EP0362944A1 - Dispositif d'extraction et d'accélération des ions dans un tube neutronique scellé à haut flux avec adjonction d'une électrode auxiliaire de préaccélération - Google Patents

Dispositif d'extraction et d'accélération des ions dans un tube neutronique scellé à haut flux avec adjonction d'une électrode auxiliaire de préaccélération Download PDF

Info

Publication number
EP0362944A1
EP0362944A1 EP89202462A EP89202462A EP0362944A1 EP 0362944 A1 EP0362944 A1 EP 0362944A1 EP 89202462 A EP89202462 A EP 89202462A EP 89202462 A EP89202462 A EP 89202462A EP 0362944 A1 EP0362944 A1 EP 0362944A1
Authority
EP
European Patent Office
Prior art keywords
ion
electrode
extraction
acceleration
acceleration electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89202462A
Other languages
German (de)
English (en)
Inventor
Henri Societe Civile S.P.I.D. Bernardet
Xavier Societe Civile S.P.I.D. Godechot
Claude Societe Civile S.P.I.D. Lejeune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SODERN SA
Koninklijke Philips NV
Original Assignee
SODERN SA
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SODERN SA, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical SODERN SA
Publication of EP0362944A1 publication Critical patent/EP0362944A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams

Definitions

  • the invention relates to a device for extracting and accelerating the ions of a high flux sealed neutron tube in which an ion source supplies from an ionized gas an ion beam extracted and accelerated at high energy by means of an acceleration electrode and which, projected onto a target electrode produces therein a fusion reaction causing an emission of neutrons as a function of the high value of potential difference existing between said source and said target electrode.
  • Neutron tubes of the same kind are used in techniques for examining matter by fast neutrons, thermal epithermal or cold: neutronography, analysis by activation, analysis by spectrometry of inelastic scatterings or radiative captures, scattering of neutrons etc ...
  • the d (3 H , 4 He ) n fusion reaction delivering 14 MeV neutrons is usually the most used due to its large cross section for relatively low ion energies.
  • the number of neutrons obtained per unit of charge passing through the beam is always increasing as the energy of the ions directed towards a thick target is itself increasing and this largely at the beyond the energies of the ions obtained in the sealed tubes currently available and supplied by a THT not exceeding 250 kV.
  • the erosion of the target by ion bombardment is one of the most determining.
  • Erosion is a function of the chemical nature and structure of the target on the one hand, the energy of the incident ions and their density distribution profile on the impact surface on the other.
  • the target consists of a hydrurable material (Titanium, Scandium, Zirconium, Erbium etc ...) capable of fixing and releasing large quantities of hydrogen without significant disturbance of its mechanical strength; the total quantity set is a function of the target temperature and the hydrogen pressure in the tube.
  • the target materials used are deposited in the form of thin layers, the thickness of which is limited by problems of adhesion of the layer to its support.
  • One way to delay erosion of the target is, for example, to form the absorbent active layer from a stack of identical layers isolated from each other by a diffusion barrier. The thickness of each of the active layers is of the order of the depth of penetration of the deuterium ions coming to strike the target.
  • Another way of protecting the target and therefore of increasing the lifetime of the tube consists in acting on the ion beam so as to improve its density distribution profile on the impact surface. At a constant total ion current on the target, which results in a constant neutron emission, this improvement will result from a distribution as uniform as possible of the current density over the entire surface offered by the target to the ion bombardment. .
  • One of the main causes of the inhomogeneity of the ion bombardment density profile results from the range of high voltages (between 100 and 400 kV) which must be applied between the electrodes of the tube to obtain a high production efficiency. 14 MeV neutrons.
  • the application of these high voltages to the extraction of ions and then to their acceleration by means of ion optics according to the state of the art requires at the level of the emission zone of the source, the use of either a grid or a deep channel limiting the penetration of the electric field inside the ion source.
  • a grid of conventional design cannot be used due to thermal constraints, and the structure of the equipotential lines penetrating inside a deep emission channel results in a significant homogeneity defect in the beam.
  • the interface zone between the ionized gas and the ion beam which is extracted therefrom then presents a concave surface with variable radius of curvature which makes the beam emerging from the source convergent but not laminar of the core type. more halot. This results in an overdensity factor on impact of the beam axis on the target.
  • the object of the invention is to provide a means of modifying the shape of the equipotentials inside the channel, so as to remedy the aforementioned lack of homogeneity.
  • said device further comprises an extraction-pre-acceleration electrode disposed between said ion source and said acceleration electrode and polarized at a value intermediate between that of the ion source and that of the acceleration electrode so as to decouple the ion extraction function from the ion acceleration function and thus obtain that the ionized gas-ion beam interface has a controlled shape varying from ideal flatness to a slight curvature of substantially constant radius, minimizing spherical aberrations and making said beam substantially laminar.
  • the extraction-pre-acceleration electrode In order to maintain its screen efficiency as a fixation of the equipotentials in the extraction and acceleration spaces, several embodiments given below by way of nonlimiting examples are possible.
  • the orifices of the extraction-pre-acceleration electrode are provided with grids of great transparency and of great thickness.
  • the orientation of the large dimension of the solid section of said grid is chosen so that it is parallel to the beam.
  • the materials used are refractory, with low sputtering under ion bombardment and with good thermal conductivity (molybdenum, tungsten, pyrolitic carbon, etc.).
