EP0361663A2 - Verfahren und Einrichtung für eine Roboterbahn - Google Patents

Verfahren und Einrichtung für eine Roboterbahn Download PDF

Info

Publication number
EP0361663A2
EP0361663A2 EP89308286A EP89308286A EP0361663A2 EP 0361663 A2 EP0361663 A2 EP 0361663A2 EP 89308286 A EP89308286 A EP 89308286A EP 89308286 A EP89308286 A EP 89308286A EP 0361663 A2 EP0361663 A2 EP 0361663A2
Authority
EP
European Patent Office
Prior art keywords
workpiece
coordinates
path
robot manipulator
correcting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89308286A
Other languages
English (en)
French (fr)
Other versions
EP0361663A3 (de
Inventor
Veliko Milenkovic
Bernard Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Werke GmbH
Ford France SA
Ford Motor Co Ltd
Ford Motor Co
Original Assignee
Ford Werke GmbH
Ford France SA
Ford Motor Co Ltd
Ford Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Werke GmbH, Ford France SA, Ford Motor Co Ltd, Ford Motor Co filed Critical Ford Werke GmbH
Publication of EP0361663A2 publication Critical patent/EP0361663A2/de
Publication of EP0361663A3 publication Critical patent/EP0361663A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/408Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by data handling or data format, e.g. reading, buffering or conversion of data
    • G05B19/4083Adapting programme, configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1684Tracking a line or surface by means of sensors

