EP0360104B1 - Method of and installations for producing wires of amorphous metallic alloys - Google Patents

Method of and installations for producing wires of amorphous metallic alloys Download PDF

Info

Publication number
EP0360104B1
EP0360104B1 EP89116705A EP89116705A EP0360104B1 EP 0360104 B1 EP0360104 B1 EP 0360104B1 EP 89116705 A EP89116705 A EP 89116705A EP 89116705 A EP89116705 A EP 89116705A EP 0360104 B1 EP0360104 B1 EP 0360104B1
Authority
EP
European Patent Office
Prior art keywords
jet
gas
alloy
nozzle
cooling liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89116705A
Other languages
German (de)
French (fr)
Other versions
EP0360104A1 (en
Inventor
Denis Bijaoui
Gérard Duchefdelaville
Guy Jarrige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Etablissements Michelin SCA filed Critical Compagnie Generale des Etablissements Michelin SCA
Priority to AT89116705T priority Critical patent/ATE92805T1/en
Publication of EP0360104A1 publication Critical patent/EP0360104A1/en
Application granted granted Critical
Publication of EP0360104B1 publication Critical patent/EP0360104B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/01Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars

Definitions

  • the invention relates to wires of amorphous metal alloys and in particular the methods and devices making it possible to obtain wires of amorphous metal alloys by rapid cooling in a liquid medium, these alloys being in particular based on iron.
  • the projected jet tends to resolve in drops, which causes either a discontinuity of the jet leading to the impossibility of having a continuous wire, or to the formation of a continuous wire whose section is irregular.
  • the patent US-A-3 845 805 describes a fixed system for producing metallic filaments by casting a jet in a cooling liquid which is circulated by passing it through a tube.
  • the jet passes through a gas which can possibly promote the formation of a stabilizing skin on the jet.
  • the thickness of this gas is very small, of the order of 0.2 cm.
  • the object of the invention is to remedy these drawbacks, by proposing the method according to claim 1 and the device according to claim 7, the preambles of these claims being based on the aforementioned US-A-4,523,626 patent.
  • the amorphous threads obtained with the process or the device according to the invention can be used, for example, to reinforce plastic or rubber articles, in particular tire casings.
  • FIG. 3 is a side view and Figure 4 is a section taken along a plane passing through the axis of rotation xx ′ and by the point of contact 0 of the jet 7 with the layer 8, this section being shown schematically by the segments in a straight line IV-IV in FIG. 3.
  • a part of the installation 21 is shown in detail in FIG. 5, this FIG. 5 being a section made along a plane passing through the axis yy ′ of the installation 21, the section of FIG. 5 being shown diagrammatically by the straight line segments VV in FIG. 4.
  • the installation 21 is arranged outside the drum 11.
  • This installation 21 comprises a reservoir 22 constituted by a ceramic crucible, for example made of zircon or alumina.
  • the crucible 22 rests on the insulating spacer 23 made for example of aluminous refractory concrete.
  • Around the crucible 22 is arranged a cylindrical jacket 24 made for example of zircon.
  • a stuffing 25 in the form of compacted powder of alumina.
  • the jacket 24 is surrounded by the induction coil 26 capable of melting the amorphizable alloy 4 based on iron by passage of electric current.
  • the assembly of the crucible 22, the spacer 23, the jacket 24 and the packing 25 is surrounded by an enclosure 27 comprising two walls 28, 29, made of steel, a coolant 30, for example water, being disposed between these walls 28, 29.
  • a part 31, in the form of an inverted cup, is disposed in the opening 32 passing through the bottom 33 of the crucible 22 and the bottom 34 of the enclosure 27.
  • the spacer 23 and the jacket 24 rest directly on the bottom 34 of the enclosure 27.
  • the cup 31 is made for example of zircon.
  • the top 35 of the cup 31 is crossed by a nozzle 36, made for example of zirconia or alumina, the part 31 therefore serving as a support for the nozzle 36.
  • the opening 37 of this nozzle 36 is disposed along the axis yy ′ which is the axis of the opening 32 and the axis of the installation 21.
  • the installation 21 also comprises a device 38 comprising the flange 39 which makes it possible to apply this device against the enclosure 27.
  • the device 38 also comprises the cylindrical enclosure 40, and the annular rim 41 on which is applied a part 42 in the form of an inverted cup, the top 43 of which has an opening 44 situated under the opening 37 of the nozzle 36 and having the axis yy ′.
  • the flange 39, the cylinder 40 and the flange 41 are made for example of steel and the part 42 is made of ceramic, for example of zircon.
  • the internal volume 45 of the cylinder 40, under the rim 41, and the internal volume 46 of the cup 42 communicate with each other through the opening 47 and together constitute the enclosure 48.
  • the seal at the flange 39 is ensured by an O-ring 49, for example made of rubber.
  • the operation of the device 20 is as follows: The passage of electric current through the induction coil 26 allows the amorphizable alloy 4 placed in the crucible 22 to be melted. This molten alloy 4 allows the upper part of a steel ferrule 50 previously disposed around the support to be melted 31 between this support 31 on the one hand and the crucible 22, the enclosure 27 and the spacer 23 on the other hand. This partial melting of the ferrule 50 forms the steel seal 51 between the support 31 and the crucible 22. This seal 51 combined with the O-ring 49 ensures good sealing of the installation 21.
  • the argon 5 under pressure, placed in the crucible 22 above the alloy 4 allows the extrusion of this alloy, through the nozzle 36, in the form of a jet 7 which passes through the opening 44 of the part 42 along the axis yy ′ and crosses the interior volumes 46 and 45, that is to say the enclosure 48 to finally leave the installation 21 and reach the layer 8 of water 9 where it solidifies very quickly to give the wire 12.
  • the speed quenching is, in known manner, of the order of 105 ° C / second, the water 9 being cooled by a known refrigeration system arranged around the drum 11, this system not being shown in the drawing for the purpose of simplification.
  • a small amount of hydrogen 52 is made to arrive through the opening 53 made in the cylinder 40 above the rim 41.
  • the hydrogen 52 thus fills the space 54 which is outside the cup 42 between it ci and the support 31, the cylinder 40 and the rim 41.
  • the hydrogen 52 is thus thus in contact with the nozzle 36.
  • the jet 7 In order for the jet 7 to be able to undergo very rapid quenching in the layer 8 so as to obtain an amorphous wire 12, it is essential that the jet 7 remains liquid throughout the entire length L, that is to say that the jet 7 must be at a temperature higher than the melting temperature of the alloy 4 during the impact of the jet 7 with water 9.
  • the hydrogen 52 and the oxidizing gas mixture 55 must therefore not significantly cool the jet 7, the solidification being carried out only within the layer 8.
  • the alloy 4 contains silicon and the stabilization of the jet 7 is carried out by oxidation of the silicon, the silicon content in the alloy being greater than 0.2% ( % atomic).
  • the jet 7 flows for example from top to bottom, as in the device 20 described above, in a vertical direction, and the axis xx 'of the drum 11, and therefore the generatrices of the water cylinder 80 limiting the layer 8 in the direction of the axis xx ', make an angle of 40 to 70 ° with the vertical.
  • the jet 7 it is possible to envisage causing the jet 7 to flow in other directions, at the outlet of the installation 21, for example horizontally or from bottom to top.
  • the jet 7 is continuous throughout its journey from the nozzle 36 to the layer 8, without the formation of drops.
  • This combined with the very rapid cooling achieved thanks to the layer 8, makes it possible to obtain an amorphous wire 12 whose circular section with a diameter of 160 ⁇ m has a regular shape over its length.
  • the crucible 22 has been shown as a tank in which the alloy 4 is fused, but one could use a tank supplied with alloy 4 previously melted, this supply being for example continuous.