  • the emission ports of the ion source for the same source are multiple.
  • the orifices of the extraction-pre-acceleration electrode are of the same order of magnitude in dimensions and one thus obtains a multi-beam assembly, without interception of the ions: the small dimension of the orifices of the extraction-pre-acceleration electrode allows as for a grid to screen the penetration of potential.
  • FIG. 1 shows the main basic elements of a sealed neutron tube 11 containing a gaseous mixture under low pressure to be ionized such as deuterium-tritium and which comprises an ion source 1 and an acceleration electrode 2 between which there is a very high potential difference allowing the extraction and acceleration of the ion beam 3 and its projection on the target electrode 4 where the fusion reaction takes place resulting in an emission of neutrons at 14 MeV for example.
  • a sealed neutron tube 11 containing a gaseous mixture under low pressure to be ionized such as deuterium-tritium and which comprises an ion source 1 and an acceleration electrode 2 between which there is a very high potential difference allowing the extraction and acceleration of the ion beam 3 and its projection on the target electrode 4 where the fusion reaction takes place resulting in an emission of neutrons at 14 MeV for example.
  • the ion source 1 secured to an insulator 5 for the passage of the THT supply connector is a Penning type source for example, consisting of a cylindrical anode 6, of a cathode structure 7 to which is incorporated a magnet 8 with an axial magnetic field which confines the ionized gas 9 around the axis of the anode cylinder and whose lines of force 10 show a certain divergence.
  • An ion emission channel 12 is formed in said cathode structure opposite the anode.
  • FIG. 2a shows the profile of the density J of bombardment of the ions in any radial direction 0r, from the point of impact 0 of the central axis of the beam on the surface of the target electrode for standard ion optics at a single electrode.
  • the shape of this profile highlights the inhomogeneous nature of this beam whose very high density in the central part decreases quickly when one moves away from it.
  • erosion takes place as a function of the bombardment density and the entire layer of hydrurable material of thickness e deposited on a substrate S is saturated with a deuterium-tritium mixture.
  • the depth of penetration of the deuterium-tritium energy ions represented in dotted lines is effected over a depth which is a function of this energy.
  • the erosion of the layer is such that the penetration depth l2 is greater than the thickness e in the most bombarded part; a part of the incident ions is implanted in the substrate and very quickly the atoms of deuterium and tritium are in supersaturation.
  • the cylindrical anode 6 is brought to a higher potential of the order of 4 kV than that of the cathode 7 itself brought to a very high voltage of 250 kV for example, positive with respect to the envelope of the tube.
  • the plasma ions are extracted from the source by the extraction-acceleration electrode 2 brought to the potential 0 of the mass, through the emission channel 12 formed in the cathode which thus plays the role of emission electrode .
  • the ion beam 3 thus formed bombards the target 4 also grounded.
  • the high potential difference between the emission and extraction-acceleration electrodes causes a strong penetration of the equipotentials inside the emission orifice 12.
  • the emission meniscus at the ionized gas-beam interface The ions then appear as a concave surface with a variable local radius of curvature. This results in aberrations in the space of extraction of the ions from the beam, such that all of the ions do not all focus at the same point on the axis of the beam, but in a succession of points spread over a certain range ⁇ f, which causes the bombardment of the target to be non-uniform.
  • the idea of the invention shown diagrammatically in FIG. 3 consists in interposing between the source 1 and the acceleration electrode 2 an extraction-pre-acceleration electrode 13 brought to a potential close to that of the emission electrode, for example +235 kV.
  • the small potential difference of 15 kV between the two electrodes tends to greatly attenuate and even eliminate the effect of penetration of the equipotentials into the emission orifices.
  • the ions are then extracted in a direction parallel to the axis of the beam, that is to say perpendicular to the equipotentials theoretically forming almost planar and parallel surfaces between the electrodes.
  • the result is a flat or slightly spherical shape of the emission meniscus at the ionized gas-ion beam interface.
  • the beam from this interface is laminar, that is to say that at any point of its volume it is transmitted only one trajectory. This laminarity character is preserved when it is focused under the effect of the high potential difference between the extraction-pre-acceleration 13 and acceleration 2 electrodes; it is the same during its impact on the target.
  • the parallelism of the beam requires that the quantity of ions that the source can deliver is roughly equivalent to the quantity of ions that can extract and accelerate under these conditions the ionic optics itself constituted by the electrodes.
  • the set of two ion source-ion optical elements must be suitably adapted to each other, according to well-known physical laws. Such an adaptation condition results in a potential difference of a few tens of kV between the extraction-pre-acceleration electrode and the source for the usual currents available, for acceleration voltages greater than 200 kV.
  • One can for example as indicated on the fiqure 4 provide a grid 14 the pre-acceleration extraction electrode 13 in order to obtain an electrostatic screen effect. But under the action of ion bombardment, this grid will heat up, hence the need to give it a large thickness to improve its thermal conductivity and to make it from a refractory material.
  • the solid section of the grid will be oriented to minimize interception of ions and therefore will be parallel to the beam.
  • FIG. 5 Another solution shown diagrammatically in FIG. 5 consists in having multiple emission orifices 15 of a few millimeters in unit diameter at the level of the ion source 1 and in aligning them with corresponding orifices 16 formed in the extraction electrode -preacceleration 13. This avoids the interception of ions by this electrode and therefore its heating while retaining the benefit of the screen effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

