EP0369464B1 - Methode zur Herstellung supraleitender keramischer Drähte - Google Patents
Methode zur Herstellung supraleitender keramischer Drähte Download PDFInfo
- Publication number
- EP0369464B1 EP0369464B1 EP89121306A EP89121306A EP0369464B1 EP 0369464 B1 EP0369464 B1 EP 0369464B1 EP 89121306 A EP89121306 A EP 89121306A EP 89121306 A EP89121306 A EP 89121306A EP 0369464 B1 EP0369464 B1 EP 0369464B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- superconducting ceramic
- producing
- ceramic wire
- wire according
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000919 ceramic Substances 0.000 title claims description 47
- 238000000034 method Methods 0.000 title claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 37
- 239000011521 glass Substances 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 239000000126 substance Substances 0.000 claims description 19
- 239000013078 crystal Substances 0.000 claims description 12
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 238000003825 pressing Methods 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- 150000001875 compounds Chemical group 0.000 claims description 5
- 238000010791 quenching Methods 0.000 claims description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 230000000171 quenching effect Effects 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000003776 cleavage reaction Methods 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000000155 melt Substances 0.000 claims description 3
- 230000007017 scission Effects 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 239000011819 refractory material Substances 0.000 claims description 2
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- 229910014454 Ca-Cu Inorganic materials 0.000 claims 1
- 229910052745 lead Inorganic materials 0.000 claims 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 10
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 6
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 description 5
- 235000010216 calcium carbonate Nutrition 0.000 description 5
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 5
- 229910000018 strontium carbonate Inorganic materials 0.000 description 5
- 238000005491 wire drawing Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 229910016296 BiO1.5 Inorganic materials 0.000 description 2
- 229910002480 Cu-O Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000007578 melt-quenching technique Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000075 oxide glass Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000108 silver(I,III) oxide Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0268—Manufacture or treatment of devices comprising copper oxide
- H10N60/0801—Manufacture or treatment of filaments or composite wires
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/725—Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
- Y10S505/733—Rapid solidification, e.g. quenching, gas-atomizing, melt-spinning, roller-quenching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/725—Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
- Y10S505/739—Molding, coating, shaping, or casting of superconducting material
- Y10S505/74—To form wire or fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/725—Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
- Y10S505/742—Annealing
Definitions
- the present invention relates to a method of producing superconducting ceramic wire. More particularly, it relates to a method of producing a superconducting ceramic wire from metallic oxide glass material obtained by melt-quenching a metal oxide-forming chemical composition capable of being converted into a superconducting ceramic.
- the production of superconducting ceramic wire has been thought very difficult due to the brittleness of the material.
- the wire is barely produced by so-called "noble metal-sheathed drawing method" in which a superconducting oxides composition is preliminarily sintered, packed in a noble metal sheath or pipe such as silver in a fine pulverized form, and the pipe is subjected to cold working to form a drawn wire of the sintered material, followed by heat treatment to give a superconducting wire.
- the pipe may, if possible, be removed by dissolving with chemicals.
- the use of the noble metal pipe is not only costly but also restricts the length of the resulting wire. Further, the continuity of the sintered powder is liable to break during the cold working, making wire-working difficult and causing poor flexibility of the resulting wire. Further more, the cover of the noble metal is liable to make insufficient the supply of oxygen during the heat treatment, which has an important role in preparing superconductive ceramics.
- the present invention is directed primarily to a method of producing superconducting ceramic wire which comprises the steps, (a) homogeneously melting a metallic oxide-forming chemical composition comprising Bi, Sr, Ca, and Cu capable of being converted into a superconducting ceramic and quenching the melt to form a glass, (b) wire-drawing the glass at a temperature corresponding to a viscosity of 106 - 104 poise of the glass, (c) conducting a heat treatment of the drawn glass to make it superconducting wire, and covering the superconducting wire with a metal.
- Fig. 1 is a sectionally elevation view of a wire-drawing apparatus as a schematically illustrated working system, for explaining the present invention.