Abstract

Method of and installation (20) for producing a wire (12) of an amorphous metallic alloy, which are characterised in that a jet (7) of alloy (4) which can be rendered amorphous and is molten is placed in contact with a gas (55) capable of reacting chemically with at least one of the constituents of the alloy (4) before the jet (7) reaches a cooling liquid (9), in such a way as to form a layer around the jet (7) which is capable of stabilising the latter. <??>Amorphous wires (12) produced with this method and this installation, articles reinforced by these wires. <IMAGE> <IMAGE> (see back)

Description

L'invention concerne les fils en alliages métalliques amorphes et notamment les procédés et les dispositifs permettant d'obtenir des fils en alliages métalliques amorphes par refroidissement rapide dans un milieu liquide, ces alliages étant en particulier à base de fer.The invention relates to wires of amorphous metal alloys and in particular the methods and devices making it possible to obtain wires of amorphous metal alloys by rapid cooling in a liquid medium, these alloys being in particular based on iron.

Il est connu de réaliser des fils amorphes par projection d'un jet d'alliage fondu dans une couche liquide de refroidissement, par exemple une couche d'eau, plaquée grâce à la force centrifuge contre la paroi interne d'un tambour rotatif, ou sur le fond d'une courroie en mouvement. Un tel procédé est décrit par exemple dans le brevet US 4 523 626.It is known practice to produce amorphous wires by spraying a jet of molten alloy into a coolant layer, for example a layer of water, pressed by centrifugal force against the internal wall of a rotating drum, or on the bottom of a moving belt. Such a method is described for example in US Pat. No. 4,523,626.

Ces procédés présentent les inconvénients suivants :
Le jet projeté a tendance à se résoudre en gouttes, ce qui provoque soit une discontinuité du jet conduisant à l'impossibilité d'avoir un fil continu, soit à la formation d'un fil continu dont la section est irrégulière.
These methods have the following drawbacks:
The projected jet tends to resolve in drops, which causes either a discontinuity of the jet leading to the impossibility of having a continuous wire, or to the formation of a continuous wire whose section is irregular.

Pour éviter cette résolution en gouttes, il est nécessaire de respecter les conditions opératoires suivantes, dans le cas des alliages à base de fer :

  • la distance entre la buse de sortie du métal fondu et l'eau doit être faible, inférieure à environ 3 mm ;
  • la vitesse d'éjection du métal liquide doit être élevée, égale au moins à environ 8 m/seconde, c'est-à-dire que la pression du gaz utilisé pour projeter le métal à travers la buse doit être élevée, au moins égale à 3,5 bars.
  • D'autre part, la différence de température entre le métal fondu et le milieu extérieur est très élevée et, du fait de la faible distance entre la buse et l'eau, il n'est pas possible d'utiliser des pièces permettant d'isoler et de renforcer la buse et le réservoir contenant l'alliage amorphisable fondu. Il est donc nécessaire d'utiliser uniquement des matériaux spéciaux comme la silice qui résistent bien à des gradients thermiques élevés mais qui à contrario supportent mal la pression, de telle sorte que la pression du gaz utilisé pour projeter le métal à travers la buse est inférieure à 5 bars. Il en résulte en général une vitesse du jet inférieure à 10 m/seconde, ce qui peut conduire à un manque de régularité du jet et à une vitesse de fabrication du fil faible.
  • La réalisation du fil nécessite donc un compromis très étroit de caractéristiques opératoires, ce compromis est très difficile à respecter dans une fabrication industrielle.
  • Enfin, dans le cas où l'on utilise un tambour rotatif avec couche d'eau plaquée grâce à la force centrifuge contre la paroi interne du tambour, étant donné la faible distance qu'il faut respecter entre la buse et l'eau, le réservoir d'où est issu le jet doit être situé à l'intérieur du tambour de telle sorte que, pour des raisons d'encombrement, la capacité du réservoir ne peut pas être supérieure à environ 500 g de métal, et la longueur du fil produit est nécessairement limitée.
To avoid this resolution in drops, it is necessary to respect the following operating conditions, in the case of iron-based alloys:
  • the distance between the molten metal outlet nozzle and the water must be small, less than about 3 mm;
  • the ejection speed of the liquid metal must be high, equal to at least about 8 m / second, that is to say that the pressure of the gas used to project the metal through the nozzle must be high, at least equal at 3.5 bars.
  • On the other hand, the temperature difference between the molten metal and the external environment is very high and, due to the short distance between the nozzle and the water, it is not possible to use parts allowing isolate and reinforce the nozzle and the tank containing the molten amorphous alloy. It is therefore necessary to use only special materials such as silica which resist well to high thermal gradients but which on the contrary support the pressure badly, so that the pressure of the gas used to project the metal through the nozzle is lower than 5 bars. This generally results in a jet speed of less than 10 m / second, which can lead to a lack of regularity of the jet and to a low wire production speed.
  • The production of the wire therefore requires a very narrow compromise of operating characteristics, this compromise is very difficult to respect in industrial manufacturing.
  • Finally, in the case where a rotary drum is used with a layer of water plated by centrifugal force against the internal wall of the drum, given the small distance that must be respected between the nozzle and the water, the tank from which the jet originates must be located inside the drum so that, for reasons of space, the capacity of the tank cannot be greater than approximately 500 g of metal, and the length of the wire product is necessarily limited.

Le brevet US-A-3 845 805 décrit un système fixe pour réaliser des filaments métalliques par coulée d'un jet dans un liquide de refroidissement que l'on fait circuler en le faisant passer dans un tube. Le jet traverse un gaz qui peut éventuellement favoriser la formation d'une peau stabilisante sur le jet. L'épaisseur de ce gaz est très faible, de l'ordre de 0,2 cm.The patent US-A-3 845 805 describes a fixed system for producing metallic filaments by casting a jet in a cooling liquid which is circulated by passing it through a tube. The jet passes through a gas which can possibly promote the formation of a stabilizing skin on the jet. The thickness of this gas is very small, of the order of 0.2 cm.

Les brevets français publiés sous les numéros 2 136 976, 2 230 438 et 2 367 563, ainsi que l'article intitulé "Production de fils fins à partir d'acier liquide" de MM. Massoubre, Pflieger et collaborateurs paru dans la Revue de Métallurgie de mars 1977, décrivent un procédé pour fabriquer des fils d'acier en refroidissant jusqu'à la solidification un jet de métal fondu dans une atmosphère gazeuse, le jet étant stabilisé par une réaction superficielle d'oxydation. Ce procédé nécessite une longueur de trajet très importante dans cette atmosphère gazeuse, de façon à obtenir la solidification, et il n'est pas adapté à la réalisation de fils en alliages amorphes, car la vitesse de trempe n'est pas suffisante.The French patents published under the numbers 2 136 976, 2 230 438 and 2 367 563, as well as the article entitled "Production of fine wires from liquid steel" by MM. Massoubre, Pflieger and collaborators published in the Revue de Métallurgie of March 1977, describe a process for manufacturing steel wires by cooling a solid metal jet in a gaseous atmosphere until solidification, the jet being stabilized by a surface reaction oxidation. This process requires a very long path length in this gaseous atmosphere, so as to obtain solidification, and it is not suitable for making wires of amorphous alloys, because the quenching speed is not sufficient.

Le but de l'invention est de remédier a ces inconvénients, en proposant le procédé conforme à la revendication 1 et le dispositif conforme à la revendication 7, les préambules de ces revendications étant basés sur le brevet US-A-4 523 626 précite.The object of the invention is to remedy these drawbacks, by proposing the method according to claim 1 and the device according to claim 7, the preambles of these claims being based on the aforementioned US-A-4,523,626 patent.

Les fils amorphes obtenus avec le procédé ou le dispositif conformes à l'invention peuvent être utilisés par exemple pour renforcer des articles en matière plastique ou en caoutchouc, notamment des enveloppes de pneumatiques.The amorphous threads obtained with the process or the device according to the invention can be used, for example, to reinforce plastic or rubber articles, in particular tire casings.

