EP0363878A2 - Vorrichutung zur katalytischen Reinigung von Abgasen aus Brennkraftmaschinen - Google Patents

Vorrichutung zur katalytischen Reinigung von Abgasen aus Brennkraftmaschinen Download PDF

Info

Publication number
EP0363878A2
EP0363878A2 EP89118739A EP89118739A EP0363878A2 EP 0363878 A2 EP0363878 A2 EP 0363878A2 EP 89118739 A EP89118739 A EP 89118739A EP 89118739 A EP89118739 A EP 89118739A EP 0363878 A2 EP0363878 A2 EP 0363878A2
Authority
EP
European Patent Office
Prior art keywords
shell
annular cavity
exhaust gas
carrier shell
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89118739A
Other languages
English (en)
French (fr)
Other versions
EP0363878B1 (de
EP0363878A3 (de
Inventor
Enrique Santiago
Anton Rupp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arvin Industries Deutschland GmbH
Original Assignee
Zeuna Starker GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeuna Starker GmbH and Co KG filed Critical Zeuna Starker GmbH and Co KG
Publication of EP0363878A2 publication Critical patent/EP0363878A2/de
Publication of EP0363878A3 publication Critical patent/EP0363878A3/de
Application granted granted Critical
Publication of EP0363878B1 publication Critical patent/EP0363878B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2857Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets being at least partially made of intumescent material, e.g. unexpanded vermiculite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2350/00Arrangements for fitting catalyst support or particle filter element in the housing
    • F01N2350/02Fitting ceramic monoliths in a metallic housing
    • F01N2350/04Fitting ceramic monoliths in a metallic housing with means compensating thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2350/00Arrangements for fitting catalyst support or particle filter element in the housing
    • F01N2350/02Fitting ceramic monoliths in a metallic housing
    • F01N2350/06Fitting ceramic monoliths in a metallic housing with means preventing gas flow by-pass or leakage

