EP0369464B1 - Methode zur Herstellung supraleitender keramischer Drähte - Google Patents

Methode zur Herstellung supraleitender keramischer Drähte Download PDF

Info

Publication number
EP0369464B1
EP0369464B1 EP89121306A EP89121306A EP0369464B1 EP 0369464 B1 EP0369464 B1 EP 0369464B1 EP 89121306 A EP89121306 A EP 89121306A EP 89121306 A EP89121306 A EP 89121306A EP 0369464 B1 EP0369464 B1 EP 0369464B1
Authority
EP
European Patent Office
Prior art keywords
superconducting ceramic
producing
ceramic wire
wire according
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89121306A
Other languages
English (en)
French (fr)
Other versions
EP0369464A2 (de
EP0369464A3 (en
Inventor
Masashi C/O Yokohama Works Of Onishi
Takashi C/O Yokohama Works Of Kohgo
Tetsuya C/O Yokohama Works Of Ohsugi
Gotaro C/O Yokohama Works Of Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1259828A external-priority patent/JPH02263726A/ja
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of EP0369464A2 publication Critical patent/EP0369464A2/de
Publication of EP0369464A3 publication Critical patent/EP0369464A3/en
Application granted granted Critical
Publication of EP0369464B1 publication Critical patent/EP0369464B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/733Rapid solidification, e.g. quenching, gas-atomizing, melt-spinning, roller-quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/739Molding, coating, shaping, or casting of superconducting material
    • Y10S505/74To form wire or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/742Annealing