Dispositif d'extraction et d'accélération des ions dans un tube neutronique scellé à haut flux dans lequel un faisceau ionique (3) est extrait d'une source d'ions (1) puis accéléré au moyen d'une électrode d'accélération (2) pour être projeté sur une électrode cible (4) et y produire une réaction de fusion entraînant une émission de neutrons. Selon l'invention, ce dispositif comporte de plus une électrode d'extraction-préaccélération (13) qui, disposée entre la source d'ions et l'électrode d'accélération est polarisée à une valeur telle que ledit faisceau qu'elle extrait de la source soit rendu initialement parallèle ou faiblement divergent de façon à obtenir un faisceau d'ions laminaire dans l'ensemble de la zone de transfert source-électrode cible. Application aux générateurs de neutrons.

Description

  • L'invention concerne un dispositif d'extraction et d'accélération des ions d'un tube neutronique scellé à haut flux dans lequel une source d'ions fournit à partir d'un gaz ionisé un faisceau ionique extrait et accéléré à grande éner­gie au moyen d'une électrode d'accélération et qui, projeté sur une électrode cible y produit une réaction de fusion en­traînant une émission de neutrons fonction de la valeur élevée de différence de potentiel existant entre ladite source et la­dite électrode cible.
  • Les tubes neutroniques du même genre sont utilisés dans les techniques d'examen de la matière par neutrons rapi­des, thermiques épithermiques ou froids : neutronographie, analyse par activation, analyse par spectrométrie des diffu­sions inélastiques ou des captures radiatives, diffusion des neutrons etc...
  • L'obtention de la pleine efficacité de ces techni­ques nucléaires nécessite d'avoir, pour les niveaux d'émission correspondants, des durées de vie de tubes plus longues.
  • La réaction de fusion d(3H, 4He)n délivrant des neutrons de 14 MeV est habituellement la plus utilisée en rai­son de sa grande section efficace pour des énergies d'ions re­lativement faibles. Toutefois, quelle que soit la réaction utilisée, le nombre de neutrons obtenu par unité de charge transitant dans le faisceau est toujours croissant au fur et à mesure que l'énergie des ions dirigés vers une cible épaisse est elle-même croissante et ceci largement au delà des éner­gies des ions obtenus dans les tubes scellés actuellement dis­ponibles et alimentés par une THT n'excédant pas 250 kV.
  • Parmi les principaux facteurs limitatifs de la du­rée de vie d'un tube neutronique, l'érosion de la cible par le bombardement ionique est l'un des plus déterminants.
  • L'érosion est fonction de la nature chimique et de la structure de la cible d'une part, de l'énergie des ions in­cidents et de leur profil de répartition en densité sur la surface d'impact d'autre part.
  • Dans la plupart des cas, la cible est constituée par un matériau hydrurable (Titane, Scandium, Zirconium, Er­bium etc...) capable de fixer et de relâcher des quantités im­portantes d'hydrogène sans perturbation notable de sa tenue mécanique ; la quantité totale fixée est fonction de la tempé­rature de la cible et de la pression d hydrogène dans le tu­be. Les matériaux cibles utilisés sont déposés sous forme de couches minces dont l'épaisseur est limitée par des problèmes d'adhérence de la couche sur son support. Un moyen de retarder l'érosion de la cible consiste par exemple à former la couche active absorbante d'un empilage de couches identiques isolées les unes des autres par une barrière de diffusion. L'épaisseur de chacune des couches actives est de l'ordre de la profondeur de pénétration des ions deutérium venant frapper la cible.
  • Une autre façon de protéger la cible et donc d'ac­croître la durée de vie du tube consiste à agir sur le fais­ceau d'ions de manière à améliorer son profil de répartition en densité sur la surface d'impact. A courant d'ions total constant sur la cible, ce qui entraîne une émission neutroni­que constante, cette amélioration résultera d'une répartition aussi uniforme que possible de la densité de courant sur l'en­semble de la surface offerte par la cible au bombardement des ions.
