EP0357771A1 - Procede et dispositif pour fabriquer des granules a partir d'un metal en fusion - Google Patents

Procede et dispositif pour fabriquer des granules a partir d'un metal en fusion Download PDF

Info

Publication number
EP0357771A1
EP0357771A1 EP87905557A EP87905557A EP0357771A1 EP 0357771 A1 EP0357771 A1 EP 0357771A1 EP 87905557 A EP87905557 A EP 87905557A EP 87905557 A EP87905557 A EP 87905557A EP 0357771 A1 EP0357771 A1 EP 0357771A1
Authority
EP
European Patent Office
Prior art keywords
melt
vector
electrically connected
jet
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87905557A
Other languages
German (de)
English (en)
Other versions
EP0357771A4 (fr
Inventor
Anatoly Korneevich Shidlovsky
Anatoly Fedorovich Kolesnichenko
Alexandr Yakovlevich Voloshin
Vladimir Fedorovich Budenny
Vladimir Olegovich Vodyanjuk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OTDELENIE PROBLEM PREOBRAZOVANIA I ISPOLZOVANIA ELEKTROENERGII INSTITUTA ELEKTRODINAMIKI AKADEMII NAUK UKRAINSKOI SSR
Original Assignee
OTDELENIE PROBLEM PREOBRAZOVANIA I ISPOLZOVANIA ELEKTROENERGII INSTITUTA ELEKTRODINAMIKI AKADEMII NAUK UKRAINSKOI SSR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OTDELENIE PROBLEM PREOBRAZOVANIA I ISPOLZOVANIA ELEKTROENERGII INSTITUTA ELEKTRODINAMIKI AKADEMII NAUK UKRAINSKOI SSR filed Critical OTDELENIE PROBLEM PREOBRAZOVANIA I ISPOLZOVANIA ELEKTROENERGII INSTITUTA ELEKTRODINAMIKI AKADEMII NAUK UKRAINSKOI SSR
Publication of EP0357771A4 publication Critical patent/EP0357771A4/fr
Publication of EP0357771A1 publication Critical patent/EP0357771A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to metallurgy and relates in particular to methods for producing granules from the molten metal and apparatus for producing granules from the molten metal.
  • a method for producing granules from the molten metal which provides for the formation of a free jet from the melt.
  • the melt Above the beam exit, the melt is exposed to the action of a variable electromagnetic field with a prescribed change in the time to generate the electromagnetic volume forces, which act on the melt with the frequency of the self-decay of the free jet in drops and in this way a forced decay of the free Introduce the jet into drops.
  • These electromagnetic vacuum forces change in the region of the oscillation period of the electromagnetic field according to a curve, the sections of which the enlargement, the decrease to a maximum negative value and the portion of the return to the zero value corresponding to 0.6 to 0.7, 0.1 to 0.2 and 0.2 to 0.3 of the period (DE, C, 3116792).
  • a device for the production of granules from the molten metal which contains a container for the molten metal and a trunk which is connected at its ends to the container, forms a closed annular melting channel and a section with one in the gap of an electromagnet opening.
  • the ring-shaped melting channel comprises an induction coil which is connected to the outputs of an electrical power source of a rectangular shape.
  • the inputs of this current source are connected to the outputs of a control unit, the inputs of which are connected to the outputs of the electrical current source which is electrically connected to the aforementioned electromagnet via a saturation choke (DE, C, 3116792).
  • the quality of the material to be extruded is improved if the spaces mentioned are filled with particles of smaller size which, with their shape, fit into the space between them have to insert the neighboring larger particle; this is possible when extruding a semi-finished product in granule form with a precisely specified polydisperse composition, ie the granules of a specified size and shape.
  • the semifinished product in the form of granules with a predetermined polydisperse composition can be put together particularly effectively with the simultaneous accumulation of granules of different predetermined sizes in one and the same room. Otherwise, that is, at an inevitable mixing of monodispersed granules of different size, a segregation of the larger and smaller granules is unavoidable, which even results in a deterioration of the quality of the products produced in comparison to the extrusion of the particles with a purely monodis p ersen composition.