- Fig. 2 is a perspective view of an assembly of a metal cover and a wire to be pressed.
- system A Bi-Sr-Ca-Cu-O system
- system B Bi-Pb-Sr-Ca-Cu-O system
- the metallic oxide-forming chemical composition capable of being converted into a superconducting ceramic usable in the present invention may be any chemical compounds bearing oxygen atom or mixture thereof as far as it becomes superconductive when converted into a ceramic and subjected to superconducting treatment.
- the chemical compounds and proportion thereof in the composition are accorded with resulting superconducting oxide system.
- the composition used in the above exemplified system A and B includes a mixture selected in desired combination from Bi2O3, PbO, SrCO3, CaCO3 and CuO. The preferable mol.
- the ratio of the chemical compounds is, for example, 2(BiO 1.5 +PbO):2(SrCO3):2(CaCO3): 3(CuO) for system A and 1.6(BiO 1.5 ): 0.4(PbO): 2(SrCO3): 2(CaCO3): 3(CuO) for system B, and the ratio is maintained as atomic weight of the metals in the resulting superconducting system.
- the system B is preferably used and Bi may be replaced in an atomic weight of up to 35%, and preferably in a range of from 10 to 35%, with Pb.
- the chemical composition is molten in a crucible by heating at a temperature higher than the melting point of the composition.
- the crucible used is of refractory materials such as alumina, magnesia and other metal oxides and combination thereof or of noble metals such as platinum, gold and a heat-resistant alloy thereof. Among them, alumina crucible is preferable.
- the temperature used is preferably not more than 400°C plus melting point of the composition to prevent evaporation of the essential ingredient having a comparatively high vapor pressure and fusing-out of the crucible material or component thereof.
- the temperature is preferably 1150 ⁇ 100°C.
- the melting process is continued until the chemical composition decomposes and homogeneous melt is obtained. In case of the above systems, the time is enough within 1 hour. If the chemical composition contains a carbonate, it may preliminary be calcined at about 800°C to remove carbon.
- melt is quenched to form a glass.
- the quenching is simply carried out by pouring the melt on a metal plate such as iron plate at room temperature so as to form a glass which is suitable for use in the next wire-drawing step.
- the glass may, if possible, be made by pressing the poured melt between two metal plates.
- the glass preferably cut into a form of rod or plate, is wire-drawn to obtain a glass wire having a desired dimension.
- the step will be explained by referring to the attached drawings.
- the glass 1 is fixed downwards to an end of dummy rod 2 and inserted in a quartz pipe 3 provided around with a heater 4, when the rod 2 is put down by a transfer means 5, the glass 1 fixed to the rod 2 is heated by the heater 4 to soften, whereby commencing wire-drawing.
- a drawn wire 6 is wound up on a winding means 8 via a capstan 7.
- the temperature used may be different depending upon respective oxide system, it is desirable to be a temperature corresponding to a viscosity of the soften glass ranging from 106 to 104 poises, which will decide the dimension of the drawn wire in a form of desired shape, for example thin tape.
- the drawn glass wire is subjected to a heat-treatment to make superconductive, that is, to recrystallize.
- the step is conducted under the following condition.
- the glass wire is kept at a crystal nucleus-forming temperature or a temperature making the rate of formation of crystal nucleus maximum (hereinafter referred to as 1st stage heating) for more than 1 hour, and then at a crystal-growing temperature or a temperature making the rate of growth of crystal maximum (hereinafter referred to 2nd stage heating) for more than 20 hour.
- the 1st stage heating temperature is one corresponding to a viscosity of the glass ranging from 1011 to 1012 poises, and about 420°C to about 430°C.
- the 2nd stage heating temperature is different depending on the composition of the system, it may be generally be 800°C to 870°C.
- the 1st stage heating may be omitted, and the glass wire may undergo only the 2nd stage heat-treatment.