  • L'une des causes principales de l'inhomogénéité du profil de densité de bombardement ionique découle de la gamme des tensions élevées (comprises entre 100 et 400 kV) qu'il faut appliquer entre les électrodes du tube pour obtenir un haut rendement de la production des neutrons de 14 MeV. L'ap­plication de ces fortes tensions à l'extraction des ions et ensuite à leur accélération au moyen d'optiques ioniques selon l'état de l'art, nécessite au niveau de la zone d'émission de la source, la mise en oeuvre soit d'une grille soit d'un canal profond limitant la pénétration du champ électrique à l'inté­rieur de la source d'ions.
  • Une grille de conception classique ne peut être utilisée en raison des contraintes thermiques, et la structure des lignes équipotentielles pénétrant à l'intérieur d'un canal d'émission profond entraîne un défaut d'homogénéité important du faisceau. Par suite des aberrations qui en résultent, la zone d'interface entre le gaz ionisé et le faisceau ionique qui en est extrait présente alors une surface concave à rayon de courbure variable qui rend le faisceau émergent de la sour­ce convergent mais non laminaire de type coeur plus halot. Il en résulte un facteur de surdensité à l'impact de l'axe du faisceau sur la cible.
  • Le but de l'invention est de procurer un moyen de modifier la forme des équipotentielles à l'intérieur du canal, de façon à pallier le défaut d'homogénéité précité.
  • A cet effet et conformément à l'invention, ledit dispositif comporte de plus une électrode d'extraction-préac­célération disposée entre ladite source d'ions et ladite élec­trode d'accélération et polarisée à une valeur intermédiaire entre celle de la source d'ions et celle de l'électrode d'ac­célération de façon à découpler la fonction extraction des ions de la fonction accélération des ions et obtenir ainsi que l'interface gaz ionisé-faisceau d'ions ait une forme maîtrisée variant de la planéité idéale à une légère courbure de rayon sensiblement constant, minimisant les aberrations de sphérici­té et rendant ledit faisceau sensiblement laminaire.
  • En pratique, pour obtenir des courants extraits suffisamment importants, il est nécessaire d'avoir des canaux d'émission assez ouverts ; l'électrode d'extraction-préaccélé­ration devra donc avoir des orifices au moins équivalents. Afin de lui conserver son efficacité d'écran en tant que fixa­tion des équipotentielles dans les espaces d'extraction et d'accélération, plusieurs réalisations données ci-après à ti­tre d'exemples non limitatifs sont possibles
  • - Les orifices de l'électrode d'extraction-préaccélé­ration sont munis de grilles à grande transparence et à for­te épaisseur. L'orientation de la grande dimension de la section pleine de ladite grille est choisie de telle façon qu'elle soit parallèle au faisceau. Les matériaux utilisés sont réfractaires, à faible pulvérisation sous bombardement ionique et à bonne conductibilité thermique (molybdène, tungstène, carbone pyrolitique...).
  • - Les orifices d'émission de la source d'ions pour une même source sont multiples. Les orifices de l'électrode d'extraction-préaccélération sont du même ordre de grandeur en dimensions et on obtient ainsi un ensemble multifais­ceaux, sans interception des ions : la faible dimension des orifices de l'électrode d'extraction-préaccélération permet comme pour une grille de faire écran à la pénétration du po­tentiel.
  • La description suivante en regard des dessins anne­xés, le tout donné à titre d'exemple, fera bien comprendre comment l'invention peut être réalisée.
    • La figure 1 représente le schéma de principe d'un tube neutronique scellé selon l'état de l'art antérieur.
    • La figure 2 montre les effets de l'érosion en pro­fondeur de la cible et le profil radial de densité de bombar­dement des ions.
    • La figure 3 représente le schéma de principe du dispositif d'extraction et d'accélération de l'invention.