  • the present invention has for its object to provide a method for producing granules from the molten metal and an apparatus for performing this method, in which the action of the electromagnetic field on the molten metal at the beam exit is realized so that granules with a predetermined polydisperse Composition can be made.
  • An apparatus for the production of metallic granules which contains a container for the molten metal and a trunk, which is connected at its ends to the container, forms a closed annular melting channel which comprises an induction coil which is connected to a first electrical power source is electrically connected, and has a section with at least one opening in the gap of an electromagnet, which is electrically connected to a second electrical current source, the two electrical current sources being electrically connected to one another;
  • the first and second electrical current sources are implemented with programmable parameters.
  • each electrical current source with programmable parameters contains a control switch, a digital-to-analog converter and a power amplifier, which are electrically connected in series with one another, the output of the power amplifier serving as the input of the electrical current source with programmable parameters, and the Control switches of the first and the second electrical power source are connected to each other with programmable parameters.
  • a s p lche circuit arrangement makes it possible to generate at the outputs of the current sources with programmable parameters a current which changes practically according to any pre-specified law that a corresponding change of the vectors E or H or the two vectors guaranteed at the same time.
  • the device has a second electromagnet arranged below the opening of the proboscis, which is electrically connected to a third electrical current source with programmable parameters, which is electrically connected to the first and to the second electrical current source with programmable parameters, and one Has crystallizer, which is housed in the gap of the second electromagnet and is made of an electrical non-conductive material.
  • the device In the cases where it is necessary to sort the granules of different sizes to be produced, it is expedient for the device to have a crystallizer which serves as a separator and which is arranged below the opening of the trunk and is connected in its upper part to a pressurized gas source.
  • the method according to the invention for the production of granules from the molten metal and the device for carrying out this method permit one reasonable simple design and embodiment, within a period of free decay of the beam granules with several predetermined sizes and the same shape both from metals with a relatively low melting temperature (tin, lead, etc.), as well as from metals with a relatively high melting temperature ( Aluminum, zinc and others).
  • the method and device according to the invention also make it possible to change both the size and the shape of the granules when producing granules.
  • the process for producing granules from the molten metal is carried out as follows.
  • a round jet is formed from the melt and the melt becomes active above the jet outlet Exposure to a pulse train of a variable electromagnetic field that changes with a prescribed change in time.
  • the direction E x H this field coincides with the vector direction of the outflow velocity of the jet.
  • E x H changing electromagnetic volume force, which initiates a decay of the beam into individual drops.
  • the pulse train period is equal to the time of self-decay of the beam.
  • the number of drops obtained in this period is equal to the number of pulses in a sequence, and the size of the drops is proportional to the time intervals between the pulses in a sequence.
  • the device for producing metallic granules contains a container 1 (FIG. 1) for the molten metal. Connected to this container by its ends is a trunk 2, which forms a closed annular melting channel which comprises an induction coil 3 which is electrically connected to a first electrical power source 4 with programmable parameters.
  • the trunk 2 has a section with openings 5 to form a free jet from the molten metal. These openings 5 of the trunk 2 are located in the gap of an electromagnet 6, which is electrically connected to a second electrical current source 7 with programmable parameters.
  • the current sources 4 and 7 are electrically connected to one another.
  • the electrical power sources 4 and 7 are identical; therefore, everything that relates to one of these current sources in the description below applies equally to the other current source.
  • the electrical current source 4 with programmable parameters contains a control switch 8, a digital-to-analog converter 9 and a power amplifier 10.
  • the output of the control switch 8 is at the input of the digital-to-analog converter 9 is connected, the output of which is connected to the input of the power amplifier 10.
  • the outputs of the power amplifier 10 are connected to the winding of the induction coil 3.
  • the output of the power amplifier 10 of the second electrical current source 9 is connected to the winding of the electromagnet 6.
  • the control switches 8 are connected to one another by means of synchronization circuits. Microcomputers with characteristic data suitable for these purposes can be used as control switches.
  • the power amplifiers and the digital-to-analog converters can be designed according to any known circuit arrangement suitable for this purpose.