Les exemples de réalisation qui suivent, ainsi que les figures toutes schématiques du dessin correspondant à ces exemples, sont destinés à illustrer l'invention et à en faciliter la compréhension sans toutefois en limiter la portée.The embodiments which follow, as well as the diagrammatic figures of the drawing corresponding to these examples, are intended to illustrate the invention and to facilitate understanding without however limiting its scope.

Sur le dessin :

  • La figure 1 représente un dispositif connu pour obtenir un fil amorphe, ce dispositif comportant un tambour rotatif, la figure 1 étant une coupe selon un plan perpendiculaire à l'axe de rotation du tambour ;
  • la figure 2 représente le dispositif de la figure 1, en coupe selon un plan contenant l'axe de rotation du tambour, la coupe de la figure 2 étant schématisée par les segments de ligne droite II-II à la figure 1 ;
  • la figure 3 représente, vu de profil, un dispositif conforme à l'invention, ce dispositif comportant un tambour rotatif et une installation de coulée ;
  • la figure 4 représente le dispositif de la figure 3 en coupe selon un plan passant par l'axe de rotation du tambour, cette coupe étant schématisée par les segments de ligne droite IV-IV à la figure 3 ;
  • la figure 5 représente, en détail, l'installation de coulée du dispositif représenté aux figures 3 et 4, la figure 5 étant une coupe selon un plan passant par l'axe de cette installation, cette coupe étant schématisée par les segments de ligne droite V-V à la figure 4 ;
Les figures 1 et 2 représentent un dispositif connu pour la réalisation de fils métalliques amorphes. Ce dispositif 1 comporte un réservoir 2 constitué par un creuset autour duquel se trouve la bobine d'induction 3 qui permet de fondre l'alliage métallique amorphisable 4 à base de fer disposé dans le réservoir 2. Un gaz sous pression 5, par exemple de l'argon, permet de faire couler l'alliage liquide 4 à travers la buse 6 de façon à obtenir un jet 7, ce gaz 5 étant inerte vis-à-vis de l'alliage 4. Ce jet 7 parvient à la couche 8 de liquide refroidisseur 9 plaquée contre la paroi interne 10 d'un tambour 11, ce liquide 9 étant par exemple de l'eau. Le jet 7 se solidifie alors très rapidement pour donner le fil métallique amorphe 12. Le tambour 11 tourne autour de son axe dans le sens de la flèche F₁₁, cet axe étant référencé xx', et la force centrifuge ainsi obtenue applique le liquide refroidisseur 9 sous forme de la couche régulière cylindrique 8 contre la paroi interne 10. La figure 1 est une coupe effectuée perpendiculairement à l'axe xx' et la figure 2 est une coupe effectuée dans un plan passant par l'axe xx', ce plan étant référencé par les segments de ligne droite II-II à la figure 1.On the drawing :
  • FIG. 1 represents a known device for obtaining an amorphous wire, this device comprising a rotary drum, FIG. 1 being a section along a plane perpendicular to the axis of rotation of the drum;
  • 2 shows the device of Figure 1, in section along a plane containing the axis of rotation of the drum, the section of Figure 2 being shown schematically by the straight line segments II-II in Figure 1;
  • 3 shows, seen in profile, a device according to the invention, this device comprising a rotary drum and a casting installation;
  • Figure 4 shows the device of Figure 3 in section along a plane passing through the axis of rotation of the drum, this section being shown schematically by the segments of straight line IV-IV in Figure 3;
  • Figure 5 shows, in detail, the casting installation of the device shown in Figures 3 and 4, Figure 5 being a section along a plane passing through the axis of this installation, this section being shown schematically by the straight line segments VV in Figure 4;
Figures 1 and 2 show a known device for making amorphous metal wires. This device 1 comprises a reservoir 2 constituted by a crucible around which is located the induction coil 3 which makes it possible to melt the amorphizable metallic alloy 4 based on iron placed in the reservoir 2. A gas under pressure 5, for example of argon, allows the liquid alloy 4 to flow through the nozzle 6 so as to obtain a jet 7, this gas 5 being inert with respect to the alloy 4. This jet 7 reaches the layer 8 coolant 9 pressed against the internal wall 10 of a drum 11, this liquid 9 being for example water. The jet 7 then solidifies very quickly to give the amorphous metallic wire 12. The drum 11 rotates around its axis in the direction of the arrow F₁₁, this axis being referenced xx ', and the centrifugal force thus obtained applies the coolant 9 in the form of the regular cylindrical layer 8 against the internal wall 10. FIG. 1 is a section made perpendicular to the axis xx 'and FIG. 2 is a section made in a plane passing through the axis xx', this plane being referenced by the straight line segments II-II in Figure 1.

Le jet 7 a tendance à se résoudre en gouttes avant son entrée dans la couche 8. Pour éviter cette résolution en gouttes, il est necessaire de respecter les conditions opératoires suivantes.

  • La distance entre la buse 6 et la couche 8, c'est-à-dire la longueur du jet 7, doit être courte, inférieure à environ 3 mm ;
  • La vitesse d'éjection du jet 7 doit être élevée, au moins égale à environ 8 m/s, c'est-à-dire que la pression du gaz 5 doit être élevée, au moins égale à 3,5 bars ;
  • La différence de température entre le métal fondu 4 et l'air entourant le réservoir 2 est très élevée, et, du fait de la faible distance entre la buse 6 et l'eau 9, il n'est pas possible d'utiliser des pièces permettant d'isoler et de renforcer la buse 6 et le réservoir 2. On ne peut utiliser qu'une matière réfractaire comme la silice qui a une mauvaise résistance à la pression : la pression d'argon 5 est donc inférieure à environ 5 bars, et la vitesse du jet 7 est inférieure à 10 m/seconde, ce qui peut conduire à un manque de régularité du jet 7 et à une vitesse de fabrication du fil 12 faible ;
  • La réalisation du fil 12 nécessite donc un compromis très étroit de caractéristiques opératoires ; ce compromis est très difficile à respecter dans une fabrication industrielle et il n'est pas toujours possible de le trouver ;
  • Le réservoir 2 doit être situé à l'intérieur du tambour 11 et sa capacité est réduite, au plus égale à environ 500 g, la longueur du fil 12 est donc nécessairement limitée ;
Les figures 3 et 4 représentent un dispositif 20 conforme à l'invention. Le dispositif 20 comporte le tambour rotatif 11 d'axe de rotation xx′, et l'installation de coulée 21 qui permet de projeter un jet 7 de métal fondu dans la couche 8 plaquée par la force centrifuge contre la paroi interne 10 du tambour 11.The jet 7 tends to resolve in drops before entering the layer 8. To avoid this resolution in drops, it is necessary to comply with the following operating conditions.
  • The distance between the nozzle 6 and the layer 8, that is to say the length of the jet 7, must be short, less than about 3 mm;
  • The jet ejection speed 7 must be high, at least equal to about 8 m / s, that is to say that the gas pressure 5 must be high, at least equal to 3.5 bars;
  • The temperature difference between the molten metal 4 and the air surrounding the tank 2 is very high, and, due to the short distance between the nozzle 6 and the water 9, it is not possible to use parts making it possible to isolate and reinforce the nozzle 6 and the reservoir 2. Only a refractory material such as silica can be used which has poor resistance to pressure: the argon pressure 5 is therefore less than approximately 5 bars, and the speed of the jet 7 is less than 10 m / second, which can lead to a lack of regularity of the jet 7 and to a low production speed of the wire 12;
  • The production of the wire 12 therefore requires a very narrow compromise of operating characteristics; this compromise is very difficult to respect in industrial manufacturing and it is not always possible to find it;
  • The reservoir 2 must be located inside the drum 11 and its capacity is reduced, at most equal to approximately 500 g, the length of the wire 12 is therefore necessarily limited;
Figures 3 and 4 show a device 20 according to the invention. The device 20 comprises the rotary drum 11 with an axis of rotation xx ′, and the casting installation 21 which makes it possible to project a jet 7 of molten metal into the layer 8 pressed by centrifugal force against the internal wall 10 of the drum 11.

