2 (en) 2005-12-16 2012-06-05 Petrobeam, Inc. Self-sustaining cracking of hydrocarbons

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9216509D0 (en) * 1992-08-04 1992-09-16 Health Lab Service Board Improvements in the conversion of chemical moieties
CA2248993A1 (fr) 1996-03-14 1997-09-18 Johnson & Johnson Consumer Companies, Inc. Compositions tensio-actives lavantes et hydratantes
US9862892B2 (en) 2012-02-21 2018-01-09 Battelle Memorial Institute Heavy fossil hydrocarbon conversion and upgrading using radio-frequency or microwave energy
US11021661B2 (en) * 2012-02-21 2021-06-01 Battelle Memorial Institute Heavy fossil hydrocarbon conversion and upgrading using radio-frequency or microwave energy
WO2020217466A1 (fr) * 2019-04-26 2020-10-29 株式会社Fuji Dispositif de traitement au plasma

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120625A1 (fr) * 1983-03-02 1984-10-03 The British Petroleum Company p.l.c. Procédé de conversion à arc électrique et appareil
EP0292391A1 (fr) * 1987-05-22 1988-11-23 Electricite De France Procédé d'hydrocraquage d'une charge d'hydrocarbures et installation d'hydrocraquage pour la mise en oeuvre de ce procédé
EP0316234A1 (fr) * 1987-11-10 1989-05-17 Electricite De France Procédé et installation d'hydropyrolyse d'hydrocarbures lourds par jet de plasma, notamment de plasma D'H2/CH4

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120625A1 (fr) * 1983-03-02 1984-10-03 The British Petroleum Company p.l.c. Procédé de conversion à arc électrique et appareil
EP0292391A1 (fr) * 1987-05-22 1988-11-23 Electricite De France Procédé d'hydrocraquage d'une charge d'hydrocarbures et installation d'hydrocraquage pour la mise en oeuvre de ce procédé
EP0316234A1 (fr) * 1987-11-10 1989-05-17 Electricite De France Procédé et installation d'hydropyrolyse d'hydrocarbures lourds par jet de plasma, notamment de plasma D'H2/CH4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192591B2 (en) 2005-12-16 2012-06-05 Petrobeam, Inc. Self-sustaining cracking of hydrocarbons
US8911617B2 (en) 2005-12-16 2014-12-16 Petrobeam, Inc. Self-sustaining cracking of hydrocarbons

Also Published As

Publication number Publication date
AU627244B2 (en) 1992-08-20
EP0370910B1 (fr) 1992-07-15
DE68902132D1 (de) 1992-08-20
ES2034717T3 (es) 1993-04-01
NZ231496A (en) 1992-03-26
FR2639354B1 (fr) 1993-01-22
ATE78287T1 (de) 1992-08-15
DE68902132T2 (de) 1993-03-04
NO894672D0 (no) 1989-11-23
CA2003619A1 (fr) 1990-05-24
US5026949A (en) 1991-06-25
FR2639354A1 (fr) 1990-05-25
NO894672L (no) 1990-05-25
AU4552189A (en) 1990-06-28
GR3005786T3 (fr) 1993-06-07

Similar Documents

Publication Publication Date Title
US5131993A (en) Low power density plasma excitation microwave energy induced chemical reactions
US3692862A (en) Method for pyrolyzing hydrocarbons
CA2019103C (fr) Procede et dispositif de regulation ou controle du niveau thermique d'un solide pulverulent, comportant un echangeur de chaleur a compartiments en lit fluidise ou mobile
EP0292391B1 (fr) Procédé d'hydrocraquage d'une charge d'hydrocarbures et installation d'hydrocraquage pour la mise en oeuvre de ce procédé
US3514264A (en) Apparatus for electric arc-cracking of hydrocarbons
EP0370910B1 (fr) Procédé de craquage d'une charge d'hydrocarbures lourds en hydrocarbures plus légers et dispositif pour la mise en oeuvre de ce procédé
GB1174870A (en) An apparatus for Thermal Cracking of Hydrocarbon
EP0326478B1 (fr) Appareillage pour le craquage catalytique en lit fluidisé d'une charge d'hydrocarbures
CA2236839C (fr) Procede et dispositif de craquage catalytique en lit fluidise d'une charge d'hydrocarbures, mettant en oeuvre une zone de mise en contact amelioree
FR2705142A1 (fr) Procédé de régulation du niveau thermique d'un solide dans un échangeur de chaleur présentant des nappes cylindriques de tubes.
EA011643B1 (ru) Способ и устройство для пиролитического облагораживания углеводородного сырья
EP0370909B1 (fr) Procédé de conversion de gaz naturel ou d'alcanes légers en hydrocarbures insaturés
EP0291408B1 (fr) Procédé de vapocraquage dans une zone réactionnelle en lit fluide
FR2671095A1 (fr) Procede et four pour fabriquer sans depot des produits dans un tube.
EP0323287B1 (fr) Procédé de conversion thermique du méthane en hydrocarbures de poids moléculaires plus élevés et réacteur pour la mise en oeuvre du procédé
EP0127520B1 (fr) Dispositif pour réaction à haute température
FR2639346A1 (fr) Procede de production d'(alpha)-olefines
EP0573316A1 (fr) Procédé et dispositif de craquage catalytique dans deux zones réactionnelles successives
FR2520354A1 (fr) Procede de methanisation des matieres carbonees solides
FR2566792A1 (fr) Procede de pyrolyse eclair de particules solides contenant du carbone
EP0733609A1 (fr) Procédé de conversion thermique d'hydrocarbures aliphatiques saturés ou insaturés en hydrocarbures acétyléniques
EP1041060B1 (fr) Procédé de production de méthylacétylène et de propadiène
FR2687142A1 (fr) Procede de transformation de gaz naturel en produit d'interet notamment l'acetylene et dispositif pour mettre en óoeuvre ledit procede.
CH394150A (fr) Procédé pour la décomposition thermique d'hydrocarbures en hydrocarbures non saturés ou moins saturés et four pour la mise en oeuvre du procédé
FR2745063A1 (fr) Bruleur radiant pour la combustion a l'oxygene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901116

17Q First examination report despatched

Effective date: 19910508

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 78287

Country of ref document: AT

Date of ref document: 19920815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68902132

Country of ref document: DE

Date of ref document: 19920820

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3005786

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2034717

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931112

Year of fee payment: 5

Ref country code: AT

Payment date: 19931112

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931117

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931129

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931130

Year of fee payment: 5

Ref country code: GR

Payment date: 19931130

Year of fee payment: 5

Ref country code: ES

Payment date: 19931130

Year of fee payment: 5

Ref country code: BE

Payment date: 19931130

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19931201

Year of fee payment: 5

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941122

Ref country code: GB

Effective date: 19941122

Ref country code: AT

Effective date: 19941122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941123

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941130

Ref country code: CH

Effective date: 19941130

Ref country code: BE

Effective date: 19941130

EAL Se: european patent in force in sweden

Ref document number: 89403235.8

BERE Be: lapsed

Owner name: GAZ DE FRANCE

Effective date: 19941130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3005786

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950801

EUG Se: european patent has lapsed

Ref document number: 89403235.8

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19951214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051122