EP0362945A1 - Dispositif de perfectionnement de la source d'ions de type Penning dans un tube neutronique - Google Patents

Dispositif de perfectionnement de la source d'ions de type Penning dans un tube neutronique Download PDF

Info

Publication number
EP0362945A1
EP0362945A1 EP89202463A EP89202463A EP0362945A1 EP 0362945 A1 EP0362945 A1 EP 0362945A1 EP 89202463 A EP89202463 A EP 89202463A EP 89202463 A EP89202463 A EP 89202463A EP 0362945 A1 EP0362945 A1 EP 0362945A1
Authority
EP
European Patent Office
Prior art keywords
anode
ion source
field
magnetic field
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89202463A
Other languages
German (de)
English (en)
Inventor
Henri Bernardet
Xavier Godechot
Claude Lejeune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SODERN SA
Koninklijke Philips NV
Original Assignee
SODERN SA
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SODERN SA, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical SODERN SA
Publication of EP0362945A1 publication Critical patent/EP0362945A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/04Ion sources; Ion guns using reflex discharge, e.g. Penning ion sources

Definitions

  • the invention relates to a Penning-type ion source device for a high flux sealed neutron tube in which said ion source with two electrodes (anode and cathode) forms an ionized gas channeled by a magnetic confinement field created by magnets or by any other means of creating said field and from which a high energy ion beam is projected onto a target electrode by means of an extraction and acceleration device to produce there a fusion reaction causing a neutron emission.
  • Neutron tubes of the same kind are used in the techniques of examination of matter by fast, thermal, epithermal or cold neutrons: neutronography, analysis by activation, analysis by spectrometry of inelastic scatterings or radiative captures, scattering of neutrons etc. .
  • the d (3 H , 4 He ) n fusion reaction delivering 14 MeV neutrons is usually the most used due to its large cross section for relatively low ion energies.
  • the number of neutrons obtained per unit of charge passing through the beam is always increasing as the energy of the ions directed towards a thick target is itself increasing and this largely at the beyond the energies of the ions obtained in the sealed tubes currently available and supplied by a THT not exceeding 250 kV.
  • the erosion of the target by ion bombardment is one of the most determining.
  • Erosion is a function of the chemical nature and structure of the target on the one hand, the energy of the incident ions and their density distribution profile on the impact surface on the other.
  • the target consists of a hydrurable material (Titanium, Scandium, Zirconium, Erbium etc ...) capable of fixing and releasing large quantities of hydrogen without significant disturbance of its mechanical strength; the total quantity set is a function of the target temperature and the hydrogen pressure in the tube.
  • the target materials used are deposited in the form of thin layers, the thickness of which is limited by problems of adhesion of the layer to its support.
  • One way to delay erosion of the target is, for example, to form the absorbent active layer from a stack of identical layers isolated from each other by a diffusion barrier. The thickness of each of the active layers is of the order of the depth of penetration of the deuterium ions coming to strike the target.
  • Another way of protecting the target and therefore of increasing the lifetime of the tube consists in acting on the ion beam so as to improve its density distribution profile on the impact surface. At a constant total ion current on the target electrode, which results in a constant neutron emission, this improvement will result from a distribution as uniform as possible of the current density over the whole of the surface offered by the target for bombardment. ions.
  • the ions are generally supplied by a Penning type ion source which has the advantage of being robust, of being cold cathode (hence a long service life), of give large discharge currents for low pressures (of the order of 10 A / torr), to have a high extraction efficiency (from 20 to 40%) and to be of small dimensions.
  • this type of source has the drawback of requiring a magnetic field of the order of a thousand gauss which introduces a significant inhomogeneity of density of the current of the ions inside the discharge and at the level of the emission zone. ions.
  • the object of the invention is to make the ion density more homogeneous at the emission level by modifying the Penning structure according to the prior art.
  • said magnetic field is made more divergent in the direction of the ion emission zone, by action on said magnets or on any other means of creating said field, modifying the confinement of ionizing electrons of the discharge and therefore of the ionization which results therefrom, being compensated by the adaptation of the shape and / or of the dimensions and / or of the positioning of the anode in said ion source.
  • the anode is of frustoconical shape with the largest diameter on the side of the low values of the magnetic field to take account of the divergence of the lines of force towards the zone of emission of the ions.
  • the circular anode is reduced in height and brought closer to the cathode in the zone of strong gradient of the magnetic field.
  • FIG. 1 shows the main basic elements of a sealed neutron tube 11 containing a gaseous mixture under low pressure to be ionized such as deuterium-tritium and which comprises an ion source 1 and an acceleration electrode 2 between which there is a very high potential difference allowing the extraction and acceleration of the ion beam 3 and its projection on the target 4 where the fusion reaction takes place resulting in the emission of neutrons at 14 MeV for example.
  • a sealed neutron tube 11 containing a gaseous mixture under low pressure to be ionized such as deuterium-tritium and which comprises an ion source 1 and an acceleration electrode 2 between which there is a very high potential difference allowing the extraction and acceleration of the ion beam 3 and its projection on the target 4 where the fusion reaction takes place resulting in the emission of neutrons at 14 MeV for example.
  • the ion source 1 secured to an insulator 5 for the passage of the THT supply connector is a Penning type source for example, consisting of a cylindrical anode 6, of a cathode structure 7 to which is incorporated a magnet 8 with an axial magnetic field which confines the ionized gas 9 around the axis of the anode cylinder and whose lines of force 10 show a certain divergence.
  • An ion emission channel 12 is formed in said cathode structure opposite the anode.
  • the cylindrical anode 6 is brought to a higher potential of the order of 4 kV than that of the cathode 7 itself brought to a very high voltage of 250 kV for example.
  • the set of magnets 8 provides a large magnetic field of the order of a thousand gauss.
  • the ions are extracted from the emission channel 12 formed in the cathode thus playing the role of emission electrode, by means of the acceleration electrode 2 carried as well as the target electrode 4 at the potential 0 of the mass.
  • the idea of the invention consists in modifying the confinement of the ionized gas by acting on the arrangement of the magnets of the assembly 8 so that the magnetic field be more divergent.
  • the reduction in the discharge current which results therefrom can be advantageously compensated by means of the solutions in FIGS. 3 and 4.
  • the circular anode has been replaced by a frustoconical anode 13 whose generators tend to follow the lines of force of the magnetic field 10.
  • the ionized gas 9 is more spread due to said modification of the confinement.
  • the diameters of the frustoconical anode must be increased in order to avoid the interception of the electrons.
  • the circular anode 14 is reduced in height and offset towards the strong field zone near the upper part of the cathode so as to always avoid the interception of the electrons.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