Definitions

  • the present invention relates to a method of producing superconducting ceramic wire. More particularly, it relates to a method of producing a superconducting ceramic wire from metallic oxide glass material obtained by melt-quenching a metal oxide-forming chemical composition capable of being converted into a superconducting ceramic.
  • the production of superconducting ceramic wire has been thought very difficult due to the brittleness of the material.
  • the wire is barely produced by so-called "noble metal-sheathed drawing method" in which a superconducting oxides composition is preliminarily sintered, packed in a noble metal sheath or pipe such as silver in a fine pulverized form, and the pipe is subjected to cold working to form a drawn wire of the sintered material, followed by heat treatment to give a superconducting wire.
  • the pipe may, if possible, be removed by dissolving with chemicals.
  • the use of the noble metal pipe is not only costly but also restricts the length of the resulting wire. Further, the continuity of the sintered powder is liable to break during the cold working, making wire-working difficult and causing poor flexibility of the resulting wire. Further more, the cover of the noble metal is liable to make insufficient the supply of oxygen during the heat treatment, which has an important role in preparing superconductive ceramics.
  • the present invention is directed primarily to a method of producing superconducting ceramic wire which comprises the steps, (a) homogeneously melting a metallic oxide-forming chemical composition comprising Bi, Sr, Ca, and Cu capable of being converted into a superconducting ceramic and quenching the melt to form a glass, (b) wire-drawing the glass at a temperature corresponding to a viscosity of 106 - 104 poise of the glass, (c) conducting a heat treatment of the drawn glass to make it superconducting wire, and covering the superconducting wire with a metal.
  • Fig. 1 is a sectionally elevation view of a wire-drawing apparatus as a schematically illustrated working system, for explaining the present invention.
  • Fig. 2 is a perspective view of an assembly of a metal cover and a wire to be pressed.
  • system A Bi-Sr-Ca-Cu-O system
  • system B Bi-Pb-Sr-Ca-Cu-O system
  • the metallic oxide-forming chemical composition capable of being converted into a superconducting ceramic usable in the present invention may be any chemical compounds bearing oxygen atom or mixture thereof as far as it becomes superconductive when converted into a ceramic and subjected to superconducting treatment.
  • the chemical compounds and proportion thereof in the composition are accorded with resulting superconducting oxide system.
  • the composition used in the above exemplified system A and B includes a mixture selected in desired combination from Bi2O3, PbO, SrCO3, CaCO3 and CuO. The preferable mol.
  • the ratio of the chemical compounds is, for example, 2(BiO 1.5 +PbO):2(SrCO3):2(CaCO3): 3(CuO) for system A and 1.6(BiO 1.5 ): 0.4(PbO): 2(SrCO3): 2(CaCO3): 3(CuO) for system B, and the ratio is maintained as atomic weight of the metals in the resulting superconducting system.
  • the system B is preferably used and Bi may be replaced in an atomic weight of up to 35%, and preferably in a range of from 10 to 35%, with Pb.
  • the chemical composition is molten in a crucible by heating at a temperature higher than the melting point of the composition.
  • the crucible used is of refractory materials such as alumina, magnesia and other metal oxides and combination thereof or of noble metals such as platinum, gold and a heat-resistant alloy thereof. Among them, alumina crucible is preferable.
  • the temperature used is preferably not more than 400°C plus melting point of the composition to prevent evaporation of the essential ingredient having a comparatively high vapor pressure and fusing-out of the crucible material or component thereof.
  • the temperature is preferably 1150 ⁇ 100°C.
  • the melting process is continued until the chemical composition decomposes and homogeneous melt is obtained. In case of the above systems, the time is enough within 1 hour. If the chemical composition contains a carbonate, it may preliminary be calcined at about 800°C to remove carbon.
  • melt is quenched to form a glass.
  • the quenching is simply carried out by pouring the melt on a metal plate such as iron plate at room temperature so as to form a glass which is suitable for use in the next wire-drawing step.
  • the glass may, if possible, be made by pressing the poured melt between two metal plates.
  • the glass preferably cut into a form of rod or plate, is wire-drawn to obtain a glass wire having a desired dimension.
  • the step will be explained by referring to the attached drawings.
  • the glass 1 is fixed downwards to an end of dummy rod 2 and inserted in a quartz pipe 3 provided around with a heater 4, when the rod 2 is put down by a transfer means 5, the glass 1 fixed to the rod 2 is heated by the heater 4 to soften, whereby commencing wire-drawing.
  • a drawn wire 6 is wound up on a winding means 8 via a capstan 7.
  • the temperature used may be different depending upon respective oxide system, it is desirable to be a temperature corresponding to a viscosity of the soften glass ranging from 106 to 104 poises, which will decide the dimension of the drawn wire in a form of desired shape, for example thin tape.
  • the drawn glass wire is subjected to a heat-treatment to make superconductive, that is, to recrystallize.
  • the step is conducted under the following condition.
  • the glass wire is kept at a crystal nucleus-forming temperature or a temperature making the rate of formation of crystal nucleus maximum (hereinafter referred to as 1st stage heating) for more than 1 hour, and then at a crystal-growing temperature or a temperature making the rate of growth of crystal maximum (hereinafter referred to 2nd stage heating) for more than 20 hour.
  • the 1st stage heating temperature is one corresponding to a viscosity of the glass ranging from 1011 to 1012 poises, and about 420°C to about 430°C.
