EP0502802A1 - Method and apparatus for continuous casting of thin wire from a metal melt - Google Patents

Method and apparatus for continuous casting of thin wire from a metal melt Download PDF

Info

Publication number
EP0502802A1
EP0502802A1 EP92470007A EP92470007A EP0502802A1 EP 0502802 A1 EP0502802 A1 EP 0502802A1 EP 92470007 A EP92470007 A EP 92470007A EP 92470007 A EP92470007 A EP 92470007A EP 0502802 A1 EP0502802 A1 EP 0502802A1
Authority
EP
European Patent Office
Prior art keywords
nozzle
metal
liquid
wire
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92470007A
Other languages
German (de)
French (fr)
Inventor
Didier Huin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unimetal SA
Original Assignee
Unimetal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unimetal SA filed Critical Unimetal SA
Publication of EP0502802A1 publication Critical patent/EP0502802A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire

Definitions

  • the invention relates to the manufacture of small diameter metal wires by quenching a jet of liquid metal in a layer of cooling liquid.
  • This metal jet then enters a layer of cooling liquid, such as water or an aqueous solution of a salt, which solidifies the jet into a metal wire.
  • This layer of liquid is in movement in a direction transverse to that of the metal jet and flows on a solid surface itself in movement which entrains the liquid, and can be constituted by the interior of a drum rotating around a horizontal axis (European Patent EP 39169 already cited) or by a horizontal or concave portion of a grooved belt running in a loop (European Patent EP 89134).
  • the wire is entrained in the cooling liquid, which preferably moves laminarly at a speed substantially equal to or slightly greater than the speed of ejection of the jet of liquid metal from the tank (of the order of 5 to 15 m / s). As it is poured, the wire is wound in the drum under the effect of centrifugal force, or is continuously removed from the cooling medium by suitable means to be picked up and possibly wound outside the casting machine.
  • this process makes it possible, if the metal is amorphizable, to obtain amorphous wires of uniform size having, among other properties, a very high tensile strength.
  • a variant of this process presented in Japanese Patent Application JP 60250859, consists in placing the cooling liquid in a fixed tank, in placing the liquid metal tank above this tank, in orienting the outlet nozzle of the jet of liquid metal so that the latter enters the cooling liquid at an angle less than or equal to 30 ° relative to its surface, and to impart to the reservoir a rotational movement around a vertical axis not passing through the nozzle output.
  • the solidified wire is deposited at the bottom of the tank in the form of superimposed turns.
  • the object of the invention is to propose a method of casting wire allowing continuous collection of the wire and not limiting the quantity of metal which it is possible to treat at one time to too small a value, as well as a device of simple design for its implementation.
  • the subject of the invention is a process for the continuous casting of fine metallic wire in which a jet of liquid metal leaving the nozzle of a reservoir is quenched and solidified in a layer of cooling liquid, characterized in that said fluid flows over a cylindrical or slightly frustoconical fixed surface with a substantially vertical axis, in that the tank imparts a rotational movement around the axis of said surface so as to move the end of the nozzle on a circular path concentric with said surface, and in that the metal jet is ejected from the nozzle in a direction making a right or obtuse angle with the tangent of the circular path.
  • the invention also relates to a device for continuously casting fine metallic wire comprising a reservoir containing a liquid metal provided with a nozzle, through which a jet of said liquid metal flows, oriented in the direction of a layer of cooling liquid.
  • said jet is quenched and solidified in the form of a wire, characterized in that it comprises a fixed cylindrical or slightly frustoconical surface of substantially vertical axis on which flows said layer of coolant, means for printing a rotational movement around the axis of said surface, and means for collecting said wire as it is formed, placed below said surface.
  • the invention consists in solidifying the jet of liquid metal in a film of coolant freely flowing over a cylindrical or slightly frustoconical surface.
  • the wire thus solidified progressively descends along this surface in the form of turns, and, below the surface, is gripped by a device making it possible to evacuate it.
  • the cooling medium in which the quenching and solidification of the liquid metal M takes place consists of a layer of liquid 1 trickling at a speed v on the upper surface 2 flat and horizontal of a fixed support 3.
  • This support has any general shape, for example cylindrical as shown. Its essential characteristic is to have, in its central part, a recess 4 passing right through it, and produced in such a way that the surface 5 of the support 3 delimiting this recess is cylindrical, with a vertical XY axis.
  • the liquid 1 flows from the upper surface 2 of the support to the cylindrical surface 5 and thus forms a layer of thickness e flowing at a speed v ′.
  • the junction between the upper surface 2 of the support and the cylindrical surface 5 of the recess is preferably carried out without a sharp angle, in order to minimize the disturbances caused to the flow of the liquid 1 by the slope break.
  • the liquid 1 is brought to the support 3 by means such as a hollow ferrule 6 connected to a liquid supply, not shown.
  • This ferrule has an orifice 7 through which the liquid flows.