La figure 3 est une vue de profil et la figure 4 est une coupe effectuée selon un plan passant par l'axe de rotation xx′ et par le point de contact 0 du jet 7 avec la couche 8, cette coupe étant schématisée par les segments de ligne droite IV-IV à la figure 3. Une partie de l'installation 21 est représentée en détail à la figure 5, cette figure 5 étant une coupe effectuée selon un plan passant par l'axe yy′ de l'installation 21, la coupe de la figure 5 étant schématisée par les segments de ligne droite V-V à la figure 4.Figure 3 is a side view and Figure 4 is a section taken along a plane passing through the axis of rotation xx ′ and by the point of contact 0 of the jet 7 with the layer 8, this section being shown schematically by the segments in a straight line IV-IV in FIG. 3. A part of the installation 21 is shown in detail in FIG. 5, this FIG. 5 being a section made along a plane passing through the axis yy ′ of the installation 21, the section of FIG. 5 being shown diagrammatically by the straight line segments VV in FIG. 4.

L'installation 21 est disposée à l'extérieur du tambour 11. Cette installation 21 comporte un réservoir 22 constitué par un creuset en céramique, par exemple en zircon ou alumine. Le creuset 22 repose sur l'entretoise isolante 23 réalisée par exemple en béton réfractaire alumineux. Autour du creuset 22 est disposée une chemise cylindrique 24 réalisée par exemple en zircon. Entre le creuset 22, l'entretoise 23 et la chemise 24 se trouve un bourrage 25 sous forme de poudre compactée d'alumine. La chemise 24 est entourée par la bobine inductrice 26 susceptible de faire fondre l'alliage amorphisable 4 à base de fer par passage de courant électrique. L'ensemble du creuset 22 , de l'entretoise 23, de la chemise 24 et du bourrage 25 est entouré par une enceinte 27 comportant deux parois 28, 29, en acier, un liquide réfrigérant 30, par exemple de l'eau, étant disposé entre ces parois 28, 29. Une pièce 31, en forme de coupelle renversée, est disposée dans l'ouverture 32 traversant le fond 33 du creuset 22 et le fond 34 de l'enceinte 27. L'entretoise 23 et la chemise 24 reposent directement sur le fond 34 de l'enceinte 27. La coupelle 31 est réalisée par exemple en zircon. Le sommet 35 de la coupelle 31 est traversé par une buse 36, réalisée par exemple en zircone ou en alumine, la pièce 31 servant donc de support pour la buse 36. L'ouverture 37 de cette buse 36 est disposée selon l'axe yy′ qui est l'axe de l'ouverture 32 et l'axe de l'installation 21. L'installation 21 comporte en outre un dispositif 38 comportant la bride 39 qui permet d'appliquer ce dispositif contre l'enceinte 27. Le dispositif 38 comporte en outre l'enceinte cylindrique 40, et le rebord annulaire 41 sur lequel est appliquée une pièce 42 en forme de coupelle renversée dont le sommet 43 comporte une ouverture 44 située sous l'ouverture 37 de la buse 36 et ayant l'axe yy′. La bride 39, le cylindre 40 et le rebord 41 sont réalisés par exemple en acier et la pièce 42 est réalisée en céramique, par exemple en zircon. Le volume intérieur 45 du cylindre 40, sous le rebord 41, et le volume intérieur 46 de la coupelle 42 communiquent entre eux par l'ouverture 47 et constituent ensemble l'enceinte 48.The installation 21 is arranged outside the drum 11. This installation 21 comprises a reservoir 22 constituted by a ceramic crucible, for example made of zircon or alumina. The crucible 22 rests on the insulating spacer 23 made for example of aluminous refractory concrete. Around the crucible 22 is arranged a cylindrical jacket 24 made for example of zircon. Between the crucible 22, the spacer 23 and the jacket 24 is a stuffing 25 in the form of compacted powder of alumina. The jacket 24 is surrounded by the induction coil 26 capable of melting the amorphizable alloy 4 based on iron by passage of electric current. The assembly of the crucible 22, the spacer 23, the jacket 24 and the packing 25 is surrounded by an enclosure 27 comprising two walls 28, 29, made of steel, a coolant 30, for example water, being disposed between these walls 28, 29. A part 31, in the form of an inverted cup, is disposed in the opening 32 passing through the bottom 33 of the crucible 22 and the bottom 34 of the enclosure 27. The spacer 23 and the jacket 24 rest directly on the bottom 34 of the enclosure 27. The cup 31 is made for example of zircon. The top 35 of the cup 31 is crossed by a nozzle 36, made for example of zirconia or alumina, the part 31 therefore serving as a support for the nozzle 36. The opening 37 of this nozzle 36 is disposed along the axis yy ′ Which is the axis of the opening 32 and the axis of the installation 21. The installation 21 also comprises a device 38 comprising the flange 39 which makes it possible to apply this device against the enclosure 27. The device 38 also comprises the cylindrical enclosure 40, and the annular rim 41 on which is applied a part 42 in the form of an inverted cup, the top 43 of which has an opening 44 situated under the opening 37 of the nozzle 36 and having the axis yy ′. The flange 39, the cylinder 40 and the flange 41 are made for example of steel and the part 42 is made of ceramic, for example of zircon. The internal volume 45 of the cylinder 40, under the rim 41, and the internal volume 46 of the cup 42 communicate with each other through the opening 47 and together constitute the enclosure 48.

L'étanchéité au niveau de la bride 39 est assurée par un joint torique 49, par exemple en caoutchouc.The seal at the flange 39 is ensured by an O-ring 49, for example made of rubber.

Le fonctionnement du dispositif 20 est le suivant :
Le passage du courant électrique dans la bobine d'induction 26 permet la fusion de l'alliage amorphisable 4 disposé dans le creuset 22. Cet alliage 4 fondu permet de fondre la partie supérieure d'une virole d'acier 50 disposée préalablement autour du support 31 entre ce support 31 d'une part et le creuset 22, l'enceinte 27 et l'entretoise 23 d'autre part. Cette fusion partielle de la virole 50 forme le joint d'acier 51 entre le support 31 et le creuset 22. Ce joint 51 combiné au joint torique 49 assure une bonne étanchéité de l'installation 21. L'argon 5 sous pression, disposé dans le creuset 22 au dessus de l'alliage 4 permet l'extrusion de cet alliage, à travers la buse 36, sous forme d'un jet 7 qui passe par l'ouverture 44 de la pièce 42 selon l'axe yy′ et traverse les volumes intérieurs 46 et 45, c'est-à-dire l'enceinte 48 pour sortir enfin de l'installation 21 et parvenir dans la couche 8 d'eau 9 où il se solidifie très rapidement pour donner le fil 12. La vitesse de trempe est, de façon connue, de l'ordre de 10⁵°C/seconde, l'eau 9 étant refroidie par un système connu de réfrigération disposé autour du tambour 11, ce système n'étant pas représenté sur le dessin dans un but de simplification. On fait arriver une faible quantité d'hydrogène 52 par l'ouverture 53 pratiquée dans le cylindre 40 au dessus du rebord 41. L'hydrogène 52 remplit ainsi l'espace 54 qui se trouve à l'extérieur de la coupelle 42 entre celle-ci et le support 31, le cylindre 40 et le rebord 41. L'hydrogène 52 se trouve donc ainsi au contact de la buse 36.
The operation of the device 20 is as follows:
The passage of electric current through the induction coil 26 allows the amorphizable alloy 4 placed in the crucible 22 to be melted. This molten alloy 4 allows the upper part of a steel ferrule 50 previously disposed around the support to be melted 31 between this support 31 on the one hand and the crucible 22, the enclosure 27 and the spacer 23 on the other hand. This partial melting of the ferrule 50 forms the steel seal 51 between the support 31 and the crucible 22. This seal 51 combined with the O-ring 49 ensures good sealing of the installation 21. The argon 5 under pressure, placed in the crucible 22 above the alloy 4 allows the extrusion of this alloy, through the nozzle 36, in the form of a jet 7 which passes through the opening 44 of the part 42 along the axis yy ′ and crosses the interior volumes 46 and 45, that is to say the enclosure 48 to finally leave the installation 21 and reach the layer 8 of water 9 where it solidifies very quickly to give the wire 12. The speed quenching is, in known manner, of the order of 10⁵ ° C / second, the water 9 being cooled by a known refrigeration system arranged around the drum 11, this system not being shown in the drawing for the purpose of simplification. A small amount of hydrogen 52 is made to arrive through the opening 53 made in the cylinder 40 above the rim 41. The hydrogen 52 thus fills the space 54 which is outside the cup 42 between it ci and the support 31, the cylinder 40 and the rim 41. The hydrogen 52 is thus thus in contact with the nozzle 36.