Dans un tube neutronique scellé à haut flux muni d'une source d'ions (1) de type Penning, le champ magnétique de confinement du gaz ionisé (9) est rendu plus divergent en direction de la zone d'émission des ions par action sur le système d'aimants (8) de la source d'ions. Le faisceau ionique issu du plasma est accéléré (2) et projeté sur une cible (4). La géométrie et la position de l'anode (13) à l'intérieur de la source d'ions s'adaptent à la topographie des lignes de force, pour une interception minimale des trajectoires des électrons ionisants oscillant dans la structure, adaptation obtenue en particulier par l'utilisation d'une anode tronconique dont les génératrices épousent les lignes de force.

Description

  • L'invention concerne un dispositif de source d'ions de type Penning d'un tube neutronique scellé à haut flux dans lequel ladite source d'ions à deux électrodes (anode et catho­de) forme un gaz ionisé canalisé par un champ magnétique de confinement créé par des aimants ou par tout autre moyen de création dudit champ et à partir duquel un faisceau ionique de grande énergie est projeté sur une électrode cible au moyen d'un dispositif d'extraction et d'accélération pour y produire une réaction de fusion entraînant une émission de neutrons.
  • Les tubes neutroniques du même genre sont utilisés dans les techniques d'examen de la matière par neutrons rapi­des, thermiques, épithermiques ou froids : neutronographie, analyse par activation, analyse par spectrométrie des diffu­sions inélastiques ou des captures radiatives, diffusion des neutrons etc...
  • L'obtention de la pleine efficacité de ces techni­ques nucléaires nécessite d'avoir, pour les niveaux d'émission correspondants, des durées de vie de tubes plus longues.
  • La réaction de fusion d(3H, 4He)n délivrant des neutrons de 14 MeV est habituellement la plus utilisée en rai­son de sa grande section efficace pour des énergies d'ions re­lativement faibles. Toutefois, quelle que soit la réaction utilisée, le nombre de neutrons obtenu par unité de charge transitant dans le faisceau est toujours croissant au fur et à mesure que l'énergie des ions dirigés vers une cible épaisse est elle-même croissante et ceci largement au delà des éner­gies des ions obtenus dans les tubes scellés actuellement dis­ponibles et alimentés par une THT n'excédant pas 250 kV.
  • Parmi les principaux facteurs limitatifs de la du­rée de vie d'un tube neutronique, l'érosion de la cible par le bombardement ionique est l'un des plus déterminants.
  • L'érosion est fonction de la nature chimique et de la structure de la cible d'une part, de l'énergie des ions in­cidents et de leur profil de répartition en densité sur la surface d'impact d'autre part.
  • Dans la plupart des cas, la cible est constituée par un matériau hydrurable (Titane, Scandium, Zirconium, Er­bium etc...) capable de fixer et de relâcher des quantités im­portantes d'hydrogène sans perturbation notable de sa tenue mécanique ; la quantité totale fixée est fonction de la tempé­rature de la cible et de la pression d'hydrogène dans le tube. Les matériaux cibles utilisés sont déposés sous forme de cou­ches minces dont l'épaisseur est limitée par des problèmes d'adhérence de la couche sur son support. Un moyen de retarder l'érosion de la cible consiste par exemple à former la couche active absorbante d'un empilage de couches identiques isolées les unes des autres par une barrière de diffusion. L'épaisseur de chacune des couches actives est de l'ordre de la profondeur de pénétration des ions deutérium venant frapper la cible.
  • Une autre façon de protéger la cible et donc d'ac­croître la durée de vie du tube consiste à agir sur le fais­ceau d'ions de manière à améliorer son profil de répartition en densité sur la surface d'impact. A courant d'ions total constant sur l'électrode cible, ce qui entraîne une émission neutronique constante, cette amélioration résultera d'une ré­partition aussi uniforme que possible de la densité de courant sur l'ensemble de la surface offerte par la cible au bombarde­ment d'ions.