    • La figure 4 représente schématiquement une variante du système d'extraction de l'invention avec l'électrode d'ex­traction-préaccélération munie d'une grille.
    • La figure 5 représente schématiquement une autre variante du système d'extraction et d'accélération de l'inven­tion avec plusieurs orifices d'extraction alignés sur des ori­fices correspondants pratiqués dans l'électrode d'extraction-­préaccélération.
  • Sur ces figures, les éléments identiques seront in­diqués par les mêmes chiffres de référence.
  • Le schéma de la figure 1 montre les principaux élé­ments de base d'un tube neutronique scellé 11 renfermant un mélange gazeux sous faible pression à ioniser tel que deuté­rium-tritium et qui comporte une source d'ions 1 et une élec­trode d'accélération 2 entre lesquelles existe une différence de potentiel très élevée permettant l'extraction et l'accélé­ration du faisceau d'ions 3 et sa projection sur l'électrode cible 4 où s'effectue la réaction de fusion entraînant une émission de neutrons à 14 MeV par exemple.
  • La source d'ions 1 solidaire d'un isolateur 5 pour le passage du connecteur d'alimentation en THT (non représen­té) est une source de type Penning par exemple, constituée d'une anode cylindrique 6, d'une structure cathodique 7 à la­quelle est incorporé un aimant 8 à champ magnétique axial qui confine le gaz ionisé 9 aux alentours de l'axe du cylindre d'anode et dont les lignes de force 10 accusent une certaine divergence. Un canal d'émission des ions 12 est pratiqué dans ladite structure cathodique en vis-à-vis de l'anode.
  • Les schémas de la fiqure 2 représentent les effets de l'érosion sur la cible au fur et à mesure que s'accentue le phénomène.
  • La figure 2a montre le profil de la densité J de bombardement des ions suivant une direction radiale quelconque 0r, à partir du point d'impact 0 de l'axe central du faisceau sur la surface de l'électrode cible pour une optique ionique standard à une seule électrode. La forme de ce profil met en valeur le caractère inhomogène de ce faisceau dont la densité très élevée dans la partie centrale décroit rapidement lors­qu'on s'en éloigne.
  • Sur la figure 2b l'érosion s'effectue en fonction de la densité de bombardement et toute la couche de matériau hydrurable d'épaisseur e déposée sur un substrat S est saturée en mélange deutérium-tritium. La profondeur de pénétration des ions énergétiques deutérium-tritium représentée en traits pointillés s'effectue sur une profondeur l₁ fonction de cette énergie.
  • Sur la figure 2c, l'érosion de la couche est telle que la profondeur de pénétration l₂ est supérieure à l'épais­seur e dans la partie la plus bombardée ; une partie des ions incidents s'implante dans le substrat et très rapidement les atomes de deutérium et de tritium sont en sursaturation.
  • Sur la figure 2d, les atomes de deutérium et de tritium se sont rassemblés pour donner des bulles qui, en éclatant ont formé des cratères et accru très rapidement l'érosion de la cible sur la profondeur l₃.
  • Ce dernier processus précède de peu la fin de vie du tube en entraînant soit un accroissement drastique des cla­quages (présence de microparticules résultant des éclatements de bulles), soit une pollution de la surface de la cible par les atomes pulvérisés absorbant l'énergie des ions incidents.
  • Dans la source d'ions 1 de type Penning représentée sur la figure 1, l'anode cylindrique 6 est portée à un poten­tiel supérieur de l'ordre de 4 kV à celui de la cathode 7 por­tée elle-même à une très haute tension de 250 kV par exemple, positive par rapport à l'enveloppe du tube.
  • Les ions du plasma sont extraits de la source par l'électrode d'extraction-accélération 2 portée au potentiel 0 de la masse, à travers le canal d'émission 12 pratiqué dans la cathode qui joue ainsi le rôle d'électrode d'émission. Le faisceau ionique 3 ainsi formé bombarde la cible 4 mise égale­ment à la masse.