  • a second electromagnet 11 (FIG.
  • a crystallizer 13 is arranged in the air gap 12 of the electromagnet 11.
  • the crystallizer 13 is made of an electrically non-conductive material in order to exclude a shielding of the magnetic field.
  • the winding of the electromagnet 11 is connected to the output of a third electrical current source 14 with programmable parameters.
  • the third electrical flow source 14 with programmable parameters is similar to the first current source 4 and the second current source 7.
  • the electrical current source 14 with programmable parameters contains a control switch 8, a digital-to-analog converter 9 and a power amplifier 10, the output of which is connected to the winding of the electromagnet 11.
  • the use of the electrical power source 14 with programmable parameters makes it possible to act in a targeted manner on the change in the shape of freely falling drops in a range from the drop to the disk shape.
  • the opening 5 is in the vicinity thereof a crystallizer 15 (FIG. 1) serving as a separator is arranged, which is used for separating the fractions and for subsequent cooling and crystallization.
  • the crystallizer 15 serving as a separator contains a housing 16 with a partition 17 therein, which forms cells in the housing 16 for collecting fractions of the same size. The number of cells is equal to the number of fractions obtained when a beam decays.
  • a through hole 18 is provided above the partition 17, via which the cavity of the housing 16 is connected to a compressed gas source (not shown in FIG. 1).
  • the device for producing granules is operated as follows.
  • the metal melt intended for granulation is fed into the container 1.
  • the melt passes from the container 1 into a proboscis 2 by completely filling it.
  • the level of the molten metal is set in the container 1 by means of any known regulator of the liquid level.
  • the generation of the electromagnetic volume force F with a prescribed change is explained using an example of the interaction of the electric current in the melt and the magnetic field in the gap of the electromagnet 6 with specific prescribed changes, which are shown in FIG. 3.
  • the electrical current source 4 with programmable parameters feeds the winding of the induction coil 3, which acts as an electric current J through the melt flowing in the trunk 2 above the opening 5, ie above the beam outlet, according to a prescribed law of change in time ⁇ sequence consisting of two pulses (Fig. 3a) induced.
  • the first pulse of the pulse train (in the form of a positive half-wave) of the electrical current has an amplitude J 1 and a duration ⁇ 1
  • the subsequent pulse which is similar in shape to the first pulse, has an amplitude J 2 and has a duration T 2 .
  • the time interval between the pulses is ⁇ .
  • the electric current flowing through the metal melt in the trunk 2 is orthogonal relative to the vector of the magnetic field strength H in the gap of the electromagnet 6 and to the longitudinal axis of the opening 5.
  • This electromagnetic volume force F (FIG. 3 c) will be proportional to the product of the multiplication of the instantaneous values of the density j of the current J in the melt above the beam outlet with the electromagnetic induction B in the air gap of the electromagnet 6.
  • the first pulse of the pulse train has an amplitude B 1 and a duration ⁇ 1 and the subsequent pulse - accordingly an amplitude B 2 and a duration ⁇ 2 .
  • the time interval between the pulses as well as the time interval between the pulses of the electrical current I in the melt is ⁇ .
  • the amplitudes of the pulses of the magnetic field are related to each other like the amplitudes of the pulses of the electric current in the melt corresponding to them in time.
  • a smaller drop 20a is being formed under the action of the subsequent pulse of the pulse train.
  • the size of the drops 20a (a smaller size) is determined by the average diameter and the length of the jet - the "tail end" -20 - which is behind the larger drop 19a.
  • the number of drops 19a, 20a is equal to the number of pulses in a sequence.
  • the strengths of the fields E and H can either have a predetermined harmonic composition, or one of these strengths can be constant over time and the other with a predetermined harmonic composition. Because the law of change and the harmonious composition of field strengths E and H the stream ( E -the current in the melt, H - The current in the winding of the electromagnet) are proportional and in phase with this, the current generated by means of the electrical current sources 4 and 7 with programmable parameters is considered to be the process of drops intermediate value determining education.
  • This current is generated by the current sources 4, 7 and 14 as follows.