  • This orifice describes a circle substantially concentric with the recess 4. Its dimensions and the flow rate of the liquid are calculated so as to form a layer of liquid 1 of regular thickness e of the order of 1 cm, and with a flow at relatively low speed v ′ in the recess 4 to prevent excessive turbulence from being established inside the layer 1.
  • the cooling liquid is set in motion, while the tank is fixed, but the speed Vf of the jet of liquid metal, which is also the speed of the solidified wire, is made, and the speed Vl of the liquid are equal, or that Vl is slightly greater than Vf, in a ratio not exceeding 1.3 to 1.5. If Vf is greater than Vl, the jet and the wire are not entrained by the liquid, and there is an accumulation effect which results in an irregular thickness of the wire. If, on the contrary Vl is much greater than Vf the effect of driving the jet is too great and leads to its periodic break, which makes it impossible to obtain a continuous wire of great length.
  • the speed ratio to be taken into account for the adjustment of the installation is therefore the ratio between the speed of the metal jet 15 and the wire 14, and the linear speed Vb of the end of the nozzle 12, equal to ⁇ R if R is the distance between the end of the nozzle 12 and the axis XY of rotation of the reservoir 8.
  • These speeds are, for example, of the order of 5 to 15 m / s, as in conventional installations, and must be sufficient to guarantee a high solidification speed, especially if the formation of an amorphous wire is sought.
  • Their report Vb Vf is also within the limits of 1 to 1.5.
  • the direction of penetration of the jet 15 into the cooling liquid 1 must also be optimized, as in conventional installations, where the inclination of the jet relative to the surface of the liquid is very variable. In this optimization, it may be necessary to take account of the rate of fall v ′ of the layer of cooling liquid 1.
  • any liquid known for its cooling capacities can be used, for example water, aqueous saline solutions, or liquefied gases.
  • the solidified wire 14 Under the effect of the centrifugal force and the direction initially imposed on the metal jet 15, the solidified wire 14 is pressed against the cylindrical surface 5. Under the effect of its weight and the thrust exerted on it by the descending layer of cooling liquid 1, the wire gradually descends along the surface 5 and thus forms turns. Below the support 3, these turns fall on each other and are deposited on a conveyor belt 16 moved by means smbolized by a pulley 17 and which evacuates the turns of wire as and when they are formed.
  • the installation may also include means (not shown) for collecting the used cooling fluid and for returning this liquid to the supply circuit of the installation.
  • an advantage of the invention is to cause the metal M to be centrifuged inside the reservoir. This centrifugation accentuates the separation between the metal and the non-metallic inclusions which it inevitably contains, and which ultimately rises to the surface of the metal M to form a layer of slag 18. This thus increases the quality of the wire, while by reducing the risks of clogging of the nozzle 12 by inclusions.
  • Another advantage of this installation is that the metal tank 8 is not limited in size in the height direction. It is therefore possible to treat at once a quantity of metal as large as desired, provided that means for driving the tank in rotation with a suitable power.
  • the solidified wire leaves the solidification zone on its own in the form of turns, and its evacuation and winding do not require complex installation.
  • a conveyor belt instead of a conveyor belt, it is possible to provide a gradually descending plate, or any other means making it possible to capture the end of the wire and to wind it on a mandrel.
  • the surface 5 of the recess may not be strictly cylindrical, but slightly frustoconical.
  • Such a shape allows better guidance and better formation of the turns, and makes it possible to reduce the speed v ′ of the layer of liquid 1, for a speed v equal to the outlet of the shell. This brings us closer to the conditions of solidification of the wire in conventional type installations.
  • the distance between the nozzle 12 and the surface of the liquid layer 1 can be adjusted by simple vertical translation of the reservoir 8.
  • the taper of the surface 5 should not, however, be so great as to hinder the descent of the turns of wire which could find themselves blocked inside the recess, which would make it necessary to interrupt the casting.
  • provision can be made for continuously supplying the reservoir 8 with metal, either with already liquid metal, or with solid metal divided sufficiently finely for its complete melting to take place before it reaches the nozzle 12. can thus further reduce the limit on the quantity of wire that can be poured in a single operation. It is also possible to equip the reservoir 8 with several neighboring nozzles for casting multi-stranded wires, in a similar manner to that which is explained in the document JP 63273554. It is finally possible, in a known manner, to move the end of the nozzle 12 away from the liquid layer 1 more than a few mm, if it is possible to artificially maintain the coherence of the metal jet 15. This can be done by creating on the surface of the jet, in known manner, an oxide film, thanks to the limited oxidation of one of the metal components by air or by a suitable oxidizing atmosphere, as described for example in document EP 360104.
  • the invention applies to the casting of metallic wires of small diameter, for example steel, and makes it possible to obtain wires of amorphous structure if the solidification conditions are sufficiently violent and if the composition of the cast metal lends itself to it. .