Definitions

  • This invention relates to a method and system for correcting the preprogrammed path of a robot manipulator to compensate for variability in the positioning of a workpiece.
  • a plethora of different types of robot manipulators is used in the industrial setting for performing a variety of tasks such as spray painting, spot welding, sealing, parts picking, and other operations.
  • a common setting involves the use of a robot manipulator to perform the same operation upon a succession of workpieces. This requires that each workpiece be received into the workstation of the robot and be fixtured in place during the robot's operation upon the workpiece.
  • An alternative to rigid fixturing of a workpiece involves placement of the workpiece in the approximate position required for the given operation followed by correction of the robot path to compensate for deviations from the idealized location of the workpiece. This is generally accomplished in a two-step process with the first step involving sensing of the precise location of the workpiece followed by correction of the robot path based upon the results of the sensing step.
  • U.S. Patents 4,017,721; 4,146,924; 4,380,696; 4,402,053; and 4,575,304 all disclose various details of systems which may be used for the purpose of sensing the position of a workpiece. These systems do not include a path correction method of the type disclosed herein.
  • Patents 4,432,063 and 4,433,382 disclose robot manipulators and control systems providing for movement of a robot manipulator on a piecewise digression from a preprogrammed path, followed by resumption of the program path. These systems do not include a system for correct a robot path in the wholesale fashion taught by this specification.
  • U.S. Patents 4,639,878 and 4,707,647 disclose methods and systems for sensing the placement of a workpiece and for correcting the path of a robot manipulator based upon the location of the workpiece.
  • the systems disclosed in the '878 and '647 patents require the solution of simultaneous equations by numerical techniques in order to obtain location data defining the position and attitude of the workpiece with respect to a fixed coordinate system. Such a method is both costly and time consuming.
  • a system operating according to this invention is able to use a small number of measurement points, for example, one or two points, depending upon the type of operation being performed, the architecture of the workpiece and the type of workpiece fixturing employed. Two points will provide a sufficient amount of data for the sealing or welding of a substantially straight seam located on a workpiece.
  • the systems disclosed in the '878 and '647 patents always require data from at least three measurement points.
  • a method for correcting a programmed path for a robot manipulator to compensate for variability in the location of a workpiece comprises the steps of sensing and measuring offsets between the idealized location and the actual location of the workpiece at a plurality of points, converting such measured offsets into translations and rotations of the workpiece by multiplying a matrix comprised of the offset measurement by a previously prepared conversion matrix, correcting the coordinates of waypoints within the programmed path by applying such translations and rotations to said coordinates and transforming the corrected preprogrammed path coordinates into machine-controlled coordinates. Thereafter, the method further includes providing a controller for the robot manipulator with such machine control coordinates.
  • the offsets may be measured at a plurality of waypoints extending along a path to be traversed by the robot manipulator.
  • the conversion matrix used in this method is formed according to the steps of converting machine control coordinates corresponding to a plurality of waypoints along an idealized motion path for the robot manipulator into world space coordinates and unit measurement direction vectors, followed by arrangement of a measurement matrix having rows comprised of the components of the unit measurement direction vectors and the components of the vector cross-products of world space coordinates and the unit measurement vectors and finally, inverting such measurement matrix.
  • the measurement matrix may be inverted according to several methods including the decomposition method.
  • a system for correcting a programmed path for a robot manipulator to compensate for variability in the location of a workpiece includes means for sensing and measuring path offsets between the idealized location and the actual location of a workpiece at a plurality of waypoints, and means for converting such measured offsets into translations and rotations of the workpiece by multiplying a matrix comprised of such offset measurements by a previously prepared conversion matrix.
  • a system according to this invention may further include means for correcting the coordinates of waypoints within the preprogrammed path by applying such calculated translations and rotations to such waypoint coordinates, and means for transforming the corrected preprogrammed path coordinates into machine control coordinates and for providing a controller for such robot manipulator with such machine control coordinates.
  • the means for sensing and measuring the path offsets in a system according to the present invention may comprise a single structured light device which projects a plane of light upon the workpiece and determines the position of the workpiece.
  • Figure 1 contains a schematic representation of a robot manipulator 10 including end effector 12.
  • the end effector may comprise a sealant application gun, a paint spray gun, a welding device, a drill, or other types of tools known to those skilled in the art and suggested by this disclosure.
  • robot manipulator 10 is shown as causing end effector 12 to traverse workpiece 18 along locus of end effector operation 19.
  • Locus 19 could comprise, without limitation, a weld seam, a seam to which sealer is to be applied, or a region which is to be machined by end effector 12.
  • Camera 14 and laser light source 16 are mounted adjacent to end effector 12. Although a laser light source is described herein, those skilled in the art will appreciate in view of this disclosure that similar structured light devices which project a plane of light upon the workpiece could be employed in practicing the present invention.
  • Laser light source 16 projects a plane of light which intersects with workpiece 18 along line 23 of Figure 1.
  • Camera 14 works in conjunction with microprocessor 20 to determine the offset of locus 19 by a triangulation method, for example.
  • Such methods are known in the art to which this invention pertains and in general involve storing an idealized image of the workpiece, which is compared with an actual image which is created as camera 14 views the workpiece, including locus 19 at a 45 degree angle from the plane of laser light.
  • U.S. Patent 4,188,544 which discloses a method and apparatus for determining the offset location of a workpiece, is hereby incorporated by reference into this workpiece, is hereby incorporated by reference into this specification.
  • a method and system according to the present invention may be employed with as few as a single measurement point, or as many as twenty or more points. Although a few points may be adequate for simple structures such as linear seams, more complex structures such as an automobile door may require 5 or 6 points. Those skilled in the art will appreciate in view of this disclosure that the use of additional points may require additional travel of the camera to added locations, which will, of course, increase the cycle time of the operation being performed by the robot.
  • the computer moves to block 36.
  • the offset array is multiplied by a previously prepared conversion matrix "M" to yield a six component vector.
  • the vector has the following form: where p x , p y , and p z and x , y and z represent the three-dimensional offsets and rotations of the workpiece from its idealized location.
  • correction matrix T is formed according to the following arrangement:
  • the computer moves to block 40, wherein the coordinates of the idealized robot manipulator path, as set forth in a world coordinate system, are corrected by multiplying each of the preprogrammed coordinates by matrix T.
  • the corrected world path coordinates are transformed at block 42 to machine control coordinates using any one of several known methods for performing this operation.
  • One such method is described in "Kinematics of Major Robot Linkage", which was authored by the present inventors and which was published in the Proceedings of the 13th. International Symposium on Industrial Robots, 1983, Volume 2. This article is hereby incorporated by reference herein.
  • the corrected machine control coordinates are sent to servo controller 22 via microprocessor 20 so that the robot's end effector 12 may be guided precisely along locus 19 in workpiece 18.
  • the steps contained within blocks 40-44 are repeated for each of the waypoints along the path the robot manipulator is programmed to traverse. With each new workpiece, the entire sequence is repeated, beginning with block 32.
  • Preparation of conversion matrix "M" is performed during a teaching phase of robot programming. Because the conversion matrix is formed only once, a system and method according to the present invention provides an economical use of computing resources insofar as the correction of the machine control coordinates to compensate for successive alignments of workpieces requires fewer calculations than conventional systems employing such methods as least squares or other types of solutions requiring the solving of large numbers of simultaneous equations representing differences between a preprogrammed robot path and the path necessitated by the actual orientation of a workpiece.
  • the first step in the formation of conversion matrix "M" is shown at block 24, Figure 2, wherein machine control coordinates of the expected path of end effector 12 are converted into world space coordinates and unit direction vectors for a series of waypoints prescribing the anticipated path of end effector 12.
  • Figure 1 shows the architecture of the world space coordinate and unit measurement direction vector systems used with a system and method according to this invention.
  • measurement matrix H is formed with the components of the unit measurement direction vectors and the components of the vector cross products of the world space coordinates and the unit measurement direction vectors.
  • measurement matrix H is inverted to form conversion matrix M.
  • This inversion may be done according to a variety of methods known to those skilled in the art and suggested by this disclosure. However, the decomposition method which is known to those skilled in the arts to which this invention pertains has proven to be useful for performing this operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)
EP89308286A 1988-09-26 1989-08-15 Verfahren und Einrichtung für eine Roboterbahn Withdrawn EP0361663A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/249,020 US4945493A (en) 1988-09-26 1988-09-26 Method and system for correcting a robot path
US249020 1988-09-26