- these heat treatments may be conducted in an atmosphere of the saturated vapor of the essential atom baring oxygen atom such as PbO.
- silver (Ag) acting as nucleus-forming adjuvant and having no influence in the superconductivity Jpn. J. Appl. Phys. Letter, 52(19), 9 May 1988
- silver acting as nucleus-forming adjuvant and having no influence in the superconductivity
- step(s) containing, alone or in combination, covering with a metal such as silver, applying pressure to, and/or subjecting to the heat-treatment at 800°C to 870°C, the resulting superconducting ceramic wire in order to enhance its property.
- the cover of the metal is provided around whole surface of the ceramic wire by any way such as insertion in a pipe of the metal, dipping into a molten bath of the metal and covering with tape(s) of the metal.
- the pressing is conducted by applying preferably about 1000 kg/cm2 to the drawn superconducting wire with or without the metal covered by rolling mill or other pressing machines.
- Fig.2 shows as an example, a wire 21 sandwiched between two silver foils 22 and 23 to be pressed towards right angular direction against plain. The pressing effects to increase the crystal cleavage of the wire.
- the heat-treatment is again carried out here with respect to the superconducting wire with or without being subjected to the above other treatments. This is carried out according to the 2nd stage heating.
- the combination of the pressing and the heat-treatment is preferable and carried out by such a way that heat-treatment is effected with respect to a wire, having been pressed, on the way of pressing, or during pressing. Such treatment in combination may be repeated several times, and enables to enhance significantly Jc of the resultant superconducting ceramic wire.
- the melting-quenching step enables to make a long glass wire having continuity, desired dimension, for example desired thickness, good flexibility and processability.
- the heat-treatment is carried out in an atmosphere where oxygen can freely go in and out, and hence prevents insufficiency of oxygen atom in the resulting superconducting ceramics.
- the heat-treatment enables to obtain a high density ceramic wire having a high Jc due to the use of an oxide glass which is amorphous and has a substantially theoretical density as compared with the use of a sintered oxide of the prior art.
- the superconducting ceramic wire obtained according to the present invention is being expected to be applied to transfer cable or magnet.
- the composition was molten at a temperature of 1150°C for 40 minuets in an alumina crucible.
- the resulting homogeneous melt was poured onto an iron plate, covered by another iron plate, and pressed into a glass plate having a thickness of 2mm.
- the glass plate was cut into a dimension of 5cm in width and 7cm in length, fixed longitudinally onto an end of a dummy rod in a wire-drawing apparatus shown in Fig. 1.
- the glass plate was wire-drawn at a temperature of 435°C of the heater in the apparatus to obtain a tape wire having 1.5mm width, 100»m thickness and 10m length, which has such a superior flexibility that it can be wound onto a mandrel of 10mm diameter.
- the wire was placed in a heat-treating furnace, heat-treated by the 1st stage heating at 430°C for 4 hours and then by 2nd stage heating at 820°C for 60 hours.
- Example 1 was repeated, provided that the 1st stage heating was effected at a 423°C for 4 hours and the 2nd stage heating was at 860°C for 100 hours.
- Example 1 was repeated, provided that a chemical composition was prepared by adding Ag2O to the chemical composition of Example 1 in an amount of 20% by weight thereof. The same procedure was repeated twice, and two ceramic wires (A and B), both having 1.5mm width, 100»m thickness and 10m, were obtained.
- wires had such superior flexibility that it can be wound onto a mandrel of 10mm diameter.
- Example 1 was repeated, provided that the 1st stage heating was omitted and the 2nd stage heating was effected by such a way that the tape wire was heated directly from a room temperature to 820°C and at this temperature for 60 hours in the heating apparatus.
- Jc 10 A/cm2 (4.2°K, zero magnetic field).
- the property is inferior as compared with those of wire obtained in Examples 1 and 2, but almost sufficient superconductivity is obtained.
- Example 4 was repeated, provided that the temperature and time of the 2nd stage heating were 860°C and 100 hours.