  • the 2nd stage heating temperature is different depending on the composition of the system, it may be generally be 800°C to 870°C.
  • the 1st stage heating may be omitted, and the glass wire may undergo only the 2nd stage heat-treatment.
  • these heat treatments may be conducted in an atmosphere of the saturated vapor of the essential atom baring oxygen atom such as PbO.
  • silver (Ag) acting as nucleus-forming adjuvant and having no influence in the superconductivity Jpn. J. Appl. Phys. Letter, 52(19), 9 May 1988
  • silver acting as nucleus-forming adjuvant and having no influence in the superconductivity
  • step(s) containing, alone or in combination, covering with a metal such as silver, applying pressure to, and/or subjecting to the heat-treatment at 800°C to 870°C, the resulting superconducting ceramic wire in order to enhance its property.
  • the cover of the metal is provided around whole surface of the ceramic wire by any way such as insertion in a pipe of the metal, dipping into a molten bath of the metal and covering with tape(s) of the metal.
  • the pressing is conducted by applying preferably about 1000 kg/cm2 to the drawn superconducting wire with or without the metal covered by rolling mill or other pressing machines.
  • Fig.2 shows as an example, a wire 21 sandwiched between two silver foils 22 and 23 to be pressed towards right angular direction against plain. The pressing effects to increase the crystal cleavage of the wire.
  • the heat-treatment is again carried out here with respect to the superconducting wire with or without being subjected to the above other treatments. This is carried out according to the 2nd stage heating.
  • the combination of the pressing and the heat-treatment is preferable and carried out by such a way that heat-treatment is effected with respect to a wire, having been pressed, on the way of pressing, or during pressing. Such treatment in combination may be repeated several times, and enables to enhance significantly Jc of the resultant superconducting ceramic wire.
  • the melting-quenching step enables to make a long glass wire having continuity, desired dimension, for example desired thickness, good flexibility and processability.
  • the heat-treatment is carried out in an atmosphere where oxygen can freely go in and out, and hence prevents insufficiency of oxygen atom in the resulting superconducting ceramics.
  • the heat-treatment enables to obtain a high density ceramic wire having a high Jc due to the use of an oxide glass which is amorphous and has a substantially theoretical density as compared with the use of a sintered oxide of the prior art.
  • the superconducting ceramic wire obtained according to the present invention is being expected to be applied to transfer cable or magnet.
  • the composition was molten at a temperature of 1150°C for 40 minuets in an alumina crucible.
  • the resulting homogeneous melt was poured onto an iron plate, covered by another iron plate, and pressed into a glass plate having a thickness of 2mm.
  • the glass plate was cut into a dimension of 5cm in width and 7cm in length, fixed longitudinally onto an end of a dummy rod in a wire-drawing apparatus shown in Fig. 1.
  • the glass plate was wire-drawn at a temperature of 435°C of the heater in the apparatus to obtain a tape wire having 1.5mm width, 100»m thickness and 10m length, which has such a superior flexibility that it can be wound onto a mandrel of 10mm diameter.
  • the wire was placed in a heat-treating furnace, heat-treated by the 1st stage heating at 430°C for 4 hours and then by 2nd stage heating at 820°C for 60 hours.
  • Example 1 was repeated, provided that the 1st stage heating was effected at a 423°C for 4 hours and the 2nd stage heating was at 860°C for 100 hours.
  • Example 1 was repeated, provided that a chemical composition was prepared by adding Ag2O to the chemical composition of Example 1 in an amount of 20% by weight thereof. The same procedure was repeated twice, and two ceramic wires (A and B), both having 1.5mm width, 100»m thickness and 10m, were obtained.
  • wires had such superior flexibility that it can be wound onto a mandrel of 10mm diameter.
  • Example 1 was repeated, provided that the 1st stage heating was omitted and the 2nd stage heating was effected by such a way that the tape wire was heated directly from a room temperature to 820°C and at this temperature for 60 hours in the heating apparatus.
  • Jc 10 A/cm2 (4.2°K, zero magnetic field).
  • the property is inferior as compared with those of wire obtained in Examples 1 and 2, but almost sufficient superconductivity is obtained.
  • Example 4 was repeated, provided that the temperature and time of the 2nd stage heating were 860°C and 100 hours.
  • Jc 10 A/cm2 (77°K, zero magnetic field).
  • the superconducting ceramic wire obtained according to Example 1 was sandwiched between two silver foils of 3mm width and 300»m thickness and applied a pressure of 20 ton/cm2 (as shown in Fig. 2). Then the wire was heat-treated at 850°C for 50 hours. The combination of the pressing and heat-treatment was repeated once more.
  • the critical current density of the thus obtained wire is as high as 3500 A/cm2 at 77°K, in the zero magnetic field.
  • Example 1 was repeated, provided that the chemical composition was previously calcined at 800°C for 10 hours, pulverized and well mixed, that the melting time was 20 minuets and that the second heating was effected at 860°C for 240 hours.
  • Example 1 was repeated, provided that the melting temperature was 1300°C.
  • the inferior property as compared with that of the wire obtained in Example 1 is probably resulted from an alteration of the system of a contamination of the crucible component due to the high melting temperature.
  • the superconducting ceramic wire obtained in Example 1 was heat-treated at 423°C for 4 hours (1st stage heating) and then at 840°C for 100 hours (2nd stage heating) in an atmosphere of saturated PbO vapor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Claims (18)