Publications (2)

Publication Number Publication Date
EP0361663A2 true EP0361663A2 (de) 1990-04-04
EP0361663A3 EP0361663A3 (de) 1990-06-06

Family

ID=22941702

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89308286A Withdrawn EP0361663A3 (de) 1988-09-26 1989-08-15 Verfahren und Einrichtung für eine Roboterbahn

Country Status (2)

Country Link
US (1) US4945493A (de)
EP (1) EP0361663A3 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666761A1 (fr) * 1990-09-18 1992-03-20 Aerospatiale Procede et dispositif de guidage de moyens de prehension d'un robot.
WO1995007217A1 (de) * 1993-09-11 1995-03-16 Putzmeister-Werk Maschinenfabrik Gmbh Verfahren zur bearbeitung eines objekts mittels eines mindestens eine bearbeitungseinheit aufweisenden bearbeitungsgeräts
EP0937974A3 (de) * 1998-02-23 1999-12-15 Fanuc Ltd Roboter und Verfahren zur Kalibrierung eines auf dem Roboter befestigten Kraftsensors
EP1125695A3 (de) * 2000-02-15 2002-07-24 General Electric Company Robotischer Laserzeiger
FR2846413A1 (fr) * 2002-10-24 2004-04-30 Luc Vergnaud Dispositif de numerisation sans contact d'un objet en 3 dimensions
WO2004026673A3 (de) * 2002-09-13 2004-07-22 Daimler Chrysler Ag Verfahren und vorrichtung zur lagegenauen montage eines anbauteils an eine fahrzeugkarosserie
WO2004108363A1 (en) * 2003-06-11 2004-12-16 Abb Ab A method for fine tuning of a robot program
WO2016078760A1 (de) * 2014-11-21 2016-05-26 Kuka Roboter Gmbh Verfahren und system zur korrektur einer bearbeitungsbahn eines robotergeführten werkzeugs
CN106926233A (zh) * 2015-12-29 2017-07-07 楚天科技股份有限公司 一种平面机械手运动路径的规划方法
WO2018072134A1 (en) * 2016-10-19 2018-04-26 Abb Schweiz Ag Robot processing path automatic compensation method
CN108705530A (zh) * 2018-04-10 2018-10-26 广州启帆工业机器人有限公司 一种工业机器人路径自动修正的方法及系统
WO2019025130A1 (de) * 2017-07-31 2019-02-07 Siemens Aktiengesellschaft Bearbeitung von werkstücken mit fehlerkompensation
DE112020007606B4 (de) 2020-09-14 2024-06-13 Mitsubishi Electric Corporation Robotersteuervorrichtung