On fait arriver un gaz 55 susceptible de réagir chimiquement avec au moins un des constituants de l'alliage 4, ce gaz 55 étant par exemple un mélange d'hydrogène et de vapeur d'eau, par l'ouverture 56 pratiquée dans le cylindre 40 au dessous du rebord 41. Ce mélange 55 remplit ainsi les volumes intérieurs 45, 46, c'est-à-dire l'enceinte 48. L'hydrogène 52 ressort par l'ouverture 44 dans l'enceinte 48. L'hydrogène est brûlé à la sortie du cylindre 40, à son passage dans l'air ambiant, pour des raisons de sécurité, de telle sorte que, lors du fonctionnement du dispositif 20, on maintient un courant d'hydrogène 52 par l'ouverture 53, et un courant de mélange 55 d'hydrogène et de vapeur d'eau par l'ouverture 56. Le mélange gazeux 55 est susceptible, au contact du jet 7 qui est à haute température, d'oxyder au moins un élément de l'alliage 4, notamment le silicium. Cette réaction s'effectue superficiellement et forme une couche superficielle très fine qui permet de stabiliser le jet 7, ce jet restant liquide dans sa masse. La présence d'hydrogène 52 au contact de la buse 36 permet de protéger celle-ci contre toute action du mélange 55. Le phénomène permettant de stabiliser le jet 7 est complexe, il est probablement dû au fait que l'oxydation superficielle se traduit par un abaissement de la tension superficielle et une augmentation de la viscosité en surface, par suite d'une couche superficielle oxydée submicroscopique, d'épaisseur inférieure à 0,1 µm. Grâce à cette stabilisation, la longueur L du jet 7, entre la buse 36 et la couche 8, peut facilement dépasser 1 cm, cette longueur L étant comprise entre 10 cm et 1 m. Ceci permet les avantages suivants :

  • Le fait de pouvoir éloigner la buse 36 de l'eau 9 permet d'avoir un volume disponible important pour disposer des pièces permettant d'améliorer les résistances thermique et mécanique de l'installation 21. En effet, l'entretoise 23, la chemise 24 et le bourrage 25 permettent un bon isolement thermique du creuset 22. D'autre part, le support 31 peut avoir une longueur parallèle à l'axe yy′ importante, ce qui évite des contraintes thermiques excessives pour ce support 31, et la présence de ce support allongé 31 et de la coupelle 42 permet de bien isoler thermiquement la buse 36. Enfin, l'enceinte 27 en acier permet d'avoir une bonne résistance mécanique de l'ensemble, la présence de toutes ces pièces étant possible grâce à la longueur L importante. Cette amélioration des résistances thermique et mécanique de l'installation 21 permet d'augmenter la pression du gaz 5, qui peut dépasser 5 bars, la vitesse du jet 7 pouvant donc dépasser 10 m/s.
  • L'installation 21, et donc le creuset 22 sont disposés à l'extérieur du tambour 11, il est donc possible d'utiliser un creuset 22 de grand volume, et donc d'utiliser une quantité importante d'alliage 4, bien supérieure à 500 g, de telle sorte que la longueur de fil 12 peut être importante.
  • La distance L entre la buse 36 et la couche 8 peut varier dans de larges limites, ce qui procure une grande souplesse dans les réglages de l'installation 21 par rapport au tambour 11, notamment en ce qui concerne la direction du jet 7 par rapport à la surface 80, disposée vers l'axe xx′, de la couche 8.
  • La stabilisation du jet 7 permet d'utiliser si on le désire des pressions de gaz 5 faibles, par exemple inférieures à 3,5 bars, et donc des vitesses de jet 7 faibles, par exemple inférieures à 8 m/s, ce qui favorise encore la souplesse des réglages du dispositif 20 par suite de la souplesse dans le choix des pressions. Une faible vitesse de jet 7 est par exemple nécessaire dans le cas où la cinétique de la réaction d'oxydation est lente, l'invention permettant, même dans ce cas, une bonne continuité du jet 7.
  • Enfin, le dispositif 20 permet d'étendre le domaine de composition d'alliages avec laquelle il est possible d'obtenir un fil amorphe 12. En effet, les dispositifs connus, par exemple le dispositif 1, ne permettent pas d'obtenir des fils amorphes à partir d'alliages comportant du fer, du silicium, du bore, ou du fer, du nickel, du silicium et du bore si la teneur en silicium est inférieure à 5 % (% atomiques), car on n'obtient alors que des billes. Au contraire, l'invention permet d'obtenir des fils amorphes à partir de tels alliages, même si la teneur en silicium est inférieure à 5 % (% atomiques) grâce au gaz oxydant 55.
A gas 55 capable of reacting chemically with at least one of the constituents of the alloy 4 is made to arrive, this gas 55 being for example a mixture of hydrogen and water vapor, through the opening 56 made in the cylinder 40 below the rim 41. This mixture 55 thus fills the interior volumes 45, 46, that is to say the enclosure 48. The hydrogen 52 leaves through the opening 44 in the enclosure 48. The hydrogen is burned at the outlet of the cylinder 40, as it passes through the ambient air, for safety reasons, so that, during the operation of the device 20, a stream of hydrogen 52 is maintained through the opening 53, and a stream of mixture 55 of hydrogen and water vapor through the opening 56. The gas mixture 55 is capable, in contact with the jet 7 which is at high temperature, of oxidizing at least one element of the alloy 4 , especially silicon. This reaction takes place superficially and forms a very fine surface layer which makes it possible to stabilize the jet 7, this jet remaining liquid in its mass. The presence of hydrogen 52 in contact with the nozzle 36 makes it possible to protect the latter against any action of the mixture 55. The phenomenon making it possible to stabilize the jet 7 is complex, it is probably due to the fact that the surface oxidation results in a decrease in surface tension and an increase in surface viscosity, as a result of a submicroscopic oxidized surface layer, of thickness less than 0.1 μm. Thanks to this stabilization, the length L of the jet 7, between the nozzle 36 and the layer 8, can easily exceed 1 cm, this length L being between 10 cm and 1 m. This allows the following advantages:
  • Being able to move the nozzle 36 away from the water 9 allows to have a large available volume for disposing of parts making it possible to improve the thermal and mechanical resistances of the installation 21. In fact, the spacer 23, the jacket 24 and the packing 25 allow good thermal insulation of the crucible 22. On the other hand, the support 31 can have a length parallel to the large axis yy ′, which avoids excessive thermal stresses for this support 31, and the presence of this elongated support 31 and of the cup 42 makes it possible to isolate well thermally the nozzle 36. Finally, the steel enclosure 27 makes it possible to have good mechanical resistance of the assembly, the presence of all these parts being possible thanks to the large length L. This improvement in the thermal and mechanical resistances of the installation 21 makes it possible to increase the pressure of the gas 5, which can exceed 5 bars, the speed of the jet 7 therefore being able to exceed 10 m / s.
  • The installation 21, and therefore the crucible 22 are arranged outside the drum 11, it is therefore possible to use a crucible 22 of large volume, and therefore to use a large quantity of alloy 4, much greater than 500 g, so that the length of wire 12 can be large.
  • The distance L between the nozzle 36 and the layer 8 can vary within wide limits, which gives great flexibility in the settings of the installation 21 relative to the drum 11, in particular as regards the direction of the jet 7 relative to on the surface 80, arranged towards the axis xx ′, of the layer 8.
  • The stabilization of the jet 7 makes it possible to use, if desired, low gas pressures, for example less than 3.5 bars, and therefore low jet speeds 7, for example less than 8 m / s, which favors still the flexibility of the settings of the device 20 due to the flexibility in the choice of pressures. A low jet speed 7 is for example necessary in the case where the kinetics of the oxidation reaction is slow, the invention allowing, even in this case, good continuity of the jet 7.
  • Finally, the device 20 makes it possible to extend the range of alloy composition with which it is possible to obtain an amorphous wire 12. In fact, the known devices, for example the device 1, do not make it possible to obtain wires amorphous from alloys containing iron, silicon, boron, or iron, nickel, silicon and boron if the silicon content is less than 5% (atomic%), because only marbles. On the contrary, the invention makes it possible to obtain amorphous wires from such alloys, even if the silicon content is less than 5% (atomic%) thanks to the oxidizing gas 55.