Abstract

The subject of the invention is a method for continuous casting of fine metal wire, in which a stream of metal melt (15), emerging from the nozzle of a vessel (8), is quenched (hardened) and solidified in a layer of cooling liquid (1), characterised in that the said liquid (1) flows over a stationary cylindrical or slightly frustoconical surface (3) with a substantially vertical axis, in that the reservoir (8) is given a rotational movement about the axis of the said surface so as to cause the end of the nozzle to move over a circular path which is concentric with the said surface, and in that the stream of metal (15) is ejected from the nozzle in a direction opposite to the direction of displacement of the nozzle. A further subject of the invention is an apparatus for implementing this method. <IMAGE>

Description

L'invention concerne la fabrication de fils métalliques de faible diamètre par trempe d'un jet de métal liquide dans une couche de liquide refroidissant.The invention relates to the manufacture of small diameter metal wires by quenching a jet of liquid metal in a layer of cooling liquid.

Les dernières années ont vu le développement d'un procédé de coulée permettant d'obtenir, directement à partir de métal liquide, des filaments métalliques de longueur indéfinie, de section substantiellement circulaire et de diamètre très faible, pouvant descendre jusqu'à 80 µm environ, et auquels on peut conférer une structure amorphe, si la composition du métal s'y prête et si les conditions de refroidissement du métal liquide sont suffisamment violentes (au moins 10⁴°C/s). Ce procédé est décrit notamment dans le Brevet Européen EP 39169. Il consiste à former un jet de métal à partir d'un réservoir de métal liquide muni de moyens de chauffage et d'une busette de sortie dont le diamètre est égal ou légèrement supérieur au diamètre du filament désiré. Ce jet de métal pénètre ensuite dans une couche de liquide refroidissant, tel que de l'eau ou une solution aqueuse d'un sel, qui assure la solidification du jet en un fil métallique. Cette couche de liquide est en mouvement dans une direction transversale à celle du jet de métal et s'écoule sur une surface solide elle-même en mouvement qui entraîne le liquide, et peut être constituée par l'intérieur d'un tambour en rotation autour d'un axe horizontal (Brevet Européen EP 39169 déjà cité) ou par une portion horizontale ou concave d'une courroie rainurée en défilement formant une boucle (Brevet Européen EP 89134). Le fil est entraîné dans le liquide refroidissant, qui se déplace de préférence laminairement à une vitesse sensiblement égale ou légèrement supérieure à la vitesse d'éjection du jet de métal liquide hors du réservoir (de l'ordre de 5 à 15m/s). Au fur et à mesure de sa coulée, le fil s'enroule dans le tambour sous l'effet de la force centrifuge, ou est sorti en continu du milieu refroidissant par des moyens appropriés pour être capté et éventuellement bobiné à l'extérieur de la machine de coulée.The last few years have seen the development of a casting process making it possible to obtain, directly from liquid metal, metallic filaments of indefinite length, of substantially circular section and of very small diameter, which can go down to around 80 µm. , and to which one can confer an amorphous structure, if the composition of the metal lends itself to it and if the conditions of cooling of the liquid metal are sufficiently violent (at least 10⁴ ° C / s). This process is described in particular in European Patent EP 39169. It consists in forming a jet of metal from a tank of liquid metal provided with heating means and an outlet nozzle whose diameter is equal to or slightly greater than the diameter of the desired filament. This metal jet then enters a layer of cooling liquid, such as water or an aqueous solution of a salt, which solidifies the jet into a metal wire. This layer of liquid is in movement in a direction transverse to that of the metal jet and flows on a solid surface itself in movement which entrains the liquid, and can be constituted by the interior of a drum rotating around a horizontal axis (European Patent EP 39169 already cited) or by a horizontal or concave portion of a grooved belt running in a loop (European Patent EP 89134). The wire is entrained in the cooling liquid, which preferably moves laminarly at a speed substantially equal to or slightly greater than the speed of ejection of the jet of liquid metal from the tank (of the order of 5 to 15 m / s). As it is poured, the wire is wound in the drum under the effect of centrifugal force, or is continuously removed from the cooling medium by suitable means to be picked up and possibly wound outside the casting machine.

Grâce à la vitesse de refroidissement élevée qu'il peut procurer, ce procédé permet, si le métal est amorphisable, d'obtenir des fils amorphes de dimension uniforme présentant, entre autres propriétés, une résistance à la traction très élevée. On peut ainsi couler des fils amorphes en alliages à base de divers métaux tels que le fer, le cuivre, le cobalt, l'or, l'aluminium, etc...Thanks to the high cooling speed which it can provide, this process makes it possible, if the metal is amorphizable, to obtain amorphous wires of uniform size having, among other properties, a very high tensile strength. We can thus cast amorphous wires in alloys based on various metals such as iron, copper, cobalt, gold, aluminum, etc.

Les inconvénients des dispositifs mettant en oeuvre ce procédé sont cependant nombreux. Les tambours à axe de rotation horizontale ne permettent pas, dans leurs versions les plus simples, de récupérer le fil d'une manière continue et de l'entraîner à l'extérieur de l'installation, et se donner cette possibilité conduit à compliquer très sensiblement la construction de l'installation. Dans tous les cas, la taille du réservoir demeure limitée, car celui-ci doit s'inscrire à l'intérieur du tambour. Sauf à augmenter exagérément le diamètre du tambour, ce qui rend difficile l'entraînement du liquide refroidissant sous l'effet de la force centrifuge, il n'est donc guère possible de traiter en une seule fois des quantités de métal dépassant quelques kg. Quant aux installations utilisant des courroies rainurées, elles autorisent l'utilisation de réservoirs de métal liquide de forte capacité, mais sont très encombrantes. En effet le liquide refroidissant doit généralement parcourir plusieurs mètres sur la bande après son dépôt avant que sa turbulence ne soit suffisamment dissipée pour autoriser une solidification régulière du métal.The drawbacks of the devices implementing this method are however numerous. The drums with horizontal axis of rotation do not allow, in their simplest versions, to recover the wire in a continuous way and to lead it outside the installation, and to give this possibility leads to complicate very significantly the construction of the installation. In all cases, the size of the tank remains limited, as it must fit inside the drum. Unless the diameter of the drum is exaggeratedly increased, which makes it difficult to entrain the cooling liquid under the effect of centrifugal force, it is therefore hardly possible to treat quantities of metal exceeding a few kg at one time. As for installations using grooved belts, they allow the use of high-capacity liquid metal tanks, but are very bulky. In fact, the cooling liquid must generally travel several meters on the strip after it has been deposited before its turbulence is sufficiently dissipated to allow regular solidification of the metal.

Une variante de ce procédé, présentée dans la Demande de Brevet japonais JP 60250859, consiste à placer le liquide refroidissant dans un bac fixe, à disposer le réservoir de métal liquide au-dessus de ce bac, à orienter la busette de sortie du jet de métal liquide de manière à ce que ce dernier pénètre dans le liquide refroidissant selon un angle inférieur ou égal à 30° par rapport à sa surface, et à imprimer au réservoir un mouvement de rotation autour d'un axe vertical ne passant pas par la busette de sortie.Celle-ci décrit ainsi une trajectoire circulaire au-dessus du bac, et le fil solidifié se dépose au fond du bac sous forme de spires superposées. Il n'est cependant pas possible de récupérer le fil de manière continue.A variant of this process, presented in Japanese Patent Application JP 60250859, consists in placing the cooling liquid in a fixed tank, in placing the liquid metal tank above this tank, in orienting the outlet nozzle of the jet of liquid metal so that the latter enters the cooling liquid at an angle less than or equal to 30 ° relative to its surface, and to impart to the reservoir a rotational movement around a vertical axis not passing through the nozzle output. thus describes a circular path above the tank, and the solidified wire is deposited at the bottom of the tank in the form of superimposed turns. However, it is not possible to recover the wire continuously.

Le but de l'invention est de proposer un procédé de coulée de fil autorisant une collecte du fil en continu et ne limitant pas à une valeur trop faible la quantité de métal qu'il est possible de traiter en une seule fois, ainsi qu'un dispositif de conception simple pour sa mise en oeuvre.The object of the invention is to propose a method of casting wire allowing continuous collection of the wire and not limiting the quantity of metal which it is possible to treat at one time to too small a value, as well as a device of simple design for its implementation.