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208763A (en) * 1990-09-14 1993-05-04 New York University Method and apparatus for determining position and orientation of mechanical objects
US5083073A (en) * 1990-09-20 1992-01-21 Mazada Motor Manufacturing U.S.A. Corp. Method and apparatus for calibrating a vision guided robot
JPH04169905A (ja) * 1990-11-01 1992-06-17 Fanuc Ltd 3次元レーザの座標変換方式
US5535306A (en) * 1993-01-28 1996-07-09 Applied Materials Inc. Self-calibration system for robot mechanisms
US5390128A (en) * 1993-04-12 1995-02-14 Cargill Detroit Corporation Robotic processing and inspection system
JPH07266272A (ja) * 1994-03-29 1995-10-17 Nippon Telegr & Teleph Corp <Ntt> マニピュレータ用追従方法及び装置
JP3394322B2 (ja) 1994-05-19 2003-04-07 ファナック株式会社 視覚センサを用いた座標系設定方法
US6789039B1 (en) * 2000-04-05 2004-09-07 Microsoft Corporation Relative range camera calibration
US6591160B2 (en) * 2000-12-04 2003-07-08 Asyst Technologies, Inc. Self teaching robot
NO317898B1 (no) * 2002-05-24 2004-12-27 Abb Research Ltd Fremgangsmate og system for a programmere en industrirobot
SE525108C2 (sv) * 2002-12-30 2004-11-30 Abb Research Ltd Metod och system för programmering av en industrirobot, datorprogramprodukt, datorläsbart medium samt användning
RU2250498C2 (ru) * 2003-02-25 2005-04-20 Курский государственный технический университет Способ автоматической адаптивной трехмерной калибровки бинокулярной системы технического зрения и устройство для его реализации
SE526119C2 (sv) * 2003-11-24 2005-07-05 Abb Research Ltd Metod och system för programmering av en industrirobot
US7236854B2 (en) * 2004-01-05 2007-06-26 Abb Research Ltd. Method and a system for programming an industrial robot
RU2286598C1 (ru) * 2005-03-01 2006-10-27 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" Способ внешней калибровки бинокулярной системы технического зрения
DE602008000416D1 (de) * 2008-02-13 2010-01-28 Abb As System und Verfahren zur Visualisierung von Verfahrensfehlern
CN102371584B (zh) * 2010-08-11 2014-02-19 上海高威科电气技术有限公司 可扩展的工业机器人控制系统
EP2931485B1 (de) * 2012-12-14 2023-09-13 ABB Schweiz AG Freihändiges roboterpfad-training
US10865578B2 (en) 2016-07-15 2020-12-15 Fastbrick Ip Pty Ltd Boom for material transport
US10635758B2 (en) * 2016-07-15 2020-04-28 Fastbrick Ip Pty Ltd Brick/block laying machine incorporated in a vehicle
WO2019006511A1 (en) 2017-07-05 2019-01-10 Fastbrick Ip Pty Ltd REAL-TIME POSITION TRACKING AND ORIENTATION DEVICE
CN111226090B (zh) 2017-08-17 2023-05-23 快砖知识产权私人有限公司 具有改进的横滚角测量的激光跟踪器
WO2019033165A1 (en) 2017-08-17 2019-02-21 Fastbrick Ip Pty Ltd CONFIGURATION OF INTERACTION SYSTEM
US11401115B2 (en) 2017-10-11 2022-08-02 Fastbrick Ip Pty Ltd Machine for conveying objects and multi-bay carousel for use therewith
CA3098890A1 (en) 2018-04-30 2019-11-07 Path Robotics, Inc. Reflection refuting laser scanner
AU2019304101A1 (en) 2018-07-16 2021-02-04 Fastbrick Ip Pty Ltd Active damping system
CN112703092A (zh) 2018-07-16 2021-04-23 快砖知识产权私人有限公司 交互系统的备份跟踪
US10926416B2 (en) 2018-11-21 2021-02-23 Ford Global Technologies, Llc Robotic manipulation using an independently actuated vision system, an adversarial control scheme, and a multi-tasking deep learning architecture
US12385265B2 (en) 2020-04-22 2025-08-12 Fastbrick Ip Pty Ltd Block transfer apparatus and improved clamping assembly for use therewith
CN113618728A (zh) * 2020-05-09 2021-11-09 北京配天技术有限公司 机器人运动轨迹的补偿方法、装置及计算机存储介质
EP4179172A4 (de) 2020-07-08 2024-08-07 Fastbrick IP Pty Ltd Klebstoffauftragsystem
WO2022016152A1 (en) 2020-07-17 2022-01-20 Path Robotics, Inc. Real time feedback and dynamic adjustment for welding robots
CN112659121B (zh) * 2020-12-09 2024-03-29 北京配天技术有限公司 机器人磨轮半径补偿方法、装置、机器人及存储介质
MX2023009878A (es) 2021-02-24 2024-01-08 Path Robotics Inc Robots soldadores autonomos.
US12277369B2 (en) 2021-10-18 2025-04-15 Path Robotics, Inc. Generating simulated weld paths for a welding robot
EP4433264A1 (de) 2021-11-19 2024-09-25 Path Robotics, Inc. Auf maschinenlernlogik basierende einstelltechniken für roboter
CN114355840B (zh) * 2021-12-20 2024-07-05 深圳泰德激光技术股份有限公司 多轴机床校正方法、装置、终端及计算机可读存储介质
WO2025024988A1 (en) * 2023-07-28 2025-02-06 Abb Schweiz Ag Method and system for determining a path for processing a workpiece