Pour que le jet 7 puisse subir une trempe très rapide dans la couche 8 de façon à obtenir un fil 12 amorphe, il est essentiel que le jet 7 reste liquide pendant toute la longueur L, c'est-à-dire que le jet 7 doit être à une température supérieure à la température de fusion de l'alliage 4 lors de l'impact du jet 7 avec l'eau 9. L'hydrogène 52 et le mélange gazeux oxydant 55 ne doivent donc pas refroidir de façon notable le jet 7, la solidification étant effectuée uniquement au sein de la couche 8. L'alliage 4 contient du silicium et la stabilisation du jet 7 est effectuée par oxydation du silicium, la teneur en silicium dans l'alliage étant supérieure à 0,2 % (% atomiques).In order for the jet 7 to be able to undergo very rapid quenching in the layer 8 so as to obtain an amorphous wire 12, it is essential that the jet 7 remains liquid throughout the entire length L, that is to say that the jet 7 must be at a temperature higher than the melting temperature of the alloy 4 during the impact of the jet 7 with water 9. The hydrogen 52 and the oxidizing gas mixture 55 must therefore not significantly cool the jet 7, the solidification being carried out only within the layer 8. The alloy 4 contains silicon and the stabilization of the jet 7 is carried out by oxidation of the silicon, the silicon content in the alloy being greater than 0.2% ( % atomic).

Le jet 7 s'écoule par exemple de haut en bas, comme dans le dispositif 20 précédemment décrit, dans une direction verticale, et l'axe xx'du tambour 11, et donc les génératrices du cylindre d'eau 80 limitant la couche 8 en direction de l'axe xx', font un angle de 40 à 70° avec la verticale. Cependant on peut envisager de faire écouler le jet 7 suivant d'autres directions, à la sortie de l'installation 21, par exemple horizontalement ou de bas en haut.The jet 7 flows for example from top to bottom, as in the device 20 described above, in a vertical direction, and the axis xx 'of the drum 11, and therefore the generatrices of the water cylinder 80 limiting the layer 8 in the direction of the axis xx ', make an angle of 40 to 70 ° with the vertical. However, it is possible to envisage causing the jet 7 to flow in other directions, at the outlet of the installation 21, for example horizontally or from bottom to top.

A titre d'exemple, les caractéristiques du dispositif 20 sont les suivantes :

  • diamètre du tambour 11 : 47 cm ;
  • angle de l'axe xx′ par rapport à la verticale : 45° ;
  • vitesse linéaire de rotation de la surface 80 : du même ordre de grandeur que celle du jet 7 ;
  • épaisseur de la couche d'eau 8 : 0,5 à 3 cm ;
  • creuset 22 d'une contenance de 3 kg d'alliage amorphisable 4 ;
  • diamètre de l'ouverture 37 de la buse 36 : 165µm ;
  • température de l'eau 9 : 5°C ;
Ce dispositif 20 est utilisé pour réaliser les deux essais suivants :By way of example, the characteristics of the device 20 are as follows:
  • drum diameter 11: 47 cm;
  • angle of axis xx ′ with respect to vertical: 45 °;
  • linear speed of rotation of the surface 80: of the same order of magnitude as that of the jet 7;
  • thickness of the water layer 8: 0.5 to 3 cm;
  • crucible 22 with a capacity of 3 kg of amorphizable alloy 4;
  • diameter of the opening 37 of the nozzle 36: 165 μm;
  • water temperature 9: 5 ° C;
This device 20 is used to carry out the following two tests:

1er essai : 1st try :

Composition de l'alliage 4 = Fe₇₈ Si₉ B₁₃, c'est-à-dire 78 % de Fe, 9 % de Si, 13 % de B (% atomiques). Température de fusion de cet alliage : 1170°C. Température de l'alliage 4 dans le creuset 22 : 1200°C. Pression du gaz 5 : 5 bars. Vitesse du jet 7 à la sortie de la buse 36 : 10 m/seconde Distance entre la buse 36 et la couche 8 = 30 cm, cette distance étant égale à la longueur L du jet 7 depuis la buse 36 jusqu'à la couche 8.Composition of the alloy 4 = Fe₇₈ Si₉ B₁₃, that is to say 78% of Fe, 9% of Si, 13% of B (atomic%). Melting temperature of this alloy: 1170 ° C. Temperature of alloy 4 in crucible 22: 1200 ° C. Gas pressure 5: 5 bars. Speed of jet 7 at the outlet of nozzle 36: 10 m / second Distance between nozzle 36 and layer 8 = 30 cm, this distance being equal to the length L of jet 7 from nozzle 36 to layer 8 .

2e essai : 2nd try :

Composition de l'alliage 4 : Fe₅₈ Ni₂₀ Si₁₀ B₁₂, c'est-à-dire 58 % de Fe, 20 % de Ni, 10 % de Si, 12 % de B (% atomiques). Température de fusion de cet alliage : 1093°C. Température de l'alliage 4 dans le creuset 22 : 1130°C. Pression du gaz 5 = 10 bars - Vitesse du jet 7 = 14 m/seconde. Distance entre la buse 36 et la couche 8 : 30 cm, cette distance étant égale à la longueur L du jet 7 depuis la buse 36 jusqu'à la couche 8.Composition of alloy 4: Fe₅₈ Ni₂₀ Si₁₀ B₁₂, that is to say 58% of Fe, 20% of Ni, 10% of Si, 12% of B (atomic%). Melting temperature of this alloy: 1093 ° C. Temperature of alloy 4 in crucible 22: 1130 ° C. Gas pressure 5 = 10 bars - Jet speed 7 = 14 m / second. Distance between nozzle 36 and layer 8: 30 cm, this distance being equal to the length L of jet 7 from nozzle 36 to layer 8.