  1. Verfahren zur Herstellung eines superleitenden Keramikdrahtes, umfassend die Stufen:
    (a) homogenes Verschmelzen einer ein Metalloxid bildenden chemischen Zusammensetzung, umfassend Bi, Sr, Ca und Cu, die in der Lage ist, in ein superleitendes Keramikmaterial überführt zu werden und Abschrecken der Schmelze unter Ausbildung eines Glases,
    (b) Drahtziehen des Glases bei einer Temperatur entsprechend einer Viskosität von 10⁶ - 10⁴ Poise des Glases,
    (c) Durchführen einer Wärmebehandlung des gezogenen Glases unter Ausbildung eines superleitenden Drahtes und
    (d) Überziehen des superleitenden Keramikdrahtes mit einem Metall.
  2. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem das Metall Silber ist.
  3. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem die Stufen weiterhin die Stufe umfassen:
    (e) Anwendung von Druck auf den superleitenden Keramikdraht zur Beschleunigung der Kristallspaltung.
  4. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei welchem die Stufen weiterhin die Stufe umfassen:
    (f) Durchführen der Wärmebehandlung des superleitenden Keramikdrahtes zur Erhöung der Superleitfähigkeit.
  5. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem die Stufen weiterhin in irgendeiner Kombination die Stufen umfassen:
    (d) Bedecken des superleitenden Keramikdrahtes mit einem Metall,
    (e) Anwendung von Druck auf den superleitenden Keramikdraht zur Beschleunigung der Kristallspaltung und
    (f) Durchführen der Wärmebehandlung des superleitenden Keramikdrahtes zur Erhöhung der Superleitfähigkeit.
  6. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 5, bei dem die Kombination mehrmals wiederholt wird.
  7. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem die Schmelztemperatur in der Stufe (a) nicht höher als 400°C plus der Schmelzpunkt der chemischen Zusammensetzung ist.
  8. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem das Schmelzen durchgeführt wird in einem Tiegel aus Aluminiumoxid, Magnesiumoxid oder einem anderen feuerfesten Material, oder aus Platin, Gold oder einer wärmebeständigen Legierung daraus.
  9. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem die Metalloxid bildende chemische Zusammensetzung eine Mischung von Verbindungen mit einem Sauerstoffatom der Metalle Bi, Pb, Sr, Ca und Cu enthält, unter Ausbildung eines superleitenden Keramikdrahtes aus einem Bi-Sr-Ca-Cu-O-System, oder einem (Bi plus Pb)-Sr-Ca-Cu-System, in welchem Pb in einem Atomgewichtsverhältnis von bis zu 35 % von Bi plus Pb enthalten ist.
  10. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 9, bei dem das System das Metall in ein Atomgewichtsverhältnis von (Bi plus Pb):Sr:Ca:Cu = 2:2:2:3 enthält, wobei Pb entweder nicht vorhanden ist, oder bis zu 35 % von Bi plus Pb vorhanden ist.
  11. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 10, bei dem Pb in dem System von 10 bis 35 % von Bi plus Pb vorhanden ist.
  12. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 10, bei dem das Schmelzen bei 1150°C ± 100°C durchgeführt wird.
  13. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem das Abschrecken durchgeführt wird, indem man das Glas auf eine Metallplatte bei Raumtemperatur gießt.
  14. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem die Wärmebehandlung eine ausreichende Zeit bei einer Temperatur durchgeführt wird, bei welcher der Grad der Kristallbildung in dem Glas ein Maximum einnimmt.
  15. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem die Wärmebehandlung eine ausreichende Zeit bei einer Temperatur durchgeführt wird, bei welcher der Grad der Kristallkernbildung in dem Glas ein Maximum einnimmt, und dann bei einer Temperatur, bei welcher der Grad der Kristallbildung in dem Glas ein Maximum einnimmt.
  16. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 11, bei dem die Wärmebehandlung in einer Atmosphäre von gesättigtem Dampf von PbO, die zu der chemischen Zusammensetzung entsprechend dem System zugegeben wurde, durchgeführt wird.
  17. Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 11, bei dem die chemische Zusammensetzung Silber in einer Menge enthält, die ausreichend ist zur Beschleunigung der Ausbildung des Kristallkerns.
  18. Verfahren gemäß Anspruch 9, bei dem die chemische Zusammensetzung, enthaltend die Verbindungen aus einem Metallcarbonat, zuvor bei etwa 800°C calciniert wird zur Entfernung des enthaltenden Kohlenstoffs.
EP89121306A 1988-11-18 1989-11-17 Methode zur Herstellung supraleitender keramischer Drähte Expired - Lifetime EP0369464B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP292210/88 1988-11-18
JP29221088 1988-11-18
JP1259828A JPH02263726A (ja) 1988-11-18 1989-10-04 超電導セラミックスファイバの製造方法
JP259828/89 1989-10-04