  • La différence de potentiel élevée entre les élec­trodes d'émission et d'extraction-accélération provoque une forte pénétration des équipotentielles à l'intérieur de l'ori­fice d'émission 12. Le ménisque d'émission à l'interface gaz ionisé-faisceau d'ions se présente alors sous l'aspect d'une surface concave à rayon de courbure locale variable. Il en ré­sulte des aberrations au niveau de l'espace d'extraction des ions du faisceau, telles que l'ensemble des ions ne focalisent pas tous en un même point sur l'axe du faisceau, mais en une succession de points étalés sur une certaine plage Δf, ce qui entraîne l'inhomogénéité du bombardement de la cible.
  • Pour éliminer cette cause d'inhomogénéité du fais­ceau ionique, l'idée de l'invention schématisée sur la figure 3 consiste à interposer entre la source 1 et l'électrode d'ac­célération 2 une électrode d'extraction-préaccélération 13 portée à un potentiel voisin de celui de l'électrode d'émis­sion, par exemple de +235 kV. Ainsi la faible différence de potentiel de 15 kV entre les deux électrodes tend à atténuer fortement et même à éliminer l'effet de pénétration des équi­potentielles dans les orifices d'émission. Les ions sont alors extraits suivant une direction parallèle à l'axe du faisceau c'est-à-dire perpendiculaire aux équipotentielles formant théoriquement des surfaces quasiment planes et parallèles en­tre les électrodes. Il en résulte une forme plane ou légère­ment sphérique du ménisque d'émission à l'interface gaz ioni­sé-faisceau d'ions. Le faisceau issu de cet interface est la­minaire, c'est-à-dire qu'en tout point de son volume il n'est transmis qu'une seule trajectoire. Ce caractère de laminarité est conservé lorsqu'il est focalisé sous l'effet de l'écart de potentiel élevé entre les électrodes d'extraction-préaccéléra­tion 13 et d'accélération 2 ; il en est de même lors de son impact sur la cible.
  • Plus généralement, le parallélisme du faisceau exi­ge que la quantité d'ions que la source peut délivrer soit à peu près équivalente à la quantité d'ions que peut extraire et accélérer dans ces conditions l'optique ionique elle-même constituée par les électrodes. L'ensemble des deux éléments source d'ions-optique ionique doit être convenablement adapté mutuellement, selon les lois physiques bien connues. Une telle condition d'adaptation entraîne pour les courants usuels dis­ponibles une différence de potentiel de quelques dizaines de kV entre l'électrode d'extraction-préaccélération et la sour­ce, pour des tensions d'accélération supérieures à 200 kV.
  • Cette condition idéale ne peut être réalisée si l'orifice d'émission est trop large, ce qui est une nécessité impérative dans les tubes neutroniques pour obtenir des cou­rants suffisamment élevés. En effet, pour des diamètres de canaux de l'ordre de 1 à 2 cm pratiqués dans les électrodes d'émission et d'extraction-préaccélération, cette dernière ne remplit plus son efficacité d'écran vis-à-vis du champ élec­trique d'accélération à proximité de sa zone d'ouverture et son effet sur le faisceau extrait de la source se trouve donc très atténué. Pour pallier cet inconvénient, diverses solu­tions sont envisageables.
  • On peut par exemple comme indiqué sur la fiqure 4 munir d'une grille 14 l'électrode d'extraction préaccéléra­tion 13 afin d'obtenir un effet d'écran électrostatique. Mais sous l'action du bombardement des ions, cette grille va s'échauffer d'où la nécessité de lui donner une forte épais­seur pour améliorer sa conductibilité thermique et de la réa­liser en un matériau réfractaire. La section pleins de la grille sera orientée de façon à minimiser l'interception des ions et par conséquent sera parallèle au faisceau.
  • Une autre solution schématisée sur la figure 5 con­siste à disposer de multiples orifices d'émission 15 de quel­ques millimètres de diamétre unitaire au niveau de la source d'ions 1 et à les aligner avec des orifices correspondants 16 pratiqués dans l'électrode d'extraction-préaccélération 13. On évite ainsi l'interception des ions par cette électrode et donc son échauffement tout en conservant le bénéfice de l'ef­fet d'écran.