Dans ces deux essais, le jet 7 est continu pendant tout son trajet depuis la buse 36 jusqu'à la couche 8, sans formation de gouttes. Ceci, combiné au refroidissement très rapide réalisé grâce à la couche 8, permet d'obtenir un fil amorphe 12 dont la section circulaire de diamètre 160 µm a une forme régulière sur sa longueur.In these two tests, the jet 7 is continuous throughout its journey from the nozzle 36 to the layer 8, without the formation of drops. This, combined with the very rapid cooling achieved thanks to the layer 8, makes it possible to obtain an amorphous wire 12 whose circular section with a diameter of 160 μm has a regular shape over its length.

Le creuset 22 a été représenté comme un réservoir dans lequel s'effectue la fusion de l'alliage 4, mais on pourrait utiliser un réservoir alimenté en alliage 4 préalablement fondu, cette alimentation étant par exemple continue.The crucible 22 has been shown as a tank in which the alloy 4 is fused, but one could use a tank supplied with alloy 4 previously melted, this supply being for example continuous.

Bien entendu l'invention n'est pas limitée aux exemples de réalisation précédemment décrits, c'est ainsi notamment que l'on peut avoir les dispositions suivantes :

  • on peut utiliser d'autres gaz oxydants que le mélange hydrogène-vapeur d'eau, par exemple un mélange d'hydrogène et de gaz carbonique ou d'hydrogène et d'oxyde de carbone, ou un mélange d'hydrogène avec au moins deux composés oxydants choisis parmi la vapeur d'eau, le gaz carbonique, l'oxyde de carbone ; on peut utiliser aussi par exemple comme gaz oxydant de l'oxygène, ou un mélange contenant de l'oxygène, par exemple de l'air ;
  • on peut aussi remplacer l'hydrogène par un autre gaz, par exemple un gaz inerte, notamment l'azote ou l'argon ;
  • la protection de la buse peut être assurée par d'autres gaz que l'hydrogène, on peut même envisager de se dispenser d'une telle protection, si la buse est résistante vis-à-vis de l'atmosphère gazeuse susceptible de stabiliser le jet ; dans ce cas, pour des alliages dont la stabilisation du jet est difficile à réaliser, il peut être avantageux d'introduire le gaz oxydant au contact du jet directement à la sortie de la buse.
Of course, the invention is not limited to the embodiments previously described, it is thus in particular that the following arrangements can be made:
  • it is possible to use other oxidizing gases than the hydrogen-water vapor mixture, for example a mixture of hydrogen and carbon dioxide or hydrogen and carbon monoxide, or a mixture of hydrogen with at least two oxidizing compounds chosen from water vapor, carbon dioxide, carbon monoxide; it is also possible to use, for example, as an oxidizing gas, oxygen, or a mixture containing oxygen, for example air;
  • hydrogen can also be replaced by another gas, for example an inert gas, in particular nitrogen or argon;
  • the protection of the nozzle can be ensured by gases other than hydrogen, one can even consider dispensing with such protection, if the nozzle is resistant with respect to the gaseous atmosphere capable of stabilizing the spray; in this case, for alloys whose stabilization of the jet is difficult to achieve, it may be advantageous to introduce the oxidizing gas in contact with the jet directly at the outlet of the nozzle.

Claims (12)

  1. A method for obtaining a wire (12) of an amorphous metallic alloy, this method consisting in producing a jet (7) of a molten amorphisable alloy (4) through a nozzle (36), and introducing the jet (7) into a cooling liquid (9) applied by centrifugal force against the inner wall (10) of a rotary drum (11), so as to obtain rapid solidification of the jet (7) which then gives the amorphous metal wire (12), the method being characterised by the following features:
    a) an alloy (4) is used which contains more than 0.2% silicon, in atomic percent;
    b) the jet (7) is obtained with means (21) comprising a reservoir (22) for the alloy (4), and a pressurised gas (5) applied to the molten alloy before the nozzle, this gas being inert with respect to the alloy;
    c) before the jet (7) reaches the cooling liquid (9), it is brought into contact with a gas (55) capable of oxidizing the silicon of the jet (7), this oxidation reaction taking place superficially so as to form a layer around the jet (7) which is capable of stabilising the latter;
    d) the distance covered by the jet (7) between the nozzle (36) and the cooling liquid (9) is between 10 and 100 cm.
  2. A method according to Claim 1, characterised in that the gas (55) capable of oxidizing the silicon of the jet is a gaseous mixture comprising hydrogen or an inert gas and at least one other gas selected from the group consisting of steam, carbon dioxide and carbon monoxide.
  3. A method according to any one of Claims 1 or 2, characterised in that the jet (7) is obtained by applying the gas (5) which is inert to the alloy onto the molten alloy (4) upstream of the nozzle (36), the pressure of which gas is at least equal to 5 bar and the speed of the jet being at least equal to 10 m/second.
  4. A method according to any one of Claims 1 or 2, characterised in that the jet (7) is obtained by applying the gas (5) which is inert to the alloy onto the molten alloy (4) upstream of the nozzle (36), the pressure of which gas is less than 3.5 bar and the speed of the jet being less than 8 m/second.
  5. A method according to any one of Claims 1 to 4, characterised in that the nozzle (36) is placed on the side of the jet (7), in contact with a non-oxidizing gas (52), before the jet (7) is placed in contact with the oxidizing gas (55).
  6. A method according to any one of Claims 1 to 5, characterised in that the whole (21) of the means which make it possible to obtain the jet (7) are disposed on the outside of the drum (11).
  7. An apparatus (20) for obtaining a wire (12) of amorphous metallic alloy, said apparatus (20) comprising a reservoir (22) capable of containing an amorphisable alloy (4) in liquid state containing silicon, a nozzle (36), means (5) making it possible to apply a pressure in order to cause the liquid alloy (4) to flow through the nozzle (36) in the form of a jet (7) towards a cooling liquid (9) capable of permitting rapid solidification of the jet (7), which then produces the amorphous metallic wire (12), the apparatus (20) comprising a rotary drum (11) which permits the formation of a layer (8) of the cooling liquid (9) applied by centrifugal force against the inner wall (10) of the drum (11), the jet (7) being introduced into said layer (8), the apparatus (20) being characterised by the following features:
    a) the reservoir (22) is located on the outside of the drum (11);
    b) the apparatus (20) comprises an enclosure (48) located between the reservoir (22) and the cooling liquid (9), the jet (7) crossing said enclosure (48) before reaching the cooling liquid (9); this enclosure (48) is capable of containing a gas (55) which is capable of oxidizing the silicon of the jet (7), this oxidation reaction being performed superficially so as to form a layer around the jet (7) which is capable of stabilising the latter;
    c) the nozzle (36) and the enclosure (48) are arranged such that the distance covered by the jet (7) between the nozzle (36) and the cooling liquid (9) is between 10 and 100 cm.
  8. An apparatus (20) according to Claim 7, characterised in that the gas (55) is a gaseous mixture comprising hydrogen or an inert gas and at least one other gas selected from the group consisting of steam, carbon dioxide and carbon monoxide.
  9. An apparatus (20) according to any one of Claims 7 or 8, characterised in that the reservoir (22) contains a gas (5) which is inert to the alloy (4), the pressure of which gas is at least equal to 5 bar, this gas, under pressure, making it possible to achieve a speed of the jet (7) at least equal to 10 m/second.
  10. An apparatus (20) according to any one of Claims 7 or 8, characterised in that the reservoir contains a gas (5) which is inert to the alloy (4), the pressure of said gas being less than 3.5 bar, this gas, under pressure, making it possible to achieve a speed of the jet (7) of less than 8 m/second.
  11. An apparatus (20) according to any one of Claims 7 to 10, characterised in that it comprises means (53) making it possible to bring a non-oxidizing gas (52) into contact with the nozzle (36), on the side of the jet (7), before the enclosure (48).
  12. An apparatus (20) according to any one of Claims 7 to 11, characterised in that the whole (21) of the means which make it possible to obtain the jet (7) are disposed on the outside of the drum (11).
EP89116705A 1988-09-21 1989-09-09 Method of and installations for producing wires of amorphous metallic alloys Expired - Lifetime EP0360104B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89116705T ATE92805T1 (en) 1988-09-21 1989-09-09 PROCESSES AND DEVICES FOR PRODUCTION OF WIRE FROM AMORPHOUS METAL ALLOYS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8812423A FR2636552B1 (en) 1988-09-21 1988-09-21 METHODS AND DEVICES FOR OBTAINING AMORPHOUS METAL ALLOY WIRES
FR8812423 1988-09-21