Publications (3)

Publication Number Publication Date
EP0369464A2 EP0369464A2 (de) 1990-05-23
EP0369464A3 EP0369464A3 (en) 1990-08-22
EP0369464B1 true EP0369464B1 (de) 1995-06-07

Family

ID=26544305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89121306A Expired - Lifetime EP0369464B1 (de) 1988-11-18 1989-11-17 Methode zur Herstellung supraleitender keramischer Drähte

Country Status (8)

Country Link
US (1) US4975416A (de)
EP (1) EP0369464B1 (de)
CN (1) CN1027776C (de)
AU (1) AU4463589A (de)
BR (1) BR8905840A (de)
DE (1) DE68922965T2 (de)
ES (1) ES2075843T3 (de)
RU (1) RU1831470C (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69024244T4 (de) * 1989-03-30 2000-12-28 Ngk Insulators Ltd Verfahren zur Herstellung von supraleitendem Material auf Bismuth-Basis
WO1990013517A1 (en) * 1989-05-02 1990-11-15 Nippon Steel Corporation Oxide superconductor and method of producing the same
JPH03261006A (ja) * 1990-03-08 1991-11-20 Sumitomo Electric Ind Ltd 超電導線材の製造方法
EP0457929A1 (de) * 1990-04-27 1991-11-27 Siemens Aktiengesellschaft Verfahren zum Herstellen eines hochtemperatur-supraleitenden Bauteiles und hochtemperatur-supraleitendes Bauteil
DE4120257A1 (de) * 1990-07-09 1992-01-16 Siemens Ag Verfahren zum herstellen eines hochtemperatur-supraleitenden bauteiles und hochtemperatur-supraleitendes bauteil
JPH04121912A (ja) * 1990-09-10 1992-04-22 Sumitomo Electric Ind Ltd ビスマス系酸化物高温超電導体の製造方法
FR2671425B1 (fr) * 1991-01-04 1996-02-02 Alsthom Cge Alcatel Procede de fabrication d'un element du genre fil ou ruban en materiau a base d'oxyde supraconducteur a haute temperature critique et element ainsi obtenu.
FR2677484B1 (fr) * 1991-06-10 1993-08-20 Alsthom Cge Alcatel Procede de realisation par fibrage d'une fibre supraconductrice a haute temperature critique et fibre obtenue par ce procede.
US5219832A (en) * 1991-06-18 1993-06-15 Dawei Zhou High-tc superconducting ceramic oxide products and macroscopic and microscopic methods of making the same
US5208215A (en) * 1991-08-23 1993-05-04 Industrial Technology Research Institute Process for fabricating flexible BI-PB-SR-CA-CU-O superconducting tape
DE4218950A1 (de) * 1992-06-10 1993-12-16 Hoechst Ag Verfahren zur Herstellung eines Hochtemperatursupraleiters und daraus gebildeter Formkörper
US5661114A (en) 1993-04-01 1997-08-26 American Superconductor Corporation Process of annealing BSCCO-2223 superconductors
US6194352B1 (en) * 1994-01-28 2001-02-27 American Superconductor Corporation Multifilament composite BSCCO oxide superconductor
US5660541A (en) * 1994-10-13 1997-08-26 General Atomics Method for heat treating long lengths of silver clad high temperature superconductor
US5814122A (en) * 1995-12-12 1998-09-29 Owens-Corning Fiberglas Technology, Inc. Method of making hollow high temperature ceramic superconducting fibers
US5987342A (en) * 1996-08-30 1999-11-16 American Superconductor Corporation Laminated superconducting ceramic tape
US6110606A (en) 1996-08-30 2000-08-29 American Superconductor Corporation Cryogen protected superconducting ceramic tape
US6444917B1 (en) 1999-07-23 2002-09-03 American Superconductor Corporation Encapsulated ceramic superconductors
JP4016601B2 (ja) * 2000-07-14 2007-12-05 住友電気工業株式会社 酸化物超電導線材の製造方法とその製造方法に用いられる加圧熱処理装置
ES2334616A1 (es) * 2008-02-04 2010-03-12 Universidade De Santiago De Compostela Limitador superconductor de corriente integrado en el intercambiador de calor de un refrigerador termoacustico.
DE102012215708A1 (de) * 2012-09-05 2014-03-06 Osram Opto Semiconductors Gmbh Vorratsbehälter für eine beschichtungsanlage und beschichtungsanlage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134747A (en) * 1977-03-16 1979-01-16 Corning Glass Works Method of forming transparent and opaque portions in a reducing atmosphere glass
JPS61225808A (ja) * 1985-03-29 1986-10-07 Kobe Steel Ltd 超電導コイルの製造方法
EP0285168B1 (de) * 1987-04-02 1995-02-22 Sumitomo Electric Industries Limited Supraleitender Draht und Verfahren zu seiner Herstellung
JPS64674A (en) * 1987-06-23 1989-01-05 Mitsubishi Electric Corp Connection method for oxide superconductor
US4861751A (en) * 1987-07-23 1989-08-29 Standard Oil Company Production of high temperature superconducting materials
JPH01134819A (ja) * 1987-11-18 1989-05-26 Furukawa Electric Co Ltd:The 酸化物系超電導線材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Glas; Natur, Struktur und Eigenschaften, H. Scholze, Zweite Auflage, Springer Verlag, 1977, pp. 125, 126, 205 *