- Jc 10 A/cm2 (77°K, zero magnetic field).
- the superconducting ceramic wire obtained according to Example 1 was sandwiched between two silver foils of 3mm width and 300»m thickness and applied a pressure of 20 ton/cm2 (as shown in Fig. 2). Then the wire was heat-treated at 850°C for 50 hours. The combination of the pressing and heat-treatment was repeated once more.
- the critical current density of the thus obtained wire is as high as 3500 A/cm2 at 77°K, in the zero magnetic field.
- Example 1 was repeated, provided that the chemical composition was previously calcined at 800°C for 10 hours, pulverized and well mixed, that the melting time was 20 minuets and that the second heating was effected at 860°C for 240 hours.
- Example 1 was repeated, provided that the melting temperature was 1300°C.
- the inferior property as compared with that of the wire obtained in Example 1 is probably resulted from an alteration of the system of a contamination of the crucible component due to the high melting temperature.
- the superconducting ceramic wire obtained in Example 1 was heat-treated at 423°C for 4 hours (1st stage heating) and then at 840°C for 100 hours (2nd stage heating) in an atmosphere of saturated PbO vapor.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Compositions Of Oxide Ceramics (AREA)
Claims (18)
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes, umfassend die Stufen:(a) homogenes Verschmelzen einer ein Metalloxid bildenden chemischen Zusammensetzung, umfassend Bi, Sr, Ca und Cu, die in der Lage ist, in ein superleitendes Keramikmaterial überführt zu werden und Abschrecken der Schmelze unter Ausbildung eines Glases,(b) Drahtziehen des Glases bei einer Temperatur entsprechend einer Viskosität von 10⁶ - 10⁴ Poise des Glases,(c) Durchführen einer Wärmebehandlung des gezogenen Glases unter Ausbildung eines superleitenden Drahtes und(d) Überziehen des superleitenden Keramikdrahtes mit einem Metall.
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem das Metall Silber ist.
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem die Stufen weiterhin die Stufe umfassen:
(e) Anwendung von Druck auf den superleitenden Keramikdraht zur Beschleunigung der Kristallspaltung. - Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei welchem die Stufen weiterhin die Stufe umfassen:
(f) Durchführen der Wärmebehandlung des superleitenden Keramikdrahtes zur Erhöung der Superleitfähigkeit. - Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem die Stufen weiterhin in irgendeiner Kombination die Stufen umfassen:(d) Bedecken des superleitenden Keramikdrahtes mit einem Metall,(e) Anwendung von Druck auf den superleitenden Keramikdraht zur Beschleunigung der Kristallspaltung und(f) Durchführen der Wärmebehandlung des superleitenden Keramikdrahtes zur Erhöhung der Superleitfähigkeit.
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 5, bei dem die Kombination mehrmals wiederholt wird.
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem die Schmelztemperatur in der Stufe (a) nicht höher als 400°C plus der Schmelzpunkt der chemischen Zusammensetzung ist.
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem das Schmelzen durchgeführt wird in einem Tiegel aus Aluminiumoxid, Magnesiumoxid oder einem anderen feuerfesten Material, oder aus Platin, Gold oder einer wärmebeständigen Legierung daraus.
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem die Metalloxid bildende chemische Zusammensetzung eine Mischung von Verbindungen mit einem Sauerstoffatom der Metalle Bi, Pb, Sr, Ca und Cu enthält, unter Ausbildung eines superleitenden Keramikdrahtes aus einem Bi-Sr-Ca-Cu-O-System, oder einem (Bi plus Pb)-Sr-Ca-Cu-System, in welchem Pb in einem Atomgewichtsverhältnis von bis zu 35 % von Bi plus Pb enthalten ist.
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 9, bei dem das System das Metall in ein Atomgewichtsverhältnis von (Bi plus Pb):Sr:Ca:Cu = 2:2:2:3 enthält, wobei Pb entweder nicht vorhanden ist, oder bis zu 35 % von Bi plus Pb vorhanden ist.