A cet effet, l'invention a pour objet un procédé de coulée continue de fil métallique fin dans lequel un jet de métal liquide sortant de la busette d'un réservoir est trempé et solidifié dans une couche de liquide refroidissant, caractérisé en ce que ledit fluide ruisselle sur une surface fixe cylindrique ou légèrement tronconique d'axe sensiblement vertical, en ce qu'on imprime au réservoir un mouvement de rotation autour de l'axe de ladite surface de manière à faire se déplacer l'extrémité de la busette sur une trajectoire circulaire concentrique à ladite surface, et en ce que le jet de métal est éjecté de la busette selon une direction faisant un angle droit ou obtus avec la tangente de la trajectoire circulaire.To this end, the subject of the invention is a process for the continuous casting of fine metallic wire in which a jet of liquid metal leaving the nozzle of a reservoir is quenched and solidified in a layer of cooling liquid, characterized in that said fluid flows over a cylindrical or slightly frustoconical fixed surface with a substantially vertical axis, in that the tank imparts a rotational movement around the axis of said surface so as to move the end of the nozzle on a circular path concentric with said surface, and in that the metal jet is ejected from the nozzle in a direction making a right or obtuse angle with the tangent of the circular path.

L'invention a également pour objet un dispositif de coulée continue de fil métallique fin comportant un réservoir contenant un métal liquide muni d'une busette, par laquelle s'écoule un jet dudit métal liquide, orientée en direction d'une couche de liquide refroidissant dans laquelle ledit jet est trempé et solidifié sous forme d'un fil, caractérisé en ce qu'il comprend une surface fixe cylindrique ou légèrement tronconique d'axe sensiblement vertical sur laquelle ruisselle ladite couche de liquide refroidissant, des moyens pour imprimer audit réservoir un mouvement de rotation autour de l'axe de ladite surface, et des moyens pour recueillir ledit fil au fur et à mesure de sa formation, placés en dessous de ladite surface.The invention also relates to a device for continuously casting fine metallic wire comprising a reservoir containing a liquid metal provided with a nozzle, through which a jet of said liquid metal flows, oriented in the direction of a layer of cooling liquid. wherein said jet is quenched and solidified in the form of a wire, characterized in that it comprises a fixed cylindrical or slightly frustoconical surface of substantially vertical axis on which flows said layer of coolant, means for printing a rotational movement around the axis of said surface, and means for collecting said wire as it is formed, placed below said surface.

Comme on l'aura compris, l'invention consiste à réaliser la solidification du jet de métal liquide dans un film de liquide refroidissant ruisselant librement sur une surface cylindrique ou légèrement tronconique. Le fil ainsi solidifié descend progressivement le long de cette surface sous forme de spires, et, en dessous de la surface, est saisi par un dispositif permettant de l'évacuer.As will be understood, the invention consists in solidifying the jet of liquid metal in a film of coolant freely flowing over a cylindrical or slightly frustoconical surface. The wire thus solidified progressively descends along this surface in the form of turns, and, below the surface, is gripped by a device making it possible to evacuate it.

L'invention sera mieux comprise à la lecture de la description qui suit, faisant référence à la figure unique annexée, montrant l'installation vue en coupe frontale et en perspective.The invention will be better understood on reading the description which follows, referring to the single appended figure, showing the installation seen in frontal section and in perspective.

Dans l'installation de coulée de fil telle que représentée sur la figure unique, le milieu refroidissant dans lequel s'effectuent la trempe et la solidification du métal liquide M est constitué par une couche de liquide 1 ruisselant à une vitesse v sur la surface supérieure 2 plane et horizontale d'un support fixe 3. Ce support présente une forme générale quelconque, par exemple cylindrique comme représenté. Sa caractéristique essentielle est de posséder, dans sa partie centrale, un évidement 4 le traversant de part en part, et réalisé de manière que la surface 5 du support 3 délimitant cet évidement soit cylindrique, d'axe X-Y vertical. Le liquide 1 ruisselle depuis la surface supérieure 2 du support jusque sur la surface cylindrique 5 et forme ainsi une couche d'épaisseur e s'écoulant à une vitesse v′. La jonction entre la surface supérieure 2 du support et la surface cylindrique 5 de l'évidement s'effectue de préférence sans angle vif, afin de minimiser les perturbations apportées à l'écoulement du liquide 1 par la rupture de pente. Le liquide 1 est amené sur le support 3 par des moyens tels qu'une virole 6 creuse reliée à une alimentation en liquide non représentée. Cette virole possède un orifice 7 par lequel s'écoule le liquide. Cet orifice décrit un cercle sensiblement concentrique à l'évidement 4. Ses dimensions ainsi que le débit du liquide sont calculés de manière à former une couche de liquide 1 d'épaisseur régulière e de l'ordre de 1 cm, et avec un écoulement à vitesse v′ relativement faible dans l'évidement 4 pour éviter que ne s'établissent des turbulences trop importantes à l'intérieur de la couche 1.In the wire casting installation as shown in the single figure, the cooling medium in which the quenching and solidification of the liquid metal M takes place consists of a layer of liquid 1 trickling at a speed v on the upper surface 2 flat and horizontal of a fixed support 3. This support has any general shape, for example cylindrical as shown. Its essential characteristic is to have, in its central part, a recess 4 passing right through it, and produced in such a way that the surface 5 of the support 3 delimiting this recess is cylindrical, with a vertical XY axis. The liquid 1 flows from the upper surface 2 of the support to the cylindrical surface 5 and thus forms a layer of thickness e flowing at a speed v ′. The junction between the upper surface 2 of the support and the cylindrical surface 5 of the recess is preferably carried out without a sharp angle, in order to minimize the disturbances caused to the flow of the liquid 1 by the slope break. The liquid 1 is brought to the support 3 by means such as a hollow ferrule 6 connected to a liquid supply, not shown. This ferrule has an orifice 7 through which the liquid flows. This orifice describes a circle substantially concentric with the recess 4. Its dimensions and the flow rate of the liquid are calculated so as to form a layer of liquid 1 of regular thickness e of the order of 1 cm, and with a flow at relatively low speed v ′ in the recess 4 to prevent excessive turbulence from being established inside the layer 1.