Definitions

  • the invention relates to a device for the catalytic purification of exhaust gases from internal combustion engines with a metallic support shell with exhaust gas supply and exhaust discharge connections arranged on the end face, one or more catalytically active monolithic ceramic bodies being resiliently mounted in the support shell, and with an insulation shell which covers the support shell over its entire length Surrounds length, which only has fixed connections with the carrier shell adjacent to the exhaust gas inlet connector and the exhaust gas outlet connector, which otherwise forms an annular cavity between itself and the carrier shell and is provided with ventilation openings.
  • Such a device is known from DE-OS 29 13 733.
  • the ventilation openings are formed in that the two half-shells of the insulation shell do not abut one another at their longitudinal edges, but rather define two longitudinally extending columns through which air for cooling the ceramic body and its storage can enter the annular cavity.
  • the known device has the disadvantage that the exhaust gas entering the device through the exhaust gas supply connection on the carrier shell, which is cooled by the air flow entering the annular cavity, is cooled. Such cooling of the exhaust gas is undesirable, however, because it increases the light-off time of the device; The reactions required for cleaning the exhaust gas presuppose a minimum temperature of the exhaust gas, which is why cooling of the exhaust gas before entering the ceramic body should be avoided as far as possible.
  • Expandable mats which are increasingly used in the production of exhaust gas catalysts for storing the monolithic ceramic bodies, have the particular advantage that when they are heated for the first time they expand by a greater amount than their shrinkage during subsequent cooling, ie the expanded mats have after their first use Heating and re-cooling a greater extent than before; thus can the production of catalytic converters can be carried out comfortably by inserting the ceramic body, which is wrapped with an expansion mat, into the open housing, whereupon it is closed and heated; as a result of the heating, the inflatable mat expands and clamps the ceramic body firmly in the surrounding housing.
  • Inflatable mats require a constant temperature gradient from inside (ceramic body) to outside (housing) or a corresponding heat flow from inside to outside for their safe functioning. For this reason, cooling of the housing in the area of the inflatable mat is required.
  • a device for the catalytic purification of exhaust gases from internal combustion engines, in which the monoliths are mounted in the carrier shell by means of expansion mats, is known from DE-OS 34 32 283.
  • the carrier shell is cooled in the areas serving to support the monoliths, as a result of which the required heat flow is established from the inside to the outside;
  • the inside surfaces of the housing must be closed insulating areas, thermally insulating mats applied, which are covered by high-temperature-resistant shielding plates.
  • the invention has for its object to provide a generic catalyst, which is characterized by a high response speed.
  • the structure of the catalyst should be simple with reliable storage of the monoliths, and manufacturing outlay and manufacturing costs should be correspondingly low.
  • each ceramic body by means of a surrounding Inflatable mat is mounted within the carrier shell, that the ventilation openings of the insulation shell are arranged in the sections associated with the mounting of the ceramic body in the carrier shell, and that the annular cavity outside the ventilated sections is designed as chambers that are not flowed through and separated from these sections.
  • the support shell is cooled to a degree dependent on the design of the ventilation openings via the ventilation openings in the area of the storage of the ceramic bodies, that is to say the temperature of the support shell required for the optimal functioning of the expansion mat used can be set by appropriate design of the ventilation openings.
  • the ring-shaped cavity in the areas outside the storage of the ceramic bodies by virtue of its design as non-flow-through chambers, serves for insulation against heat losses, as a result of which the catalytic converter's light-off temperature is reached quickly.
  • the chambers through which the flow does not flow can be separated from the ventilated regions of the annular cavity in various ways; for example, sealing rings can be inserted between the carrier shell and the insulation shell; furthermore, it is possible to provide beads which protrude from one another in the insulation shell and / or in the carrier shell to separate the various functional areas - cooling on the one hand and insulation on the other hand.
  • the production of the exhaust gas catalytic converter according to the invention is extremely simple and can be carried out quickly and inexpensively, because the number of components is extremely low and high manufacturing tolerances can also be permitted.
  • the entire housing thus consists of only four components which are to be connected to one another. This leads to a considerable reduction in production costs compared to known embodiments of catalytic converters which have partial thermal insulation.
  • the insulation shell can at least partially function as a heat shield, which in the case of known catalysts generally between the catalyst and the vehicle floor and below the catalyst must take over. This also results in further structural simplifications of the overall arrangement.
  • the insulation shell has on both sides of the areas provided with the ventilation openings inwardly directed beads of a height which essentially corresponds to the thickness of the annular cavity.
  • the beads thus divide the annular cavity into several chambers, one of which is used for thermal insulation and the other of which is flowed through by cooling air entering and exiting through the ventilation openings.