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 10, bei dem Pb in dem System von 10 bis 35 % von Bi plus Pb vorhanden ist.
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 10, bei dem das Schmelzen bei 1150°C ± 100°C durchgeführt wird.
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem das Abschrecken durchgeführt wird, indem man das Glas auf eine Metallplatte bei Raumtemperatur gießt.
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem die Wärmebehandlung eine ausreichende Zeit bei einer Temperatur durchgeführt wird, bei welcher der Grad der Kristallbildung in dem Glas ein Maximum einnimmt.
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 1, bei dem die Wärmebehandlung eine ausreichende Zeit bei einer Temperatur durchgeführt wird, bei welcher der Grad der Kristallkernbildung in dem Glas ein Maximum einnimmt, und dann bei einer Temperatur, bei welcher der Grad der Kristallbildung in dem Glas ein Maximum einnimmt.
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 11, bei dem die Wärmebehandlung in einer Atmosphäre von gesättigtem Dampf von PbO, die zu der chemischen Zusammensetzung entsprechend dem System zugegeben wurde, durchgeführt wird.
- Verfahren zur Herstellung eines superleitenden Keramikdrahtes gemäß Anspruch 11, bei dem die chemische Zusammensetzung Silber in einer Menge enthält, die ausreichend ist zur Beschleunigung der Ausbildung des Kristallkerns.
- Verfahren gemäß Anspruch 9, bei dem die chemische Zusammensetzung, enthaltend die Verbindungen aus einem Metallcarbonat, zuvor bei etwa 800°C calciniert wird zur Entfernung des enthaltenden Kohlenstoffs.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP292210/88 | 1988-11-18 | ||
JP29221088 | 1988-11-18 | ||
JP259828/89 | 1989-10-04 | ||
JP1259828A JPH02263726A (ja) | 1988-11-18 | 1989-10-04 | 超電導セラミックスファイバの製造方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0369464A2 EP0369464A2 (de) | 1990-05-23 |
EP0369464A3 EP0369464A3 (en) | 1990-08-22 |
EP0369464B1 true EP0369464B1 (de) | 1995-06-07 |
Family
ID=26544305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89121306A Expired - Lifetime EP0369464B1 (de) | 1988-11-18 | 1989-11-17 | Methode zur Herstellung supraleitender keramischer Drähte |
Country Status (8)
Country | Link |
---|---|
US (1) | US4975416A (de) |
EP (1) | EP0369464B1 (de) |
CN (1) | CN1027776C (de) |
AU (1) | AU4463589A (de) |
BR (1) | BR8905840A (de) |
DE (1) | DE68922965T2 (de) |
ES (1) | ES2075843T3 (de) |
RU (1) | RU1831470C (de) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69024244D1 (de) * | 1989-03-30 | 1996-02-01 | Ngk Insulators Ltd | Verfahren zur Herstellung von supraleitendem Material auf Bismuth-Basis |
WO1990013517A1 (en) * | 1989-05-02 | 1990-11-15 | Nippon Steel Corporation | Oxide superconductor and method of producing the same |
JPH03261006A (ja) * | 1990-03-08 | 1991-11-20 | Sumitomo Electric Ind Ltd | 超電導線材の製造方法 |
EP0457929A1 (de) * | 1990-04-27 | 1991-11-27 | Siemens Aktiengesellschaft | Verfahren zum Herstellen eines hochtemperatur-supraleitenden Bauteiles und hochtemperatur-supraleitendes Bauteil |
DE4120257A1 (de) * | 1990-07-09 | 1992-01-16 | Siemens Ag | Verfahren zum herstellen eines hochtemperatur-supraleitenden bauteiles und hochtemperatur-supraleitendes bauteil |
JPH04121912A (ja) * | 1990-09-10 | 1992-04-22 | Sumitomo Electric Ind Ltd | ビスマス系酸化物高温超電導体の製造方法 |
FR2671425B1 (fr) * | 1991-01-04 | 1996-02-02 | Alsthom Cge Alcatel | Procede de fabrication d'un element du genre fil ou ruban en materiau a base d'oxyde supraconducteur a haute temperature critique et element ainsi obtenu. |