Au-dessus de l'évidement 4 est disposé un réservoir 8 contenant le métal liquide M. Ce réservoir présente une symétrie de révolution par rapport à l'axe XY, et peut par exemple avoir une forme générale cylindrique comme représenté. Il est revêtu intérieurement d'une couche de réfractaire peu réactif vis-à-vis du métal M, ou est lui même entièrement en ce réfractaire. Il est équipé de moyens de chauffage, tels qu'une bobine d'induction 9, dont l'alimentation électrique n'est pas représentée. Ces moyens de chauffage permettent de maintenir au niveau désiré la température du métal liquide M qui a été préalablement introduit dans le réservoir, ou même également d'assurer eux-mêmes la fusion de morceaux de ce métal. Le réservoir 8 comporte également des moyens 10 pour sa mise en rotation aurour de l'axe X-Y à une vitesse angulaire ω, et des moyens 11 d'introduction d'un gaz neutre en son intérieur. Ce gaz permet de protéger le métal liquide M contre l'oxydation atmosphérique. Il permet également de mettre le réservoir sous pression de manière à favoriser l'éjection du métal liquide et à réguler son débit de sortie indépendamment de la quantité de métal qui subsiste à l'intérieur du réservoir 8. Cette sortie du métal liquide du réservoir 8 s'effectue par une busette 12 placée dans le fond 13 du réservoir. Cette busette 12 doit remplir les conditions suivantes :

  • son diamètre terminal est égal ou très légèrement supérieur au diamètre désiré pour le fil 14, soit de l'ordre de 80 à 200 µm, afin de former un jet de métal liquide 15 cohérent possédant ce diamètre ;
  • elle doit orienter le jet de métal liquide vers la couche de liquide refroidissant 1 ruisselant sur la surface cylindrique 5, et dans une direction opposée à la direction de déplacement de la busette ; par exemple, si, comme représenté sur la figure, la rotation du réservoir s'effectue dans le sens antihoraire, l'extrémité de la busette 12 doit être orientée vers l'arrière du plan de coupe ;
  • son extrémité doit être située à une très faible distance (de l'ordre de 1 à quelques mm) de la surface de la couche de liquide refroidissant 1, pour assurer une bonne cohérence du jet de métal 15 au moment de sa pénétration dans le liquide.
Above the recess 4 is disposed a reservoir 8 containing the liquid metal M. This reservoir has a symmetry of revolution with respect to the axis XY, and may for example have a generally cylindrical shape as shown. It is coated internally with a refractory layer which is not very reactive with respect to the metal M, or is itself entirely made of this refractory. It is equipped with heating means, such as an induction coil 9, the electrical supply of which is not shown. These heating means make it possible to maintain the temperature of the liquid metal M which has been previously introduced into the tank at the desired level, or even also to ensure the melting of pieces of this metal themselves. The reservoir 8 also comprises means 10 for rotating it around the axis XY at an angular speed ω, and means 11 for introducing a neutral gas inside it. This gas protects the liquid metal M against atmospheric oxidation. It also makes it possible to put the tank under pressure so as to favor the ejection of the liquid metal and to regulate its outlet flow regardless of the quantity of metal which remains inside the tank 8. This outlet of the liquid metal from the tank 8 is effected by a nozzle 12 placed in the bottom 13 of the tank. This nozzle 12 must meet the following conditions:
  • its terminal diameter is equal to or very slightly greater than the desired diameter for the wire 14, ie of the order of 80 to 200 μm, in order to form a jet of coherent liquid metal 15 having this diameter;
  • it must direct the jet of liquid metal towards the layer of cooling liquid 1 trickling over the cylindrical surface 5, and in a direction opposite to the direction of movement of the nozzle; for example, if, as shown in the figure, the tank rotates counterclockwise, the end of the nozzle 12 must be oriented towards the rear of the cutting plane;
  • its end must be located at a very short distance (of the order of 1 to a few mm) from the surface of the layer of cooling liquid 1, to ensure good consistency of the metal jet 15 at the time of its penetration into the liquid.

Habituellement, dans les installations de coulée directe de fil le liquide refroidissant est mis en mouvement, alors que le réservoir est fixe, mais on fait en sorte que la vitesse Vf du jet de métal liquide, qui est aussi la vitesse du fil solidifié, et la vitesse Vl du liquide soient égales, ou que Vl soit légèrement supérieure à Vf, dans un rapport ne dépassant pas 1,3 à 1,5. Si Vf est supérieure à Vl, le jet et le fil ne sont pas entraînés par le liquide, et il se produit un effet d'accumulation qui aboutit à une épaisseur du fil irrégulière. Si, au contraire Vl est très supérieure à Vf l'effet d'entraînement du jet est trop important et conduit à sa rupture périodique, ce qui rend impossible l'obtention d'un fil continu de grande longueur. Dans l'installation selon l'invention, on peut négliger la vitesse de chute v′ de la couche de liquide refroidissant 1 et admettre que celle-ci est fixe. Le rapport des vitesses à prendre en considération pour le réglage de l'installation est donc le rapport entre la vitesse du jet de métal 15 et du fil 14, et la vitesse linéaire Vb de l'extrémité de la busette 12, égale à ω R si R est la distance entre l'extrémité de la busette 12 et l'axe XY de rotation du réservoir 8. Ces vitesses sont, par exemple, de l'ordre de 5 à 15 m/s, comme sur les installations classiques, et doivent être suffisantes pour garantir une vitesse de solidification élevée, surtout si on recherche la formation d'un fil amorphe. Leur rapport Vb Vf