  • the beads thus divide the annular cavity into different functional areas.
  • the beads can compensate for different thermal expansion of the carrier shell and the insulation shell, because they allow a certain axial movement of the regions of the insulation shell lying on both sides of the beads relative to one another. This function is particularly noteworthy for the manufacture of the carrier shell and the insulation shell different material is used.
  • Stainless steel for the carrier shell and aluminized sheet metal for the insulation shell can be used as the preferred material pairing.
  • sealing cords are clamped between the beads and the carrier shell, as a result of which the different functional areas of the annular cavity are optimally delimited from one another.
  • the beads have a suitably shaped cross section that receives the sealing cord. In particular, this also prevents the two metallic shells from rubbing against one another, for example in the event of vibrations or different thermal expansion.
  • the corresponding chambers separated from the flow through the annular cavity and separated by seals or beads or a seal or a bead on the one hand and the connection between the carrier shell and the insulation shell can be filled with a heat-insulating material.
  • individual or all of the chambers can be filled with a heat-insulating material which lie outside the areas that support the ceramic bodies.
  • a heat-insulating material which lie outside the areas that support the ceramic bodies.
  • different heat-insulating materials can also be used in the different chambers.
  • the ventilation openings are gill-shaped, that is to say they are shaped in such a way that they pass by the ventilation openings serving the cooling air inlet "Capture" the airstream flow and / or cause the cooling air contained in the annular cavity, which is caused by the airflow flowing past, to be extracted through the ventilation openings that serve to discharge the cooling air.
  • the supply of the cooling air to the carrier shell in the area of the storage of the ceramic body can be favored.
  • Appropriate design of the gill-shaped ventilation openings also makes it possible to even out the cooling over the entire circumference of the carrier shell, as a result of which stresses caused by temperature gradients are reduced.
  • the gill-shaped ventilation openings can additionally be designed in such a way that they impart a swirl to the cooling air entering the annular cavity; the tangential movement of the cooling air in the annular cavity which is thereby achieved also compares the temperature of the carrier shell along its circumference.
  • the heat transfer from the carrier shell to the cooling air can be improved by swirling the entire cooling air accordingly.
  • the ceramic bodies (1) with axial flow are supported in the carrier shell (3) via inflatable mats (2).
  • the carrier shell is longitudinally divided and has an upper half shell (3a) and a lower half shell (3b).
  • the exhaust gas catalytic converter is flowed through in the direction of arrow (4) from the exhaust gas supply nozzle (5) to the exhaust gas discharge nozzle (6).
  • the carrier shell (3) has transition cones (7) adjacent to the exhaust gas supply connection piece (5) and the exhaust gas discharge connection piece (6).
  • Deflection rings (8) are arranged in the direction of flow (4) in front of the ceramic bodies (1) in the carrier shell (3).
  • the carrier shell (3) is surrounded by an insulation shell (9), which has a fixed connection (10) with that only in the area of the exhaust gas supply connection piece (5) and the exhaust gas discharge connection piece (6).
  • the insulation shell (9) and the carrier shell (3) are arranged at an essentially uniform distance from one another, so that an annular cavity (11) is formed between them.
  • the insulation shell is provided with ventilation openings (12).
  • the ventilation openings in the region of the - in the flow direction (4) - first ceramic body (1a) are designed like a gill, so that the wind flow (13) is forced onto the carrier shell (3) and cools it.
  • the insulation shell (9) has inwardly directed, approximately semicircular beads (16) with a height which essentially corresponds to the distance between the insulation shell and the carrier shell.
  • the annular cavity (11) in a total of five chambers divided.
  • the chambers used for heat insulation in the area of the transition cones (7) and the central part (17) of the carrier shell (3) are filled with a heat-insulating material (18). In this way, the heat losses in front of and between the ceramic bodies (1) are reduced, so that the light-off temperature of the catalyst is reached quickly.
  • the first bead - in the direction of the flow through the catalyst - has in its center an annular, radially outwardly directed recess (19) into which a sealing cord (20) is inserted.
  • the sealing cord is clamped between the bead (16) and the carrier shell (3) and thus effectively separates the different functional areas of the annular cavity (11) from one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Das Gehäuse eines Abgaskatalysators mit in seinem Inneren über Blähmatten (2) gelagerten katalytischen Keramikkörpern (1) ist aus einer Trägerschale (3) und einer diese umgebende Isolationsschale (9) aufgebaut, die zwischen sich einen ringförmigen Hohlraum (11) einschließen. Die Isolationsschale (9) ist in den Bereichen, in denen die Keramikkörper (1) angeordnet sind, mit Ventilationsöffnungen (12) versehen, durch welche der Fahrtwindstrom (13) zur Kühlung der Trägerschale (3) in den der Lagerung der Keramikkörper (1) dienenden Bereichen in den ringförmigen Hohlraum (11) eintritt. In den übrigen Bereichen hat der ringförmige Hohlraum (11) eine isolierende Funktion und verhindert eine unerwünschte Abkühlung des Abgases.