  • Dans un tube neutronique scellé, les ions sont en général fournis par une source d'ions de type Penning qui a l'avantage d'être robuste, d'être à cathode froide (d'où une longue durée d'utilisation), de donner des courants de déchar­ge importants pour de faibles pressions (de l'ordre de 10 A/torr), d'avoir un rendement d'extraction élevé (de 20 à 40 %) et d'être de faibles dimensions.
  • Ce type de source présente par contre l'inconvé­nient de nécessiter un champ magnétique de l'ordre du millier de gauss qui introduit une inhomogénéité importante de densité du courant des ions à l'intérieur de la décharge et au niveau de la zone d'émission des ions.
  • Le but de l'invention est de rendre la densité d'ions plus homogène au niveau de l'émission par la modifica­tion de la structure Penning selon l'art antérieur.
  • A cet effet et conformément à l'invention, ledit champ magnétique est rendu plus divergent en direction de la zone d'émission des ions, par action sur lesdits aimants ou sur tout autre moyen de création dudit champ, la modification du confinement des électrons ionisants de la décharge et par con­séquent de l'ionisation qui en résulte, étant compensée par l'adaptation de la forme et/ou des dimensions et/ou du posi­tionnement de l'anode dans ladite source d'ions.
  • Cette adaptation peut être mise en oeuvre au moyen des artifices suivants :
    - l'anode est de forme tronconique avec le plus grand diamètre du côté des valeurs faibles du champ magnétique pour tenir compte de la divergence des lignes de force en direction de la zone d'émission des ions.
    - l'anode de forme circulaire est réduite en hauteur et rap­prochée de la cathode dans la zone de fort gradient du champ magnétique.
  • La description suivante en regard des dessins anne­xés, le tout donné à titre d'exemple, fera bien comprendre comment l'invention peut être réalisée.
    • La figure 1 représente le schéma de principe d'un tube neutronique scellé selon l'état de l'art antérieur.
    • La figure 2 montre les effets de l'érosion en pro­fondeur de la cible et le profil radial de densité de bombar­dement d'ions.
    • Les figures 3 et 4 représentent respectivement les schémas d'une première variante et d'une seconde variante de dispositifs d'extraction des ions selon l'invention.
  • Sur ces figures, les éléments identiques seront in­diqués par les mêmes signes de référence.
  • Le schéma de la figure 1 montre les principaux élé­ments de base d'un tube neutronique scellé 11 renfermant un mélange gazeux sous faible pression à ioniser tel que deuté­rium-tritium et qui comporte une source d'ions 1 et une élec­trode d'accélération 2 entre lesquelles existe une différence de potentiel très élevée permettant l'extraction et l'accélé­ration du faisceau d'ions 3 et sa projection sur la cible 4 où s'effectue la réaction de fusion entraînant une émission de neutrons à 14 MeV par exemple.
  • La source d'ions 1 solidaire d'un isolateur 5 pour le passage du connecteur d'alimentation en THT (non représen­té) est une source de type Penning par exemple, constituée d'une anode cylindrique 6, d'une structure cathodique 7 à la­quelle est incorporé un aimant 8 à champ magnétique axial qui confine le gaz ionisé 9 aux alentours de l'axe du cylindre d'anode et dont les lignes de force 10 accusent une certaine divergence. Un canal d'émission des ions 12 est pratiqué dans ladite structure cathodique en vis-à-vis de l'anode.
  • Les schémas de la fiqure 2 représentent les effets de l'érosion sur la cible au fur et à mesure que s'accentue le phénomène.