Figure imgb0001
est aussi dans les limites de 1 à 1,5. la direction de pénétration du jet 15 dans le liquide refroidissant 1 doit également être optimisée, comme sur les installations classiques, où l'inclinaison du jet par rapport à la surface du liquide est très variable. Dans cette optimisation, on pourra être amené à tenir compte de la vitesse de chute v′ de la couche de liquide refroidissant 1.Usually, in direct wire casting installations, the cooling liquid is set in motion, while the tank is fixed, but the speed Vf of the jet of liquid metal, which is also the speed of the solidified wire, is made, and the speed Vl of the liquid are equal, or that Vl is slightly greater than Vf, in a ratio not exceeding 1.3 to 1.5. If Vf is greater than Vl, the jet and the wire are not entrained by the liquid, and there is an accumulation effect which results in an irregular thickness of the wire. If, on the contrary Vl is much greater than Vf the effect of driving the jet is too great and leads to its periodic break, which makes it impossible to obtain a continuous wire of great length. In the installation according to the invention, it is possible to neglect the rate of fall v ′ of the layer of cooling liquid 1 and to admit that it is fixed. The speed ratio to be taken into account for the adjustment of the installation is therefore the ratio between the speed of the metal jet 15 and the wire 14, and the linear speed Vb of the end of the nozzle 12, equal to ω R if R is the distance between the end of the nozzle 12 and the axis XY of rotation of the reservoir 8. These speeds are, for example, of the order of 5 to 15 m / s, as in conventional installations, and must be sufficient to guarantee a high solidification speed, especially if the formation of an amorphous wire is sought. Their report Vb Vf
Figure imgb0001
is also within the limits of 1 to 1.5. the direction of penetration of the jet 15 into the cooling liquid 1 must also be optimized, as in conventional installations, where the inclination of the jet relative to the surface of the liquid is very variable. In this optimization, it may be necessary to take account of the rate of fall v ′ of the layer of cooling liquid 1.

Pour constituer cette couche 1, tout liquide connu pour ses capacités refroidissantes peut être utilisé, par exemple l'eau, les solutions aqueuses salines, ou les gaz liquéfiés.To form this layer 1, any liquid known for its cooling capacities can be used, for example water, aqueous saline solutions, or liquefied gases.

Sous l'effet de la force centrifuge et de la direction imposée initialement au jet de métal 15, le fil solidifié 14 vient se plaquer contre la surface cylindrique 5. Sous l'effet de son poids et de la poussée qu'exerce sur lui la couche descendante de liquide refroidissant 1, le fil descend progressivement le long de la surface 5 et forme ainsi des spires. En dessous du support 3, ces spires tombent les unes sur les autres et se déposent sur une bande transporteuse 16 mue par des moyens smbolisés par une poulie 17 et qui évacue les spires de fil au fur et à mesure de leur formation. L'installation peut également comprendre des moyens (non représentés) de collecte du fluide de refroidissement usé et de renvoi de ce liquide dans le circuit d'alimentation de l'installation.Under the effect of the centrifugal force and the direction initially imposed on the metal jet 15, the solidified wire 14 is pressed against the cylindrical surface 5. Under the effect of its weight and the thrust exerted on it by the descending layer of cooling liquid 1, the wire gradually descends along the surface 5 and thus forms turns. Below the support 3, these turns fall on each other and are deposited on a conveyor belt 16 moved by means smbolized by a pulley 17 and which evacuates the turns of wire as and when they are formed. The installation may also include means (not shown) for collecting the used cooling fluid and for returning this liquid to the supply circuit of the installation.

Par rapport à la solution habituelle consistant à utiliser un réservoir fixe et une couche de liquide déposée sur une surface mobile, un avantage de l'invention est de provoquer une centrifugation du métal M à l'intérieur du réservoir. Cette centrifugation accentue la séparation entre le métal et les inclusions non-métalliques qu'il contient inévitablement, et qui en fin de compte remontent à la surface du métal M pour former une couche de laitier 18. On augmente ainsi la qualité du fil, tout en diminuant les risques de bouchage de la busette 12 par les inclusions. Un autre avantage de cette installation est que le réservoir de métal 8 n'est pas limité en taille dans le sens de la hauteur. Il est donc possible de traiter en une seule fois une quantité de métal aussi importante qu'on le désire, à condition de prévoir des moyens d'entraînement en rotation du réservoir d'une puissance adaptée. Enfin, le fil solidifié quitte de lui-même la zone de solidification sous forme de spires, et son évacuation et son bobinage ne nécessitent pas d'installation complexe. A cet effet, au lieu d'une bande transporteuse, on peut prévoir un plateau descendant progressivement, ou tout autre moyen permettant de capter l'extrémité du fil et de bobiner celui-ci sur un mandrin.Compared to the usual solution consisting in using a fixed reservoir and a layer of liquid deposited on a mobile surface, an advantage of the invention is to cause the metal M to be centrifuged inside the reservoir. This centrifugation accentuates the separation between the metal and the non-metallic inclusions which it inevitably contains, and which ultimately rises to the surface of the metal M to form a layer of slag 18. This thus increases the quality of the wire, while by reducing the risks of clogging of the nozzle 12 by inclusions. Another advantage of this installation is that the metal tank 8 is not limited in size in the height direction. It is therefore possible to treat at once a quantity of metal as large as desired, provided that means for driving the tank in rotation with a suitable power. Finally, the solidified wire leaves the solidification zone on its own in the form of turns, and its evacuation and winding do not require complex installation. For this purpose, instead of a conveyor belt, it is possible to provide a gradually descending plate, or any other means making it possible to capture the end of the wire and to wind it on a mandrel.