Claims (4)

1. Dispositif d'extraction et d'accélération des ions d'un tube neutronique scellé à haut flux dans lequel une sour­ce d'ions fournit à partir d'un gaz ionisé un faisceau ionique extrait et accéléré à grande énergie au moyen d'une électrode d'accélération et qui, projeté sur une électrode cible y pro­duit une réaction de fusion entraînant une émission de neu­trons fonction de la valeur élevée de différence de potentiel existant entre ladite source et ladite électrode cible, carac­térisé en ce qu'il comporte de plus une électrode d'extrac­tion-préaccélération disposée entre ladite source d'ions et ladite électrode d'accélération et polarisée à une valeur in­termédiaire entre celle de la source d'ions et celle de l'électrode d'accélération de façon à découpler la fonction extraction des ions de la fonction accélération des ions et obtenir ainsi que l'interface gaz ionisé-faisceau d'ions ait une forme maîtrisée variant de la planéité idéale à une légère courbure de rayon sensiblement constant, minimisant les aber­rations de sphéricité et rendant ledit faisceau sensiblement laminaire.
2. Dispositif selon la revendication 1, caractérisé en ce que ladite électrode d'extraction-préaccélération est munie d'une grille à grande transparence et à forte épaisseur, l'orientation de la section pleine de ladite grille étant choisie parallèle au faisceau.
3. Dispositif selon la revendication 2, caractérisé en ce que les matériaux utilisés pour ladite grille sont des ma­tériaux à faible pulvérisation sous bombardement ionique et à bonne conductibilité thermique tels que, à titre d'exemple non limitatif, le molybdène, le tungstène, le carbone pyrolitique.
4. Dispositif selon les revendications 1 et 2, carac­térisé en ce que ladite source d'ions est munie d'orifices d'émission multiples et alignés sur des orifices correspon­dants pratiqués dans l'électrode d'extraction-préaccélération.
EP89202462A 1988-10-07 1989-10-02 Dispositif d'extraction et d'accélération des ions dans un tube neutronique scellé à haut flux avec adjonction d'une électrode auxiliaire de préaccélération Withdrawn EP0362944A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8813184A FR2637723A1 (fr) 1988-10-07 1988-10-07 Dispositif d'extraction et d'acceleration des ions dans un tube neutronique scelle a haut flux avec adjonction d'une electrode auxiliaire de preacceleration
FR8813184 1988-10-07

Publications (1)

Publication Number Publication Date
EP0362944A1 true EP0362944A1 (fr) 1990-04-11

Family

ID=9370791

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89202462A Withdrawn EP0362944A1 (fr) 1988-10-07 1989-10-02 Dispositif d'extraction et d'accélération des ions dans un tube neutronique scellé à haut flux avec adjonction d'une électrode auxiliaire de préaccélération

Country Status (4)

Country Link
US (1) US5130077A (fr)
EP (1) EP0362944A1 (fr)
JP (1) JPH02144900A (fr)
FR (1) FR2637723A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441569B1 (en) 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions
CN105873350A (zh) * 2016-06-07 2016-08-17 中国工程物理研究院核物理与化学研究所 一种扫描微焦靶
CN105848402A (zh) * 2016-06-07 2016-08-10 中国工程物理研究院核物理与化学研究所 一种扫描靶
CN105848401A (zh) * 2016-06-07 2016-08-10 中国工程物理研究院核物理与化学研究所 一种等效微焦靶
CN105869693A (zh) * 2016-06-07 2016-08-17 中国工程物理研究院核物理与化学研究所 一种中子源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3569756A (en) * 1964-08-18 1971-03-09 Philips Corp Ion source having a plasma and gridlike electrode
US3581093A (en) * 1968-04-23 1971-05-25 Kaman Sciences Corp Dc operated positive ion accelerator and neutron generator having an externally available ground potential target
US3664960A (en) * 1968-02-02 1972-05-23 Nat Res Dev Control circuit for neutron generator tube
NL7707357A (en) * 1977-07-04 1979-01-08 Philips Nv Anode for neutron generator ion source - has holes aligned to outlets in cathode converging beams on target
US4447773A (en) * 1981-06-22 1984-05-08 California Institute Of Technology Ion beam accelerator system
EP0230290A2 (fr) * 1986-01-21 1987-07-29 Leybold Aktiengesellschaft Grille d'extraction pour une source d'ions et son procédé de fabrication