    • La figure 2a montre le profil de la densité J de bombardement des ions suivant une direction radiale quelconque 0r, à partir du point d'impact 0 de l'axe central du faisceau sur la surface de la cible. La forme de ce profil met en va­leur le caractère inhomogène de ce faisceau dont la densité très élevée dans la partie centrale décroît rapidement lors­qu'on s'en éloigne.
    • Sur la figure 2b l'érosion s'effectue en fonction de la densité de bombardement et toute la couche de matériau hydrurable d'épaisseur e déposée sur un substrat S est saturée en mélange deutérium-tritium. La profondeur de pénétration des ions énergétiques deutérium-tritium représentée en traits pointillés s'effectue sur une profondeur l₁ fonction de cette énergie.
    • Sur la figure 2c, l'érosion de la couche est telle que la profondeur de pénétration l₂ est supérieure à l'épais­seur e dans la partie la plus bombardée ; une partie des ions incidents s'implante dans le substrat et très rapidement les atomes de deutérium et de tritium sont en sursaturation.
    • Sur la figure 2d, les atomes de deutérium et de tritium se sont rassemblés pour donner des bulles qui, en éclatant ont formé des cratères et accru très rapidement l'érosion de la cible sur la profondeur l₃.
  • Ce dernier processus précède de peu la fin de vie du tube en entraînant soit un accroissement drastique des cla­quages (présence de microparticules résultant des éclatements de bulles), soit une pollution de la surface de la cible par les atomes pulvérisés absorbant l'énergie des ions incidents.
  • Dans la source d'ions 1 de type Penning représentée sur la figure 1, l'anode cylindrique 6 est portée à un poten­tiel supérieur de l'ordre de 4 kV à celui de la cathode 7 por­tée elle-même à une très haute tension de 250 kV par exemple.
  • L'ensemble d'aimants 8 fournit un champ magnétique important de l'ordre du millier de gauss.
  • Le rôle de ce champ magnétique est de limiter le mouvement transverse des charges formées à l'intérieur de l'anode par ionisation d'un mélange gazeux deutérium-tritium. Ce gaz ionisé est ainsi confiné aux alentours de l'axe de l'anode et en densité beaucoup plus élevée suivant cet axe. Il en résulte une inhomogénéité importante à l'intérieur de la décharge.
  • Les ions sont extraits à partir du canal d'émission 12 pratiqué dans la cathode jouant ainsi le rôle d'électrode d'émission, au moyen de l'électrode d'accélération 2 portée ainsi que l'électrode cible 4 au potentiel 0 de la masse.
  • L'inhomogénéité du gaz ionisé va se répercuter au niveau de l'extraction des ions plus importante sur l'axe que sur la périphérie du faisceau. Ainsi ce type d'inhomogénéité contribue pour une large part à l'érosion de la cible et par suite à la limitation de la durée de vie du tube.
  • Afin de rendre la densité d'ions plus homogène au niveau de l'extraction, l'idée de l'invention consiste à modi­fier le confinement du gaz ionisé en agissant sur la disposi­tion des aimants de l'ensemble 8 de façon que le champ magné­tique soit plus divergent. La réduction du courant de décharge qui en résulte peut être avantageusement compensée au moyen des solutions sur les figures 3 et 4.
  • Sur la figure 3, on a remplacé l'anode circulaire par une anode tronconique 13 dont les génératrices ont tendan­ce à épouser les lignes de force du champ magnétique 10. Le gaz ionisé 9 est plus étalé du fait de ladite modification du confinement. Les diamètres de l'anode tronconique devront être accrus afin d'éviter l'interception des électrons.
  • Sur la figure 4, l'anode circulaire 14 est réduite en hauteur et décalée vers la zone de fort champ à proximité de la partie supérieure de la cathode de façon à éviter tou­jours l'interception des électrons.
  • Ces modifications assurent une compensation sensi­ble du courant de décharge en même temps qu'une meilleure ho­mogénéité du faisceau.