FR2677484B1 (fr) * | 1991-06-10 | 1993-08-20 | Alsthom Cge Alcatel | Procede de realisation par fibrage d'une fibre supraconductrice a haute temperature critique et fibre obtenue par ce procede. |
US5219832A (en) * | 1991-06-18 | 1993-06-15 | Dawei Zhou | High-tc superconducting ceramic oxide products and macroscopic and microscopic methods of making the same |
US5208215A (en) * | 1991-08-23 | 1993-05-04 | Industrial Technology Research Institute | Process for fabricating flexible BI-PB-SR-CA-CU-O superconducting tape |
DE4218950A1 (de) * | 1992-06-10 | 1993-12-16 | Hoechst Ag | Verfahren zur Herstellung eines Hochtemperatursupraleiters und daraus gebildeter Formkörper |
US5661114A (en) | 1993-04-01 | 1997-08-26 | American Superconductor Corporation | Process of annealing BSCCO-2223 superconductors |
US6194352B1 (en) * | 1994-01-28 | 2001-02-27 | American Superconductor Corporation | Multifilament composite BSCCO oxide superconductor |
US5660541A (en) * | 1994-10-13 | 1997-08-26 | General Atomics | Method for heat treating long lengths of silver clad high temperature superconductor |
US5814122A (en) * | 1995-12-12 | 1998-09-29 | Owens-Corning Fiberglas Technology, Inc. | Method of making hollow high temperature ceramic superconducting fibers |
US5987342A (en) * | 1996-08-30 | 1999-11-16 | American Superconductor Corporation | Laminated superconducting ceramic tape |
US6110606A (en) | 1996-08-30 | 2000-08-29 | American Superconductor Corporation | Cryogen protected superconducting ceramic tape |
US6444917B1 (en) | 1999-07-23 | 2002-09-03 | American Superconductor Corporation | Encapsulated ceramic superconductors |
JP4016601B2 (ja) * | 2000-07-14 | 2007-12-05 | 住友電気工業株式会社 | 酸化物超電導線材の製造方法とその製造方法に用いられる加圧熱処理装置 |
ES2334616A1 (es) * | 2008-02-04 | 2010-03-12 | Universidade De Santiago De Compostela | Limitador superconductor de corriente integrado en el intercambiador de calor de un refrigerador termoacustico. |
DE102012215708A1 (de) * | 2012-09-05 | 2014-03-06 | Osram Opto Semiconductors Gmbh | Vorratsbehälter für eine beschichtungsanlage und beschichtungsanlage |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4134747A (en) * | 1977-03-16 | 1979-01-16 | Corning Glass Works | Method of forming transparent and opaque portions in a reducing atmosphere glass |
JPS61225808A (ja) * | 1985-03-29 | 1986-10-07 | Kobe Steel Ltd | 超電導コイルの製造方法 |
EP0285168B1 (de) * | 1987-04-02 | 1995-02-22 | Sumitomo Electric Industries Limited | Supraleitender Draht und Verfahren zu seiner Herstellung |
JPS64674A (en) * | 1987-06-23 | 1989-01-05 | Mitsubishi Electric Corp | Connection method for oxide superconductor |
US4861751A (en) * | 1987-07-23 | 1989-08-29 | Standard Oil Company | Production of high temperature superconducting materials |
JPH01134819A (ja) * | 1987-11-18 | 1989-05-26 | Furukawa Electric Co Ltd:The | 酸化物系超電導線材の製造方法 |
-
1989
- 1989-11-13 US US07/435,039 patent/US4975416A/en not_active Expired - Fee Related
- 1989-11-14 AU AU44635/89A patent/AU4463589A/en not_active Abandoned
- 1989-11-17 EP EP89121306A patent/EP0369464B1/de not_active Expired - Lifetime
- 1989-11-17 ES ES89121306T patent/ES2075843T3/es not_active Expired - Lifetime
- 1989-11-17 DE DE68922965T patent/DE68922965T2/de not_active Expired - Fee Related
- 1989-11-17 RU SU894742467A patent/RU1831470C/ru active
- 1989-11-18 CN CN89108697A patent/CN1027776C/zh not_active Expired - Fee Related
- 1989-11-20 BR BR898905840A patent/BR8905840A/pt not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
Glas; Natur, Struktur und Eigenschaften, H. Scholze, Zweite Auflage, Springer Verlag, 1977, pp. 125, 126, 205 * |