Also Published As

Publication number Publication date
EP0369464A2 (de) 1990-05-23
CN1027776C (zh) 1995-03-01
US4975416A (en) 1990-12-04
CN1044004A (zh) 1990-07-18
EP0369464A3 (en) 1990-08-22
DE68922965T2 (de) 1995-11-23
RU1831470C (ru) 1993-07-30
AU4463589A (en) 1990-05-24
DE68922965D1 (de) 1995-07-13
BR8905840A (pt) 1990-06-12
ES2075843T3 (es) 1995-10-16

Similar Documents

Publication Publication Date Title
EP0369464B1 (de) Methode zur Herstellung supraleitender keramischer Drähte
US6291402B1 (en) Method of making a superconductive oxide body
US5011823A (en) Fabrication of oxide superconductors by melt growth method
JP2674979B2 (ja) 超伝導体の製造方法
DE69026659T2 (de) Keramischer supraleitender Draht und Verfahren zu dessen Herstellung
US5384307A (en) Oxide superconductor tape having silver alloy sheath with increased hardness
EP0311337B1 (de) Verfahren zur Darstellung eines oxidischen supraleitenden Leiters und ein oxidischer supraleitender Leiter, hergestellt nach diesem Verfahren
US4992415A (en) Method for fabricating ceramic superconductors
US5229357A (en) Method of producing superconducting ceramic wire and product
CA1327119C (en) Method of producing a superconductive oxide conductor
EP0445832B1 (de) Verfahren zur Herstellung eines mit einer metallischen Schutzschicht versehenen supraleitenden Drahtes aus Keramik
AU656665B2 (en) Method of producing superconducting ceramic wire
DE3855230T2 (de) Verfahren zur Herstellung eines supraleitenden Gegenstandes
US5217943A (en) Process for making composite ceramic superconducting wires
EP0304076B1 (de) Verfahren zur Herstellung von supraleitenden Produkten
JP2742259B2 (ja) 超電導線
US5254529A (en) Superconducting fibers made with yttrium and yttrium oxide interlayers and barium cuprate cover layers
JPS63304678A (ja) 酸化物超電導回路の製造方法
JP2573961B2 (ja) 超電導線の製造方法
JP2727565B2 (ja) 超電導体の製造方法
JP2549669B2 (ja) 酸化物系超電導線
US6531426B1 (en) Neodymium gallate surface barrier for melt-processed YBa2Cu3Ox conductor with nickel sheath
Hermann et al. Process for making superconducting wires
JPH01161621A (ja) 酸化物系超電導線の製造方法
JPH01221814A (ja) 酸化物系超電導線材の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19900810

17Q First examination report despatched

Effective date: 19930401

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 68922965

Country of ref document: DE

Date of ref document: 19950713

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2075843

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961108

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961111

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961122

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961128

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19961129

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19981212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051117