Claims (3)

1. Dispositif de source d'ions de type Penning d'un tube neutronique scellé à haut flux dans lequel une source d'ions à deux électrodes (anode et cathode) forme un gaz ioni­sé canalisé par un champ magnétique de confinement créé par des aimants ou par tout autre moyen de création dudit champ et à partir duquel un faisceau ionique de grande énergie est pro­jeté sur une électrode cible au moyen d'un dispositif d'ex­traction et d'accélération pour y produire une réaction de fu­sion entraînant une émission de neutrons, caractérisé en ce que ledit champ magnétique est rendu plus divergent en direc­tion de la zone d'émission des ions par action sur lesdits ai­mants ou sur tout autre moyen de création dudit champ, la mo­dification du confinement des électrons ionisants de la dé­charge et par conséquent de l'ionisation qui en résulte, étant compensée par l'adaptation de la forme et/ou des dimensions et/ou du positionnement de l'anode dans ladite source d'ions.
2. Dispositif selon la revendication 1, caractérisé en ce que la forme de ladite anode est tronconique avec le plus grand diamètre du côté du champ magnétique faible pour tenir compte de la configuration des lignes de force dudit champ.
3. Dispositif selon la revendication 1, caractérisé en ce que ladite anode de forme circulaire est réduite en hauteur et rapprochée de la cathode dans la zone de fort champ magné­tique.
EP89202463A 1988-10-07 1989-10-02 Dispositif de perfectionnement de la source d'ions de type Penning dans un tube neutronique Withdrawn EP0362945A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8813185A FR2637724B1 (fr) 1988-10-07 1988-10-07 Dispositif de perfectionnement de la source d'ions de type penning dans un tube neutronique
FR8813185 1988-10-07

Publications (1)

Publication Number Publication Date
EP0362945A1 true EP0362945A1 (fr) 1990-04-11

Family

ID=9370792

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89202463A Withdrawn EP0362945A1 (fr) 1988-10-07 1989-10-02 Dispositif de perfectionnement de la source d'ions de type Penning dans un tube neutronique

Country Status (4)

Country Link
US (1) US5104610A (fr)
EP (1) EP0362945A1 (fr)
JP (1) JPH02148699A (fr)
FR (1) FR2637724B1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666477A1 (fr) * 1990-08-31 1992-03-06 Sodern Tube neutronique a flux eleve.
US6441569B1 (en) 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions
MX359737B (es) * 2013-12-31 2018-10-09 Halliburton Energy Services Inc Generador de neutrones de fuente de iones de nano emisores.
US9835760B2 (en) 2013-12-31 2017-12-05 Halliburton Energy Services, Inc. Tritium-tritium neutron generator and logging method
US10408968B2 (en) 2013-12-31 2019-09-10 Halliburton Energy Services, Inc. Field emission ion source neutron generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2806161A (en) * 1952-07-08 1957-09-10 Jr John S Foster Coasting arc ion source
LU46217A1 (fr) * 1963-06-12 1964-08-01