Publications (2)

Publication Number Publication Date
EP0360104A1 EP0360104A1 (en) 1990-03-28
EP0360104B1 true EP0360104B1 (en) 1993-08-11

Family

ID=9370293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89116705A Expired - Lifetime EP0360104B1 (en) 1988-09-21 1989-09-09 Method of and installations for producing wires of amorphous metallic alloys

Country Status (13)

Country Link
US (1) US5000251A (en)
EP (1) EP0360104B1 (en)
JP (1) JPH02117752A (en)
KR (1) KR0125762B1 (en)
CN (1) CN1036570C (en)
AT (1) ATE92805T1 (en)
AU (1) AU616305B2 (en)
BR (1) BR8904774A (en)
CA (1) CA1336125C (en)
DE (1) DE68908310T2 (en)
ES (1) ES2042916T3 (en)
FR (1) FR2636552B1 (en)
OA (1) OA09092A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672522A1 (en) * 1991-02-08 1992-08-14 Michelin & Cie METHOD AND DEVICE FOR CONTINUOUSLY OBTAINING A WIRE BY EXTRUSION IN A LIQUID.
FR2673551B1 (en) * 1991-03-05 1993-06-11 Siderurgie Fse Inst Rech METHOD AND DEVICE FOR CONTINUOUSLY CASTING LOW DIAMETER METAL WIRE DIRECTLY FROM LIQUID METAL.
FR2676946A1 (en) * 1991-05-27 1992-12-04 Michelin & Cie METHOD AND DEVICE FOR OBTAINING IRON - BASED AMORPHOUS METAL ALLOY WIRE.
CN1073479C (en) * 1996-05-09 2001-10-24 冶金工业部包头稀土研究院 Production of crystalline state and amorphous state rare-earth metal alloy threadlet and its device
KR20020000965A (en) * 2000-06-23 2002-01-09 신영주 Pressure relief valve
US7077186B2 (en) * 2003-12-11 2006-07-18 Novelis Inc. Horizontal continuous casting of metals
US7589266B2 (en) * 2006-08-21 2009-09-15 Zuli Holdings, Ltd. Musical instrument string
CN101532117B (en) * 2008-03-12 2010-12-15 中国科学院金属研究所 Preparing method of continuous metallic glass fiber
FR2956410B1 (en) * 2010-02-16 2012-01-27 Snecma DEVICE FOR OBTAINING LIQUID-COATED CERAMIC FIBERS FROM A THICK METALLIC SHEATH

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845805A (en) * 1972-11-14 1974-11-05 Allied Chem Liquid quenching of free jet spun metal filaments
FR2367563A1 (en) * 1976-10-15 1978-05-12 Michelin & Cie PROCESS AND INSTALLATION
FR2367562A1 (en) * 1976-10-15 1978-05-12 Michelin & Cie IMPROVEMENTS IN THE MANUFACTURING OF WIRE BY CONTINUOUS CASTING IN A COOLING FLUID
US4339255A (en) * 1980-09-09 1982-07-13 Energy Conversion Devices, Inc. Method and apparatus for making a modified amorphous glass material
EP0039169B1 (en) * 1980-04-17 1985-12-27 Tsuyoshi Masumoto Amorphous metal filaments and process for producing the same
JPS58173059A (en) * 1982-03-03 1983-10-11 Unitika Ltd Production of fine metallic wire
JPS60247445A (en) * 1984-05-21 1985-12-07 Unitika Ltd Method and device for continuous production of metallic fine wire

Also Published As

Publication number Publication date
CN1041302A (en) 1990-04-18
KR900004435A (en) 1990-04-12
ES2042916T3 (en) 1993-12-16
JPH02117752A (en) 1990-05-02
AU616305B2 (en) 1991-10-24
KR0125762B1 (en) 1997-12-26
FR2636552B1 (en) 1990-11-02
DE68908310D1 (en) 1993-09-16
US5000251A (en) 1991-03-19
EP0360104A1 (en) 1990-03-28
BR8904774A (en) 1990-05-01
DE68908310T2 (en) 1993-12-16
AU4153389A (en) 1990-03-29
FR2636552A1 (en) 1990-03-23
CN1036570C (en) 1997-12-03
ATE92805T1 (en) 1993-08-15
CA1336125C (en) 1995-07-04
OA09092A (en) 1991-10-31

Similar Documents

Publication Publication Date Title
CA1107577A (en) Method for high speed coating of a wire like element with a hot melt material, apparatus therefor, and wire like element thus coated
EP0360104B1 (en) Method of and installations for producing wires of amorphous metallic alloys
CA2284880C (en) Method for metal coating of fibres by liquid process
FR2590189A1 (en) PROCESS FOR CONTINUOUS CASTING OF A METALLIC RIBBON
EP0268627B1 (en) Method and device for the granulation of a molten material
EP0667199A1 (en) Process and apparatus for continuously casting a metal filament directly from a melt
EP0370934B1 (en) Method of and device for alimentation of an ingot mold with molten metal in a continuous casting installation for thin blooms
EP0586481B1 (en) Method and device for obtaining an iron-based amorphous metal alloy wire
EP0077857B1 (en) Enamelling substrates with fluoride glass
CH646402A5 (en) Method for producing and garnet gadolinium gallium.
WO2002024384A1 (en) Method for preparing nuclear metal or metal alloy particles
BE1000490A4 (en) concasting of strip or wire to produce mono-directional grain growth - by heating support substrate to above metal m.pt. prior to flowing metal onto support, preventing nuclei growth between support and metal
EP0158563B1 (en) Process for the non-polluting production of solid silicon from finely divided silicon
EP2666575A1 (en) Cored wire for welding steels with high yield strength
EP0457674B1 (en) Process and apparatus for preparing powder alloys by rapid solidification
EP0084785B1 (en) Quenching metal or an alloy on a belt
EP0021981A1 (en) Method and apparatus for moulding workpieces of molten ceramic material
LU86395A1 (en) Device and method for casting metals in plastic phase - improving grain structure and reducing segregation
FR2499964A1 (en) PROCESS FOR REDUCING STRIURES IN FUSED SILICA
FR2631462A1 (en) METHOD FOR PRODUCING A METAL COATING ON OPTICAL FIBER AND OPTICAL FIBER THEREOF
EP0527717B1 (en) Method and device for continuous casting a molten metal
BE486778A (en)
FR2540889A1 (en) Method for forming a wear-resistant coating on the surface of a metal substrate
WO1998012007A1 (en) Plant and method for making amorphous metal tape or fibre by overhardening
EP0502802A1 (en) Method and apparatus for continuous casting of thin wire from a metal melt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19911017

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930811

Ref country code: NL

Effective date: 19930811

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930811

Ref country code: AT

Effective date: 19930811

REF Corresponds to:

Ref document number: 92805

Country of ref document: AT

Date of ref document: 19930815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68908310

Country of ref document: DE

Date of ref document: 19930916

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931029

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2042916

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980210

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980727

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980820

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980921

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

BERE Be: lapsed

Owner name: CIE GENERALE DES ETS MICHELIN - MICHELIN & CIE

Effective date: 19990930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020904

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020907

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020909

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030909

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040528

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050909