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015032A (en) * 1959-03-23 1961-12-26 Jersey Prod Res Co Radiation generating device
GB981297A (en) * 1963-01-14 1965-01-20 Atomic Energy Authority Uk Apparatus for carrying out a nuclear reaction
NL289180A (fr) * 1965-03-11
JPS60170141A (ja) * 1984-02-13 1985-09-03 Toshiba Corp イオン源装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3569756A (en) * 1964-08-18 1971-03-09 Philips Corp Ion source having a plasma and gridlike electrode
US3664960A (en) * 1968-02-02 1972-05-23 Nat Res Dev Control circuit for neutron generator tube
US3581093A (en) * 1968-04-23 1971-05-25 Kaman Sciences Corp Dc operated positive ion accelerator and neutron generator having an externally available ground potential target
NL7707357A (en) * 1977-07-04 1979-01-08 Philips Nv Anode for neutron generator ion source - has holes aligned to outlets in cathode converging beams on target
US4447773A (en) * 1981-06-22 1984-05-08 California Institute Of Technology Ion beam accelerator system
EP0230290A2 (fr) * 1986-01-21 1987-07-29 Leybold Aktiengesellschaft Grille d'extraction pour une source d'ions et son procédé de fabrication

Also Published As

Publication number Publication date
US5130077A (en) 1992-07-14
JPH02144900A (ja) 1990-06-04
FR2637723A1 (fr) 1990-04-13

Similar Documents

Publication Publication Date Title
FR2926668A1 (fr) Source d'electrons a base d'emetteurs de champs pour radiographie multipoint.
EP0473233B1 (fr) Tube neutronique à flux élevé
EP0338619B1 (fr) Générateur de neutrons à haut flux avec cible à grande durée de vie
EP0988645A1 (fr) Tube a rayons x comportant une source d'electrons a micropointes et des moyens de guidage magnetique
GB2427961A (en) An atom probe using a picosecond or femtosecond laser
EP0362946A1 (fr) Dispositif d'extraction et d'accélération des ions limitant la réaccélération des électrons secondaires dans un tube neutronique scellé à haut flux
EP0362947B1 (fr) Tube neutronique scellé équipé d'une source d'ions multicellulaire à confinement magnétique
EP0307017B1 (fr) Implanteur d'ions métalliques
FR2660999A1 (fr) Manometre ameliore a ionisation pour pressions tres faibles.
EP0300566B1 (fr) Source d'ions de métaux liquides à arc sous vide
EP0362944A1 (fr) Dispositif d'extraction et d'accélération des ions dans un tube neutronique scellé à haut flux avec adjonction d'une électrode auxiliaire de préaccélération
EP2168136A2 (fr) Source micronique d'émission ionique
TW202013410A (zh) 用於具有一擴散障壁之電子發射器之金屬保護層
EP0340832B1 (fr) Tube neutronique scellé, à haut flux
EP0669461B1 (fr) Système d'optique ionique à trois grilles
EP0228318A1 (fr) Canon à électrons opérant par émission secondaire sous bombardement ionique
EP0362953A1 (fr) Tube neutronique scellé muni d'une source d'ions à confinement électrostatique des électrons
EP0362945A1 (fr) Dispositif de perfectionnement de la source d'ions de type Penning dans un tube neutronique
EP0295743B1 (fr) Source d'ions à quatre électrodes
EP0662607B1 (fr) Jauge à ionisation munie d'une cathode à micropointes
WO2014095888A1 (fr) Dispositif d'optique electronique
EP0165140A1 (fr) Source d'ions opérant par ionisation de surface, notamment pour la réalisation d'une sonde ionique
FR2623658A1 (fr) Dispositif fonctionnant avec ionisation par contact pour l'elaboration d'un rayon d'ions acceleres
Rasule et al. Emission of nickel kα line radiation by using a low energy plasma focus device
FR3134678A1 (fr) Procédé et système d’accélération d’électrons par interaction laser-plasma

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19901009

17Q First examination report despatched

Effective date: 19930308

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950104