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3546513A (en) * 1968-03-11 1970-12-08 Us Air Force High yield ion source
US4714834A (en) * 1984-05-09 1987-12-22 Atomic Energy Of Canada, Limited Method and apparatus for generating ion beams
YU46728B (sh) * 1986-10-23 1994-04-05 VUJO dr. MILJEVIĆ Jonsko-elektronski izvor sa šupljom anodom

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2806161A (en) * 1952-07-08 1957-09-10 Jr John S Foster Coasting arc ion source
LU46217A1 (fr) * 1963-06-12 1964-08-01

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PULSED NEUTRON RESEARCH, PROC. SYMP., Karslruhe, vol. II, 10-14 mai 1965, pages 609-622; C.W. ELENGA et al.: "The generation of neutron pulses and modulated neutron fluxes with sealed-off neutron tubes" *
REVUE DE PHYSIQUE APPLIQUEE, vol. 12, no. 12, décembre 1977, pages 1835-1848; C. LEJEUNE et al.: "Multiduoplasmatron et multiduopigatorn: sources de plasma uniforme pour la formation de faisceaux d'ions multiamperes *

Also Published As

Publication number Publication date
US5104610A (en) 1992-04-14
FR2637724B1 (fr) 1990-12-28
FR2637724A1 (fr) 1990-04-13
JPH02148699A (ja) 1990-06-07

Similar Documents

Publication Publication Date Title
EP0473233B1 (fr) Tube neutronique à flux élevé
EP0338619B1 (fr) Générateur de neutrons à haut flux avec cible à grande durée de vie
FR2926668A1 (fr) Source d'electrons a base d'emetteurs de champs pour radiographie multipoint.
EP0362946A1 (fr) Dispositif d'extraction et d'accélération des ions limitant la réaccélération des électrons secondaires dans un tube neutronique scellé à haut flux
EP0362947B1 (fr) Tube neutronique scellé équipé d'une source d'ions multicellulaire à confinement magnétique
EP0645947B1 (fr) Tube neutronique à confinement magnétique des électrons par aimants permanents et son procédé de fabrication
EP0300566B1 (fr) Source d'ions de métaux liquides à arc sous vide
EP0340832B1 (fr) Tube neutronique scellé, à haut flux
EP0362945A1 (fr) Dispositif de perfectionnement de la source d'ions de type Penning dans un tube neutronique
EP0362953A1 (fr) Tube neutronique scellé muni d'une source d'ions à confinement électrostatique des électrons
EP0295743B1 (fr) Source d'ions à quatre électrodes
EP0362944A1 (fr) Dispositif d'extraction et d'accélération des ions dans un tube neutronique scellé à haut flux avec adjonction d'une électrode auxiliaire de préaccélération
FR3087902A1 (fr) Chambre a fission haute temperature
Hughes et al. Ion beams from laser‐generated plasmas
Miura et al. Stable generation of quasi-monoenergetic electron beams with laser-driven plasma-based acceleration by suppressing nanosecond prepulse
Gay Sources of metastable atoms and molecules
Lebedev et al. Experimental study of the pseudospark-produced electron beam for material processing
FR2598850A1 (fr) Obturateur de plasma a flux axial
Ehler et al. Origin of``energetic''ions from laser‐produced plasmas
FR2927761A1 (fr) Generateur de neutrons a foyer de plasma et procedes de fabrication de ce generateur
FR2618602A1 (fr) Source d'electrons
Rohrbach et al. Technical problems involved in H $ sub 2$ streamer chambers
Habanec A new type of ionic source
Morrison et al. Streamer discharges in streamer chambers, transverse lasers, and laser track chambers
Belmont Production of an intense source of micro-second proton pulses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19901009

17Q First examination report despatched

Effective date: 19930308

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950104