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017721A (en) * 1974-05-16 1977-04-12 The Bendix Corporation Method and apparatus for determining the position of a body
US4146924A (en) * 1975-09-22 1979-03-27 Board Of Regents For Education Of The State Of Rhode Island System for visually determining position in space and/or orientation in space and apparatus employing same
US4402053A (en) * 1980-09-25 1983-08-30 Board Of Regents For Education For The State Of Rhode Island Estimating workpiece pose using the feature points method
US4380696A (en) * 1980-11-12 1983-04-19 Unimation, Inc. Method and apparatus for manipulator welding apparatus with vision correction for workpiece sensing
JPH065486B2 (ja) * 1981-03-26 1994-01-19 株式会社安川電機 ロボットの軌跡制御方法
US4433382A (en) * 1981-07-20 1984-02-21 Cincinnati Milacron Inc. Apparatus for automatically adjusting the programmed location of a robot arm
US4432063A (en) * 1981-10-06 1984-02-14 Cincinnati Milacron Inc. Apparatus for automatically moving a robot arm along a nonprogrammed path
JPS58177295A (ja) * 1982-04-07 1983-10-17 株式会社日立製作所 ロボット制御装置
US4590578A (en) * 1983-07-11 1986-05-20 United Technologies Corporation Off-line programmable robot
US4575802A (en) * 1983-07-11 1986-03-11 United Technologies Corporation Robot/workpiece orientation
US4639878A (en) * 1985-06-04 1987-01-27 Gmf Robotics Corporation Method and system for automatically determining the position and attitude of an object
US4707647A (en) * 1986-05-19 1987-11-17 Gmf Robotics Corporation Gray scale vision method and system utilizing same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477078A1 (de) * 1990-09-18 1992-03-25 AEROSPATIALE Société Nationale Industrielle Verfahren und Einrichtung zur Führung von Robotergreifarmen
FR2666761A1 (fr) * 1990-09-18 1992-03-20 Aerospatiale Procede et dispositif de guidage de moyens de prehension d'un robot.
WO1995007217A1 (de) * 1993-09-11 1995-03-16 Putzmeister-Werk Maschinenfabrik Gmbh Verfahren zur bearbeitung eines objekts mittels eines mindestens eine bearbeitungseinheit aufweisenden bearbeitungsgeräts
EP0937974A3 (de) * 1998-02-23 1999-12-15 Fanuc Ltd Roboter und Verfahren zur Kalibrierung eines auf dem Roboter befestigten Kraftsensors
US6382012B2 (en) 1998-02-23 2002-05-07 Fanuc Ltd. Method for calibrating force sensor mounted on robot, and robot
CZ301571B6 (cs) * 2000-02-15 2010-04-21 General Electric Company Kalibracní zamerovac, robotizovaný stroj s kalibracním zamerovacem, a zpusob nastavení robotizovaného stroje prostrednictvím kalibracního zamerovace
EP1125695A3 (de) * 2000-02-15 2002-07-24 General Electric Company Robotischer Laserzeiger
KR100784171B1 (ko) * 2000-02-15 2007-12-10 제너럴 일렉트릭 캄파니 캘리브레이션 포인터 및 그 사용 방법
WO2004026672A3 (de) * 2002-09-13 2004-09-23 Daimler Chrysler Ag Verfahren und vorrichtung zur lagegenauen montage einer klappe an einem bauteil
WO2004026673A3 (de) * 2002-09-13 2004-07-22 Daimler Chrysler Ag Verfahren und vorrichtung zur lagegenauen montage eines anbauteils an eine fahrzeugkarosserie
EP1539562B1 (de) 2002-09-13 2015-06-03 VMT Vision Machine Technic Bildverarbeitungssysteme GmbH Verfahren und vorrichtung zur lagegenauen montage eines anbauteils an eine fahrzeugkarosserie
WO2004040235A3 (fr) * 2002-10-24 2004-07-01 Luc Vergnaud Dispositif de numerisation sans contact d'un objet en 3 dimensions
FR2846413A1 (fr) * 2002-10-24 2004-04-30 Luc Vergnaud Dispositif de numerisation sans contact d'un objet en 3 dimensions
CN100396450C (zh) * 2003-06-11 2008-06-25 Abb公司 用于微调机器人程序的方法
WO2004108363A1 (en) * 2003-06-11 2004-12-16 Abb Ab A method for fine tuning of a robot program
WO2016078760A1 (de) * 2014-11-21 2016-05-26 Kuka Roboter Gmbh Verfahren und system zur korrektur einer bearbeitungsbahn eines robotergeführten werkzeugs
CN107073714A (zh) * 2014-11-21 2017-08-18 库卡罗伯特有限公司 用于修正机器人引导工具的加工轨迹的方法和系统
US10394216B2 (en) 2014-11-21 2019-08-27 Kuka Deutschland Gmbh Method and system for correcting a processing path of a robot-guided tool
CN106926233A (zh) * 2015-12-29 2017-07-07 楚天科技股份有限公司 一种平面机械手运动路径的规划方法
CN106926233B (zh) * 2015-12-29 2019-04-16 楚天科技股份有限公司 一种平面机械手运动路径的规划方法
WO2018072134A1 (en) * 2016-10-19 2018-04-26 Abb Schweiz Ag Robot processing path automatic compensation method
WO2019025130A1 (de) * 2017-07-31 2019-02-07 Siemens Aktiengesellschaft Bearbeitung von werkstücken mit fehlerkompensation
CN108705530A (zh) * 2018-04-10 2018-10-26 广州启帆工业机器人有限公司 一种工业机器人路径自动修正的方法及系统
CN108705530B (zh) * 2018-04-10 2021-01-19 广州启帆工业机器人有限公司 一种工业机器人路径自动修正的方法及系统
DE112020007606B4 (de) 2020-09-14 2024-06-13 Mitsubishi Electric Corporation Robotersteuervorrichtung