Description

  • Die Erfindung betrifft eine Vorrichtung zur kata­lytischen Reinigung von Abgasen aus Brennkraftma­schinen mit einer metallischen Trägerschale mit stirnseitig angeordneten Abgaszuführ- und Abgasabführ­stutzen, wobei in der Trägerschale ein oder mehrere katalytisch aktive monolithische Keramikkörper nachgiebig gelagert sind, und mit einer Isolations­schale, welche die Trägerschale über ihre gesamte Länge umgibt, welche nur benachbart dem Abgaszuführ­stutzen und dem Abgasabführstutzen feste Verbindungen mit der Trägerschale besitzt, welche zwischen sich und der Trägerschale im übrigen einen ringförmigen Hohlraum bildet und mit Ventilationsöffnungen versehen ist.
  • Eine derartige Vorrichtung ist aus der DE-OS 29 13 733 bekannt. Bei der bekannten Vorrichtung werden die Ventilationsöffnungen dadurch gebildet, daß die beiden Halbschalen der Isolationsschale an ihren Längsrändern nicht aneinander anliegen, sondern vielmehr zwei in Längsrichtung verlaufende Spalten definieren, durch die Luft zur Kühlung des Keramik­körpers und dessen Lagerung in den ringförmigen Hohlraum eintreten kann.
  • Die bekannte Vorrichtung weist den Nachteil auf, daß das durch den Abgaszuführstutzen in die Vorrichtung eintretende Abgas an der Trägerschale, die durch den in den ringförmigen Hohlraum eintretenden Luftstrom gekühlt wird, eine Abkühlung erfährt. Eine derartige Abkühlung des Abgases ist jedoch unerwünscht, weil dadurch die Anspringzeit der Vorrichtung verlängert wird; die zur Reinigung des Abgases erforderlichen Reaktionen setzen nämlich eine Mindesttemperatur des Abgases voraus, weshalb eine Abkühlung des Abgases vor dem Eintreten in den Keramikkörper möglichst zu vermeiden ist.
  • Andererseits kann jedoch insbesondere bei der Verwen­dung einer Blähmatte zur Lagerung des Keramikkörpers in der Trägerschale auf deren Kühlung nicht verzichtet werden. Zwar besitzen Blähmatten, die bei der Her­stellung von Abgaskatalysatoren zur Lagerung der monolithischen Keramikkörper zunehmend Verwendung finden, insbesondere den Vorteil, daß sie sich bei ihrer erstmaligen Erwärmung um ein größeres Maß ausdehnen als ihrer Schrumpfung beim anschließenden Abkühlen entspricht, d.h. die Blähmatten besitzen nach ihrer erstmaligen Erwärmung und Wiederabkühlung eine größere Ausdehnung als vorher; somit kann die Herstellung von Abgaskatalysatoren bequem dadurch erfolgen, daß der mit einer Blähmatte umgewickelte Keramikkörper in das geöffnete Gehäuse eingelegt wird, woraufhin es geschlossen und erwärmt wird; durch die Erwärmung dehnt sich die Blähmatte aus und verspannt den Keramikkörper fest in dem ihn umgebenden Gehäuse. Blähmatten erfordern für ihr sicheres Funktionieren jedoch bei allen Betriebsbe­dingungen ein stetiges Temperaturgefälle von innen (Keramikkörper) nach außen (Gehäuse) bzw. einen entsprechenden Wärmefluß von innen nach außen. Aus diesem Grund ist eine Kühlung des Gehäuses im Bereich der Blähmatte erforderlich.
  • Eine Vorrichtung zur katalytischen Reinigung von Abgasen aus Brennkraftmaschinen, bei welcher die Monolithe mittels Blähmatten in der Trägerschale gelagert sind, ist aus der DE-OS 34 32 283 bekannt. Bei der bekannten Vorrichtung wird die Trägerschale in den der Lagerung der Monolithe dienenden Bereichen gekühlt, wodurch sich der erforderliche Wärmefluß von innen nach außen einstellt; um unerwünschte Wärmeverluste in den übrigen Bereichen zu vermeiden, sind auf den Innenflächen des Gehäuses in den zu isolierenden Bereichen thermisch isolierende Matten aufgebracht, die von hochtemperaturfesten Abschirm­blechen überdeckt sind. Um bei dieser bekannten Vorrichtung die Gefahr des Ausblasens der isolierenden Matten durch den pulsierenden Abgasstrom zu minimieren, ist eine aufwendige Verbindung des hochtemperaturfesten Abschirmbleches zum Gehäuse nötig, welche einerseits möglichst gasdicht sein soll, welche andererseits jedoch eine Kompensation der unterschiedlichen Wärmeausdehnung der aus verschiedenen Materialien hergestellten Bauteile zulassen muß. Die erforderliche hohe Fertigungsgenauigkeit bei den zahlreichen zu verwendenden Bauteilen führt insgesamt zu einer aufwendigen und somit kostenintensiven Herstellung des bekannten Katalysators.
  • Der Erfindung liegt die Aufgabe zugrunde, einen gattungsgemäßen Katalysator zu schaffen, der sich durch eine hohe Ansprechgeschwindigkeit auszeichnet. Gleichzeitig soll bei zuverlässiger Lagerung der Monolithe der Aufbau des Katalysators einfach und sollen Fertigungsaufwand und Herstellungskosten dementsprechend gering sein.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß jeder Keramikkörper mittels einer ihn umgebenden Blähmatte innerhalb der Trägerschale gelagert ist, daß die Ventilationsöffnungen der Isolationsschale in deren der Lagerung der Keramikkörper in der Trägerschale zugeordneten Abschnitten angeordnet sind und daß der ringförmige Hohlraum außerhalb der ventilierten Abschnitte als von diesen Abschnitten abgetrennte, nicht durchströmte Kammern ausgebildet ist.