En variante, la surface 5 de l'évidement peut ne pas être rigoureusement cylindrique, mais légèrement tronconique. Une telle forme permet un meilleur guidage et une meilleure formation des spires, et permet de diminuer la vitesse v′ de la couche de liquide 1, pour une vitesse v égale à la sortie de la virole. On se rapproche ainsi davantage des conditions de solidification du fil dans les installations de type classique. De plus, la distance entre la busette 12 et la surface de la couche de liquide 1 peut être réglée par simple translation verticale du réservoir 8. La conicité de la surface 5 ne doit cependant pas être importante au point de gêner la descente des spires de fil qui pourraient se retrouver bloquées à l'intérieur de l'évidement, ce qui obligerait d'interrompre la coulée.As a variant, the surface 5 of the recess may not be strictly cylindrical, but slightly frustoconical. Such a shape allows better guidance and better formation of the turns, and makes it possible to reduce the speed v ′ of the layer of liquid 1, for a speed v equal to the outlet of the shell. This brings us closer to the conditions of solidification of the wire in conventional type installations. In addition, the distance between the nozzle 12 and the surface of the liquid layer 1 can be adjusted by simple vertical translation of the reservoir 8. The taper of the surface 5 should not, however, be so great as to hinder the descent of the turns of wire which could find themselves blocked inside the recess, which would make it necessary to interrupt the casting.

De même, on peut prévoir d'alimenter le réservoir 8 de métal en continu, soit par du métal déjà liquide, soit par du métal solide divisé suffisamment finement pour que sa fusion complète intervienne avant qu'il ne parvienne à la busette 12. On peut ainsi reculer encore la limite de la quantité de fil que l'on peut couler en une seule opération. On peut aussi équiper le réservoir 8 de plusieurs busettes voisines pour couler des fils multi-brins, de manière analogue à ce qui est exposé dans le document JP 63273554. On peut enfin, de manière connue, éloigner l'extrémité de la busette 12 de la couche de liquide 1 de davantage que quelques mm, s'il est possible de maintenir artificiellement la cohérence du jet de métal 15. Ce peut être fait en créant à la surface du jet, de manière connue, une pellicule d'oxydes, grâce à l'oxydation limitée d'un des composants du métal par l'air ou par une atmosphère oxydante appropriée, comme exposé par exemple dans le document EP 360104.Likewise, provision can be made for continuously supplying the reservoir 8 with metal, either with already liquid metal, or with solid metal divided sufficiently finely for its complete melting to take place before it reaches the nozzle 12. can thus further reduce the limit on the quantity of wire that can be poured in a single operation. It is also possible to equip the reservoir 8 with several neighboring nozzles for casting multi-stranded wires, in a similar manner to that which is explained in the document JP 63273554. It is finally possible, in a known manner, to move the end of the nozzle 12 away from the liquid layer 1 more than a few mm, if it is possible to artificially maintain the coherence of the metal jet 15. This can be done by creating on the surface of the jet, in known manner, an oxide film, thanks to the limited oxidation of one of the metal components by air or by a suitable oxidizing atmosphere, as described for example in document EP 360104.

L'invention s'applique à la coulée de fils métalliques de faible diamètre, par exemple en acier, et permet d'obtenir des fils de structure amorphe si les conditions de solidification sont suffisamment violentes et si la composition du métal coulé s'y prête.The invention applies to the casting of metallic wires of small diameter, for example steel, and makes it possible to obtain wires of amorphous structure if the solidification conditions are sufficiently violent and if the composition of the cast metal lends itself to it. .

Claims (5)

1) Procédé de coulée continue de fil métallique fin dans lequel un jet de métal liquide sortant de la busette d'un réservoir est trempé et solidifié dans une couche de liquide refroidissant, caractérisé en ce que ledit liquide ruisselle sur une surface fixe cylindrique ou légèrement tronconique d'axe sensiblement vertical, en ce qu'on imprime au réservoir un mouvement de rotation autour de l'axe de ladite surface de manière à faire se déplacer l'extrémité de la busette sur une trajectoire circulaire concentrique à ladite surface, et en ce que le jet de métal est éjecté de la busette selon une direction opposée à la direction de déplacement de la busette. 1) Process for the continuous casting of fine metallic wire in which a jet of liquid metal leaving the nozzle of a reservoir is quenched and solidified in a layer of cooling liquid, characterized in that said liquid trickles over a cylindrical or slightly fixed surface frusto-conical with a substantially vertical axis, in that the tank is given a rotational movement around the axis of said surface so as to cause the end of the nozzle to move on a circular path concentric with said surface, and that the metal jet is ejected from the nozzle in a direction opposite to the direction of movement of the nozzle. 2) Procédé selon la revendication 1, caractérisé en ce que la vitesse linéaire de déplacement Vb de l'extrémité de la busette et la vitesse du jet de métal sortant de la busette sont dans un rapport Vb Vf
Figure imgb0002
compris entre 1 et 1,5 environ.
2) Method according to claim 1, characterized in that the linear speed of displacement Vb of the end of the nozzle and the speed of the metal jet leaving the nozzle are in a ratio Vb Vf
Figure imgb0002
between approximately 1 and 1.5.
3) Dispositif de coulée continue de fil métallique fin comportant un réservoir (8) contenant un métal liquide (M) muni d'une busette (12) par laquelle s'écoule un jet (15) dudit métal liquide (M) orienté en direction d'une couche de liquide refroidissant (1) dans laquelle ledit jet (15) est trempé et solidifié sous forme d'un fil (14), caractérisé en ce qu'il comprend une surface (5) fixe cylindrique ou légèrement tronconique d'axe (X-Y) sensiblement vertical sur laquelle ruisselle ladite couche (1) de liquide refroidissant, des moyens (10) pour imprimer audit réservoir (8) un mouvement de rotation autour de l'axe (XY) de ladite surface, et de moyens pour recueillir ledit fil (14) au fur et à mesure de sa formation, placés en dessous de ladite surface (5). 3) Device for continuous casting of fine metal wire comprising a reservoir (8) containing a liquid metal (M) provided with a nozzle (12) through which flows a jet (15) of said liquid metal (M) oriented in the direction a layer of cooling liquid (1) in which said jet (15) is soaked and solidified in the form of a wire (14), characterized in that it comprises a fixed cylindrical or slightly frustoconical surface (5) of substantially vertical axis (XY) on which said layer (1) of coolant flows, means (10) for imparting to said reservoir (8) a rotational movement around the axis (XY) of said surface, and means for collecting said wire (14) as it is formed, placed below said surface (5). 4) Dispositif selon la revendication 3, caractérisé en ce que lesdits moyens pour recueillir le fil métallique (14) sont constitués par un plateau descendant progressivement. 4) Device according to claim 3, characterized in that said means for collecting the metal wire (14) consist of a plate descending gradually. 5) Dispositif selon la revendication 3, caractérisé en ce que lesdits moyens pour recueillir le fil métallique sont constitués par une bande transporteuse (16). 5) Device according to claim 3, characterized in that said means for collecting the metal wire consist of a conveyor belt (16).
EP92470007A 1991-03-05 1992-02-20 Method and apparatus for continuous casting of thin wire from a metal melt Withdrawn EP0502802A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9102781A FR2673551B1 (en) 1991-03-05 1991-03-05 METHOD AND DEVICE FOR CONTINUOUSLY CASTING LOW DIAMETER METAL WIRE DIRECTLY FROM LIQUID METAL.
FR9102781 1991-03-05