Also Published As

Publication number Publication date
EP0361663A3 (de) 1990-06-06
US4945493A (en) 1990-07-31

Similar Documents

Publication Publication Date Title
US4945493A (en) Method and system for correcting a robot path
EP0158447B2 (de) System zum Steuern eines Roboters in Zusammenhang mit einem Drehtisch
EP0188623B1 (de) Verfahren zum einstellen der werkzeugkoordinaten
FI83176B (fi) Foerfarande foer styrning av roerelser hos en robot och en styckemanipulator under en robotcells inlaerningsskede.
EP0123214B1 (de) Verfahren und Vorrichtung zur Betätigungslehre eines Industrieroboters
KR100311663B1 (ko) 여유축을이용하여물체의외형을추적하는장치및방법
US4590578A (en) Off-line programmable robot
US4659971A (en) Robot controlling system
CA1275670C (en) Kinematic parameter identification for robotic manipulators
JPH023808A (ja) ロボット・システム
Jinno et al. Development of a force controlled robot for grinding, chamfering and polishing
Khosla et al. An algorithm for seam tracking applications
JP2728399B2 (ja) ロボツトの制御方法
US4972347A (en) Method and apparatus for determining the correct tool dimensions for a three dimensional tool mounted on a manipulator
JPH06131032A (ja) ロボット装置およびロボット装置のティ−チング方法。
EP0172257A1 (de) Gradeinteilungsverfahren für eine automatische schweissmaschine
CN112297003A (zh) 设定机器人坐标系的装置、机器人控制装置、机器人系统以及方法
EP0359822B1 (de) Bahnsteuerverfahren für roboter
TSAI et al. Mathematical model for robotic arc-welding off-line programming system
JPS6111815A (ja) ロボツトの位置ズレ補正システム
KR100336459B1 (ko) 로봇의 오프-라인 제어 방법
JPH05324049A (ja) ロボットの作業軌跡教示装置
Bolmsjö Programming robot systems for arc welding in small series production
Red et al. Calibration control of robot vertical assembly
Park et al. Calibration-based absolute localization of parts for multi-robot assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB SE

17P Request for examination filed

Effective date: 19901030

17Q First examination report despatched

Effective date: 19921214

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19930427