  • Über die Ventilationsöffnungen im Bereich der Lagerung der Keramikkörper wird die Trägerschale in einem von der Gestaltung der Ventilationsöffnungen abhängigen Maß gekühlt, d.h. durch entsprechende Gestaltung der Ventilationsöffnungen läßt sich die für die optimale Funktion der verwendeten Blähmatte erforder­liche Temperatur der Trägerschale einstellen. Gleich­zeitig dient der ringförmige Hohlraum in den Bereichen außerhalb der Lagerung der Keramikkörper durch seine Ausgestaltung als nicht durchströmte Kammern zur Isolation gegen Wärmeverluste, wodurch die Anspringtemperatur des Katalysators rasch erreicht wird. Die Abtrennung der nicht durchströmten Kammern von den ventilierten Bereichen des ringförmigen Hohlraumes kann auf verschiedene Weise erfolgen; beispielsweise können Dichtungsringe zwischen die Trägerschale und die Isolationsschale eingelegt werden; ferner ist es möglich, zur Abtrennung der verschiedenen Funktionsbereiche - Kühlung einerseits und Isolierung andererseits - voneinander in der Isolationsschale und/oder in der Trägerschale in den ringförmigen Hohlraum vorspringende Sicken vorzusehen.
  • Die Herstellung des erfindungsgemäßen Abgaskatalysators ist äußerst einfach und kann rasch und kostengünstig erfolgen, weil die Zahl der Bauteile äußerst niedrig ist und zudem hohe Fertigungstoleranzen zugelassen werden können. Im Falle von einer jeweils aus zwei Halbschalen aufgebauten Trägerschale bzw. Isolations­schale besteht das gesamte Gehäuse somit aus lediglich vier Bauteilen, welche miteinander zu verbinden sind. Dies führt zu einer beträchtlichen Herabsetzung des Fertigungsaufwandes gegenüber bekannten Aus­führungsformen von Abgaskatalysatoren, welche über eine teilweise Wärmeisolierung verfügen. Zusätzlich kann die Isolationsschale zumindest teilweise die Funktion der Hitzeschutzschilde, welche bei bekannten Katalysatoren i.a. zwischen dem Katalysator und dem Fahrzeugboden sowie unterhalb des Katalysators angeordnet werden müssen, übernehmen. Auch dadurch ergeben sich weitere bauliche Vereinfachungen der Gesamtanordnung.
  • Bei einer bevorzugten Ausführungsform des erfindungs­gemäßen Abgaskatalysators besitzt die Isolationsschale beidseits der mit den Ventilationsöffnungen versehenen Bereiche nach innen gerichtete Sicken einer Höhe, die im wesentlichen der Dicke des ringförmigen Hohlraums entspricht. Die Sicken unterteilen so den ringförmigen Hohlraum in mehrere Kammern, von denen die einen der Wärmeisolierung dienen und die anderen von durch die Ventilationsöffnungen ein- und austretender Kühlluft durchströmt sind. Die Sicken unterteilen somit den ringförmigen Hohlraum in unterschiedliche Funktionsbereiche. Überdies können die Sicken eine unterschiedliche Wärmeaus­dehnung der Trägerschale und der Isolationsschale kompensieren, weil sie eine gewisse axiale Bewegung der beidseits der Sicken liegenden Bereiche der Isolationsschale relativ zueinander zulassen. Diese Funktion ist besonders dort hervorzuheben, wo für die Herstellung der Trägerschale und der Isolations­ schale unterschiedliches Material verwendet wird. Als bevorzugte Materialpaarung kann Edelstahl für die Trägerschale und aluminiertes Blech für die Isolationsschale verwendet werden.
  • In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Katalysators sind Dichtschnüre zwischen den Sicken und der Trägerschale eingeklemmt, wodurch die unterschiedlichen Funktionsbereiche des ringförmigen Hohlraums optimal gegeneinander abgegrenzt werden. Zu diesem Zweck besitzen die Sicken einen geeignet geformten Querschnitt, der die Dichtschnur aufnimmt. Dadurch wird insbesondere auch die Reibung der beiden metallischen Schalen aneinander, beispielsweise bei Erschütterungen oder unterschiedlicher Wärmedehnung, verhindert.
  • Zur Erhöhung ihrer wärmeisolierenden Funktion können die entsprechenden durch Dichtungen oder Sicken bzw. eine Dichtung oder eine Sicke einerseits und die Verbindung zwischen der Trägerschale und der Isolationsschale andererseits abgetrennten nicht durchströmte Kammern des ringförmigen Hohlraumes mit einem wärmeisolierenden Material gefüllt sein.
  • Je nach den Anforderungen an die Temperaturführung in dem Abgas vor, zwischen und nach den Keramikkörpern können einzelne oder sämtliche Kammern mit einem wärmeisolierenden Material gefüllt sein, welche außerhalb der die Keramikkörper tragenden Bereiche liegen. Auch kann in den unterschiedlichen Kammern, je nach Anforderung und Randbedingungen (Temperatur, zulässiger Wärmefluß), unterschiedliches wärmeiso­lierendes Material zum Einsatz kommen.