Also Published As
Publication number | Publication date |
---|---|
AU4463589A (en) | 1990-05-24 |
EP0369464A3 (en) | 1990-08-22 |
DE68922965T2 (de) | 1995-11-23 |
EP0369464A2 (de) | 1990-05-23 |
BR8905840A (pt) | 1990-06-12 |
CN1044004A (zh) | 1990-07-18 |
ES2075843T3 (es) | 1995-10-16 |
US4975416A (en) | 1990-12-04 |
DE68922965D1 (de) | 1995-07-13 |
RU1831470C (ru) | 1993-07-30 |
CN1027776C (zh) | 1995-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0369464B1 (de) | Methode zur Herstellung supraleitender keramischer Drähte | |
US6291402B1 (en) | Method of making a superconductive oxide body | |
US5011823A (en) | Fabrication of oxide superconductors by melt growth method | |
JP2674979B2 (ja) | 超伝導体の製造方法 | |
DE69026659T2 (de) | Keramischer supraleitender Draht und Verfahren zu dessen Herstellung | |
US5384307A (en) | Oxide superconductor tape having silver alloy sheath with increased hardness | |
EP0311337B1 (de) | Verfahren zur Darstellung eines oxidischen supraleitenden Leiters und ein oxidischer supraleitender Leiter, hergestellt nach diesem Verfahren | |
US4992415A (en) | Method for fabricating ceramic superconductors | |
US5229357A (en) | Method of producing superconducting ceramic wire and product | |
CA1327119C (en) | Method of producing a superconductive oxide conductor | |
EP0445832B1 (de) | Verfahren zur Herstellung eines mit einer metallischen Schutzschicht versehenen supraleitenden Drahtes aus Keramik | |
AU656665B2 (en) | Method of producing superconducting ceramic wire | |
DE3855230T2 (de) | Verfahren zur Herstellung eines supraleitenden Gegenstandes | |
US5217943A (en) | Process for making composite ceramic superconducting wires | |
EP0304076B1 (de) | Verfahren zur Herstellung von supraleitenden Produkten | |
JP2742259B2 (ja) | 超電導線 | |
US5254529A (en) | Superconducting fibers made with yttrium and yttrium oxide interlayers and barium cuprate cover layers | |
JPS63304678A (ja) | 酸化物超電導回路の製造方法 | |
JP2573961B2 (ja) | 超電導線の製造方法 | |
JP2727565B2 (ja) | 超電導体の製造方法 | |
JP2549669B2 (ja) | 酸化物系超電導線 | |
US6531426B1 (en) | Neodymium gallate surface barrier for melt-processed YBa2Cu3Ox conductor with nickel sheath | |
Hermann et al. | Process for making superconducting wires | |
JPH01161621A (ja) | 酸化物系超電導線の製造方法 | |
JP3614461B2 (ja) | 高温超伝導体の熱処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE ES FR GB IT NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE ES FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19900810 |
|
17Q | First examination report despatched |
Effective date: 19930401 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT NL |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 68922965 Country of ref document: DE Date of ref document: 19950713 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2075843 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19961108 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19961111 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19961122 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19961128 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19961129 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19971130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980601 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19971117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980801 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980601 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19981212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051117 |