Publications (1)

Publication Number Publication Date
EP0502802A1 true EP0502802A1 (en) 1992-09-09

Family

ID=9410486

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92470007A Withdrawn EP0502802A1 (en) 1991-03-05 1992-02-20 Method and apparatus for continuous casting of thin wire from a metal melt

Country Status (4)

Country Link
EP (1) EP0502802A1 (en)
CA (1) CA2062276A1 (en)
FR (1) FR2673551B1 (en)
TR (1) TR25618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840471A (en) * 2020-06-23 2021-12-24 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Method for preparing flexible electron and flexible electron

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039169A2 (en) * 1980-04-17 1981-11-04 Tsuyoshi Masumoto Amorphous metal filaments and process for producing the same
EP0227837A1 (en) * 1985-06-26 1987-07-08 Sumitomo Electric Industries, Ltd. Method and apparatus for taking up elongated material
EP0360104A1 (en) * 1988-09-21 1990-03-28 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Method of and installations for producing wires of amorphous metallic alloys

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250859A (en) * 1984-05-25 1985-12-11 Sumitomo Electric Ind Ltd Production of fine metallic wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039169A2 (en) * 1980-04-17 1981-11-04 Tsuyoshi Masumoto Amorphous metal filaments and process for producing the same
EP0227837A1 (en) * 1985-06-26 1987-07-08 Sumitomo Electric Industries, Ltd. Method and apparatus for taking up elongated material
EP0360104A1 (en) * 1988-09-21 1990-03-28 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Method of and installations for producing wires of amorphous metallic alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 10, no. 122 (M-476)(2179) 7 Mai 1986 & JP-A-60 250 859 ( SUMITOMO DENKI KOGYO K.K. ) 11 Décembre 1985 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840471A (en) * 2020-06-23 2021-12-24 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Method for preparing flexible electron and flexible electron
CN113840471B (en) * 2020-06-23 2023-05-09 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Method for preparing flexible electronic and flexible electronic

Also Published As

Publication number Publication date
CA2062276A1 (en) 1992-09-06
FR2673551A1 (en) 1992-09-11
TR25618A (en) 1993-07-01
FR2673551B1 (en) 1993-06-11

Similar Documents

Publication Publication Date Title
FR2502997A1 (en) PROCESS FOR THE PRODUCTION OF LEAD DECOLLETING STEEL BY CONTINUOUS CASTING
EP2099576B1 (en) Hollow jet nozzle for continuous steel casting
EP0092477B1 (en) Process and apparatus for casting hollow steel ingots
WO1988004284A1 (en) Optical fibre coated with a metal sleeve
FR2664514A1 (en) METHOD AND DEVICE FOR CASTING STRIPS AND METAL DELIVERY NOZZLE USED WITH THIS PROCESS AND DEVICE.
CA2142420A1 (en) Method and device for continuously casting ultra thin metal wires directly from molten metal
CH341133A (en) Method of manufacturing a metallic filament
EP0502802A1 (en) Method and apparatus for continuous casting of thin wire from a metal melt
EP0342082B1 (en) Method for cooling a metallic continuous casting product
EP0378036B1 (en) Method and apparatus for continuously casting thin metal wire
LU82874A1 (en) PROCESS AND PLANT FOR THE CONTINUOUS MANUFACTURE OF HOLLOW METAL BLANKS
FR2555080A1 (en) METHOD AND APPARATUS FOR AVOIDING THE FORMATION OF A VIRL IN A METALLURGICAL CONTAINER OF A BOTTOM EXIT
EP0242347A2 (en) Apparatus for metal slurry casting
FR2823744A1 (en) Continuous production of long glass-sheathed metal wires involves supplying a continuous metal drop at the base of a glass tube and drawing
EP0457674B1 (en) Process and apparatus for preparing powder alloys by rapid solidification
FR2876685A1 (en) PROCESS AND DEVICE FOR CONTINUOUSLY MANUFACTURING GLASS SHEET METAL WIRES BY FEEDING METAL PARTICLES
FR2525131A1 (en) Casting large hollow steel ingots - using gas cooled metal core
FR2496514A1 (en) CENTRIFUGAL CASTING DEVICE
EP0452294B1 (en) Method and device for the continuous casting of a metal
BE486778A (en)
FR2480155A1 (en) Casting pipe on base of tundish in continuous casting plant - has two tangential outlet holes through which molten metal flows into rotating mould, esp. to cast round steel bars
FR2607738A3 (en) Device for supplying continuous-cast ingot moulds with molten metal
BE546497A (en)
FR2709082A1 (en) Granulation of alloys containing silicon in water and in an inert atmosphere
EP0667198A1 (en) Crucible for casting metallic strip with a continuous casting apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES GB GR IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19930115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19940831