  • Ein bedeutender Vorteil der Anordnung des wärmeiso­lierenden Materials außerhalb der Trägerschale besteht darin, daß es gegenüber Ausblasen durch den pulsierenden Abgasstrom vollkommen geschützt ist. Dieser Erfolg läßt sich bei innerhalb der Trägerschale angeordneten wärmeisolierenden Schichten nie erreichen, und eine Annäherung an diesen vorteil­haften Zustand ist nur mit hohem technischen Aufwand möglich.
  • In einer bevorzugten Ausführungsform des erfindungs­gemäßen Abgaskatalysators sind die Ventilations­öffnungen kiemenförmig ausgebildet, d.h. sie sind so geformt, daß sie bei den dem Kühllufteintritt dienenden Ventilationsöffnungen den vorbeistreichenden Fahrtwindstrom "einfangen" und/oder die - durch den vorbeistreichenden Fahrtwindstrom hervorgerufene - Absaugung der in dem ringförmigen Hohlraum enthaltenen Kühlluft durch die dem Kühlluftaustritt dienenden Ventilationsöffnungen bewirken. Auf diese Weise läßt sich die Zuführung der Kühlluft an die Träger­schale im Bereich der Lagerung des Keramikkörpers begünstigen. Durch eine entsprechende Ausgestaltung der kiemenförmigen Ventilationsöffnungen läßt sich auch die Kühlung über den gesamten Umfang der Träger­schale vergleichmäßigen, wodurch durch Temperatur­gradienten hervorgerufene Spannungen vermindert werden. Die kiemenförmigen Ventilationsöffnungen können zusätzlich so gestaltet sein, daß sie der in den ringförmigen Hohlraum eintretenden Kühlluft einen Drall versetzen; die dadurch bewerkstelligte tangentiale Bewegung der Kühlluft in dem ringförmigen Hohlraum vergleichmäßig ebenfalls die Temperatur der Trägerschale längs ihres Umfanges. Zusätzlich läßt sich durch entsprechende Verwirbelung der gesamten Kühlluft der Wärmeübergang von der Träger­schale zur Kühlluft verbessern.
  • Um die Blähmatte vor einem möglichen Ausblasen durch den pulsierenden Abgasstrom zu schützen, besitzt eine vorteilhafte Ausführungsform des er­ findungsgemäßen Abgaskatalysators Abweisringe, welche in dem Trägergehäuse - in Strömungsrichtung gesehen - vor den Keramikkörpern angeordnet sind. Auf diese Weise läßt sich die Lebensdauer der Blähmatte und somit des Abgaskatalysators erhöhen.
  • Im folgenden wird eine Ausführungsform des erfindungs­gemäßen Abgaskatalysators anhand der Zeichnung näher erläutert, welche einen Axialschnitt durch einen Abgaskatalysator mit zwei Keramikkörpern zeigt.
  • Die axialdurchströmten Keramikkörper (1) sind über Blähmatten (2) in der Trägerschale (3) gelagert. Die Trägerschale ist längsgeteilt ausgebildet und besitzt eine obere Halbschale (3a) und eine untere Halbschale (3b). Der Abgaskatalysator wird in Richtung des Pfeiles (4) vom Abgaszuführstutzen (5) zum Abgasabführstutzen (6) durchströmt.
  • Benachbart dem Abgaszuführstutzen (5) und dem Abgas­abführstutzen (6) besitzt die Trägerschale (3) Übergangskonen (7). Abweisringe (8) sind - in Strö­mungsrichtung (4) - vor den Keramikkörpern (1) in der Trägerschale (3) angeordnet.
  • Die Trägerschale (3) ist von einer Isolationsschale (9) umgeben, welche mit jener nur im Bereich des Abgaszuführstutzen (5) und des Abgasabführstutzen (6) eine feste Verbindung (10) besitzt. Im übrigen sind die Isolationsschale (9) und die Trägerschale (3) mit einem - im wesentlichen gleichmäßigen - Abstand zueinander angeordnet, so daß ein ringförmiger Hohlraum (11) zwischen ihnen entsteht. In den Be­reichen, in denen die Keramikkörper (1) in der Trägerschale (3) gelagert sind, ist die Isolations­schale mit Ventilationsöffnungen (12) versehen. Die Ventilationsöffnungen im Bereich des - in Durch­flußrichtung (4) - ersten Keramikkörpers (1a) sind kiemenartig ausgebildet, so daß der Fahrtwindstrom (13) zwangsweise auf die Trägerschale (3) gerichtet wird und diese kühlt.
  • In der Ebene der Vorderkanten (14) und der Hinter­kanten (15) der Blähmatten (2) besitzt die Isolations­schale (9) nach innen gerichtete, angenähert halb­kreisförmige Sicken (16) mit einer Höhe, die im wesentlichen dem Abstand der Isolationsschale zur Trägerschale entspricht. Auf diese Weise wird der ringförmige Hohlraum (11) in insgesamt fünf Kammern unterteilt. Die der Wärmeisolierung dienenden Kammern im Bereich der Übergangskonen (7) und des Mittel­teils (17) der Trägerschale (3) sind mit einem wärmeisolierenden Material (18) gefüllt. Auf diese Weise werden die Wärmeverluste vor und zwischen den Keramikkörpern (1) verringert, so daß die Anspring­temperatur des Katalysators rasch erreicht wird.
  • Die - in Richtung der Durchströmung des Katalysators - erste Sicke besitzt in ihrer Mitte eine ringförmige, radial nach außen gerichtete Ausnehmung (19), in welche eine Dichtschnur (20) eingelegt ist. Die Dichtschnur wird zwischen der Sicke (16) und der Trägerschale (3) eingeklemmt und trennt so die unterschiedlichen Funktionsbereiche des ringförmigen Hohlraums (11) wirksam gegeneinander ab.

Claims (12)

1. Vorrichtung zur katalytischen Reinigung von Abgasen aus Brennkraftmaschinen mit einer metal­lischen Trägerschale (3) mit stirnseitig angeord­neten Abgaszuführstutzen (5) und Abgasabführ­stutzen (6), wobei in der Trägerschale (3) ein oder mehrere katalytisch aktive monolithische Keramikkörper (1) nachgiebig gelagert sind und mit einer Isolationsschale (9), welche die Träger­schale (3) über ihre gesamte Länge umgibt, welche nur benachbart dem Abgaszuführstutzen (5) und dem Abgasabführstutzen (6) feste Verbindungen (10) mit der Trägerschale (3) besitzt, welche zwischen sich und der Trägerschale im übrigen einen ringförmigen Hohlraum (11) bildet und mit Ventilationsöffnungen (12) versehen ist, dadurch gekennzeichnet,
daß jeder Keramikkörper (1) mittels einer ihn umgebenden Blähmatte (2) innerhalb der Träger­schale (3) gelagert ist,
daß die Ventilationsöffnungen der Isolations­schale (9) in deren der Lagerung der Keramikkörper in der Trägerschale (3) zugeordneten Abschnitten angeordnet sind,
und daß der ringförmige Hohlraum (11) außerhalb der ventilierten Abschnitte als von diesen Ab­schnitten abgetrennte, nicht durchströmte Kammern ausgebildet ist.
2. Vorrichtung gemäß Anspruch 1,
dadurch gekennzeichnet,
daß die Isolationsschale (9) zur Abtrennung der unterschiedlichen Bereiche des ringförmigen Hohlraumes (11) voneinander beidseits der mit den Ventilationsöffnungen (12) versehenen Bereiche nach innen gerichtete Sicken (16) mit einer Höhe besitzt, die im wesentlichen der Dicke des ringförmigen Hohlraums (11) entspricht.
3. Vorrichtung gemäß Anspruch 1 oder Anspruch 2,
dadurch gekennzeichnet,
daß der ringförmige Hohlraum (11) zumindest in der dem Abgaszuführstutzen (5) benachbarten ersten nicht durchströmten Kammer mit einem wärmeisolierenden Material (18) gefüllt ist.
4. Vorrichtung gemäß Anspruch 2 und Anspruch 3,
dadurch gekennzeichnet,
daß sämtliche durch Sicken (16) bzw. durch Sicken und Verbindungen (10) begrenzte Kammern des ringförmigen Hohlraumes (11), welcher außerhalb der die Keramikkörper (1) tragenden Bereiche der Trägerschale (3) liegen, mit einem wärmeiso­lierenden Material (18) gefüllt sind.
5. Vorrichtung gemäß einem der vorausgehenden An­sprüche,
dadurch gekennzeichnet,
daß die Ventilationsöffnungen (12) kiemenförmig ausgebildet sind.
6. Vorrichtung gemäß Anspruch 5,
dadurch gekennzeichnet,
daß die kiemenförmigen Ventilationsöffnungen (12) so geformt sind, daß sie dem in den ringför­migen Hohlraum (11) eintretenden Kühlluftstrom einen Drall bezüglich der Katalysatorachse ver­setzen.
7. Vorrichtung gemäß einem der vorausgehenden An­sprüche,
dadurch gekennzeichnet,
daß die Trägerschale (3) und die Isolationsschale (9) aus Halbschalenpaaren aufgebaut sind.
8. Vorrichtung gemäß einem der vorausgehenden An­sprüche,
dadurch gekennzeichnet,
daß in dem Trägergehäuse (3) - in Strömungsrichtung (4) gesehen - vor den Keramikkörpern (1) Abweisringe (8) angeordnet sind.
9. Vorrichtung gemäß einem der vorausgehenden Ansprüche,
dadurch gekennzeichnet,
daß mindestens zwischen eine Sicke (16) und die Trägerschale (3) eine Dichtschnur (20) eingeklemmt ist.
10. Vorrichtung gemäß Anspruch 9,
dadurch gekennzeichnet,
daß die Sicken (16) ringförmige, radial nach außen gerichtete Ausnehmungen (19) besitzen, in welche die Dichtschnüre (20) eingelegt sind.
11. Vorrichtung gemäß Anspruch 1,
dadurch gekennzeichnet,
daß die Abtrennung der ventilierten Abschnitte von den nicht durchströmten Kammern des ringför­migen Hohlraumes (11) durch Dichtringe erfolgt.
12. Vorrichtung gemäß Anspruch 11,
dadurch gekennzeichnet,
daß die Isolationsschale umlaufende, nach außen gerichtete Sicken aufweist, in welche die Dicht­ringe eingelegt sind.
EP89118739A 1988-10-10 1989-10-09 Vorrichutung zur katalytischen Reinigung von Abgasen aus Brennkraftmaschinen Expired - Lifetime EP0363878B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3834403A DE3834403A1 (de) 1988-10-10 1988-10-10 Vorrichtung zur katalytischen reinigung von abgasen aus verbrennungsmotoren
DE3834403 1988-10-10

Publications (3)

Publication Number Publication Date
EP0363878A2 true EP0363878A2 (de) 1990-04-18
EP0363878A3 EP0363878A3 (de) 1991-07-03
EP0363878B1 EP0363878B1 (de) 1992-12-30

Family

ID=6364751

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89118739A Expired - Lifetime EP0363878B1 (de) 1988-10-10 1989-10-09 Vorrichutung zur katalytischen Reinigung von Abgasen aus Brennkraftmaschinen

Country Status (2)

Country Link
EP (1) EP0363878B1 (de)
DE (2) DE3834403A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693616A1 (de) * 1994-07-22 1996-01-24 Friedrich Boysen GmbH & Co. KG Vorrichtung zur katalytischen Reinigung bzw. Zerlegung von heissen Agbasen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4314204C1 (de) * 1993-04-30 1994-11-03 Daimler Benz Ag Abgasanlage für eine Brennkraftmaschine eines Fahrzeuges
DE102005017725A1 (de) * 2005-04-15 2006-10-19 Emitec Gesellschaft Für Emissionstechnologie Mbh Wabenkörper mit Doppelmantelrohr
DE102019126062A1 (de) * 2019-09-27 2021-04-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Katalysatorgehäuse und Katalysatoranordnung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2401287A1 (de) * 1973-01-13 1974-07-18 Nissan Motor Abgasreinigungssystem
DE2301646A1 (de) * 1973-01-13 1974-08-01 Pforzheim Metallschlauch Katalysatortopf fuer abgasleitungen
US3978567A (en) * 1973-03-19 1976-09-07 Chrysler Corporation Method of making a catalytic reactor for automobile
DE2913733A1 (de) * 1978-04-08 1979-10-11 Fuji Heavy Ind Ltd Abgasreinigungsvorrichtung
DE3432283A1 (de) * 1984-09-01 1986-03-13 LEISTRITZ Maschinenfabrik GmbH, 8500 Nürnberg Katalytische abgasentgiftungseinrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2220921C2 (de) * 1972-04-28 1974-05-30 Zeuna-Staerker Kg, 8900 Augsburg Vorrichtung zur katalytischen reinigung der auspuffgase von brennkraftmaschinen
JPS51119407U (de) * 1975-03-25 1976-09-28
DE2515732A1 (de) * 1975-04-10 1976-11-11 Zeuna Staerker Kg Vorrichtung zum reinigen der abgase von brennkraftmaschinen
DE3524775C1 (de) * 1985-07-11 1986-09-04 Daimler-Benz Ag, 7000 Stuttgart In einem metallenen Gehaeuse angeordneter monolithischer Abgaskatalysator
DE3700070A1 (de) * 1987-01-02 1988-07-14 Eberspaecher J Vorrichtung fuer die katalytische reinigung von fahrzeugmotor-abgasen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2401287A1 (de) * 1973-01-13 1974-07-18 Nissan Motor Abgasreinigungssystem
DE2301646A1 (de) * 1973-01-13 1974-08-01 Pforzheim Metallschlauch Katalysatortopf fuer abgasleitungen
US3978567A (en) * 1973-03-19 1976-09-07 Chrysler Corporation Method of making a catalytic reactor for automobile
DE2913733A1 (de) * 1978-04-08 1979-10-11 Fuji Heavy Ind Ltd Abgasreinigungsvorrichtung
DE3432283A1 (de) * 1984-09-01 1986-03-13 LEISTRITZ Maschinenfabrik GmbH, 8500 Nürnberg Katalytische abgasentgiftungseinrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693616A1 (de) * 1994-07-22 1996-01-24 Friedrich Boysen GmbH & Co. KG Vorrichtung zur katalytischen Reinigung bzw. Zerlegung von heissen Agbasen

Also Published As

Publication number Publication date
EP0363878B1 (de) 1992-12-30
DE58903161D1 (de) 1993-02-11
EP0363878A3 (de) 1991-07-03
DE3834403A1 (de) 1990-04-12

Similar Documents

Publication Publication Date Title
EP0212243B1 (de) Halterung für einen metallischen Abgaskatalysatorträgerkörper und Verfahren zur Herstellung
EP2691618B1 (de) Kompakte abgasbehandlungseinheit mit mischbereich und verfahren zur vermischung eines abgases
EP0379538B1 (de) Den raum zwischen v-förmig angeordneten zylinderreihen einer brennkraftmaschine überdeckende haube
EP2233709B1 (de) Abgasbehandlungseinrichtung
DE19522935A1 (de) Modularer Katalysator und Auspuff für Verbrennungsmotor
DE2345383A1 (de) Verbrennungsmotor mit nachverbrennungseinrichtung
EP1013328B1 (de) Filtereinrichtung
DE2238255A1 (de) Auspuffsammler
WO2001011209A1 (de) Abgaskrümmer
DE112016004829T5 (de) Abgaswärmerückgewinnungsvorrichtung
EP0363878B1 (de) Vorrichutung zur katalytischen Reinigung von Abgasen aus Brennkraftmaschinen
EP0205895A1 (de) Abgasleitung einer Brennkraftmaschine
EP0005862B1 (de) Abgaskonverter für Brennkraftmaschinen
EP0256416A1 (de) Abgasreinigungsvorrichtung
EP3674523B1 (de) Abgasnachbehandlungssystem für einen verbrennungsmotor
EP2668382A1 (de) Katalysatoranordnung für eine abgasreinigungsvorrichtung einer brennkraftmaschine
DE10202005B4 (de) Filtereinrichtung
CH625852A5 (de)
DE2655750A1 (de) Vorrichtung zur aufnahme von koernigen katalysatoren
EP0668437A1 (de) Verfahren und Vorrichtung zur brennerthermischen Motorabgas-Nachbehandlung
DE4425995C2 (de) Vorrichtung zur katalytischen Reinigung bzw. Zerlegung von heißen Abgasen
EP0258813A1 (de) Schüttgutkatalysator
DE2549255A1 (de) Katalytische reinigungsanlage fuer die abgase von brennkraftmaschinen
EP1262640B1 (de) Abgasstrang einer Brennkraftmaschine, insbesondere Dieselmotor eines Nutzfahrzeuges wie Lastkraftwagen oder Omnibus, mit integrierten Abgasnachbehandlungs- und Schalldämpfungsvorrichtungen
DE10000568A1 (de) Thermisch isolierte Abgasreinigungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19910726

17Q First examination report despatched

Effective date: 19920331

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19921230

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19921230

Ref country code: SE

Effective date: 19921230

Ref country code: FR

Effective date: 19921230

Ref country code: GB

Effective date: 19921230

REF Corresponds to:

Ref document number: 58903161

Country of ref document: DE

Date of ref document: 19930211

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19921230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951222

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970701