  • a sequence of codes for controlling the digital-to-analog converter 9 is generated by the control switch 8.
  • the program during the operation of the control switch 8 is stored in a constant reprogrammable memory device which belongs to the control switch 8.
  • the digital-to-analog converter converts the digital code supplied by the control switch 8 into a current, the frequency, shape and size of which are determined by the values of these parameters introduced into the memory of the control switch 8.
  • elements of a semiconductor memory are arranged in the plug devices of the constant reprogrammable memory device of the control switch 8.
  • the input of the program and the reprogramming of the control switch 8 can also be carried out by manually entering the program into the reprogrammable memory of the control switch 8 using a keyboard.
  • the control switch 8 is used with a desk data terminal with a keyboard for data input.
  • the current is fed to the input of the power amplifier 10, amplified and fed into the corresponding winding (the electromagnet 6 or the induction coil 3).
  • the device in the second embodiment with a second electromagnet 11 is operated essentially similar to the device in the embodiment described above.
  • One difference is that the second electromagnet 11 can be used to produce granules of a predetermined shape.
  • the forces F 1 are directed against the direction of movement of the drop.
  • the direction of the forces F 2 coincides with the direction of movement of the drop.
  • the drop is flattened.
  • the alternating component of the transverse magnetic field acts on the drop with an induction B ( ⁇ ) a.
  • the resulting electromagnetic forces F 3 endeavor to expand the cross-sectional size of a drop through the effect of the current displacement effect of the currents to be induced.
  • a targeted influence on the shape of the drops is achieved by changing the size B o and the relationship B (T) / B realized.
  • the drops After the shape of the drops has stabilized, they are cooled in the crystallizer 13, which is located in the air gap 12 of the electromagnet 11, i.e. located in the area of action of the magnetic field, whereby granules are produced with a shape which is most suitable for the application of the granules in carrying out these or those technological operations.
  • a variant of the device with a crystallizer 15 serving as a separator can be used.
  • the separation of the total flow of drops into monodisperse flows is achieved by blowing off the total flow with a hot gas jet supplied through the opening 18.
  • the granules deviate from the original web at different distances, which ensures that they are classified.
  • the granules of the same size then reach the cells provided for them, which are formed by the partition walls 17 and are filled with a coolant.
  • the number We which determines the outflow profile of the gas jet, must not exceed the number 3, ie, wherein
  • the present invention can most conveniently be used to produce granules from the molten metal are used in the iron and steel industry for the production of highly concentrated alloys and composite materials.

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Un procédé de fabrication de granules à partir d'un métal en fusion consiste à produire un jet de métal en fusion qui est soumis, au niveau de sa sortie, à l'influence d'un champ électromagnétique alternatif qui varie dans le temps selon une certaine régularité et dont la direction du vecteur E(Boolean not)xH(Boolean not) coïncide avec la direction de la vitesse du jet, où E(Boolean not) est le vecteur de l'intensité du champ électromagnétique et H(Boolean not) est le vecteur de l'intensité du champ magnétique, de manière à générer à l'intérieur du métal en fusion des forces tridimensionnelle variant proportionnellement à la régularité des fluctuations du champ électromagnétique et initiant une désintégration forcée du jet en gouttelettes séparées. Le métal en fusion, au niveau de sa sortie, est soumis à une série d'influences impulsionnelles des forces tridimensionnelles, le cycle de répétition de la série étant égal au cycle d'auto-désintégration du jet, et le nombre de gouttelettes obtenues pendant ce cycle étant déterminé par le nombre d'impulsions dans la série, la dimension des gouttelettes étant proportionnelle aux intervalles de temps entre les impulsions dans la série. Le dispositif comporte un réservoir (1) destiné au métal en fusion et un manchon (2) relié par ses extrémités au réservoir (1) et formant un canal annulaire entourant un inducteur (3) relié électriquement à une première source de courant (4). Le manchon (2) possède une partie avec au moins une ouverture (5) située dans l'entrefer d'un electro-aimant (6) relié à une seconde source de courant (7), les deux sources de courant étant reliées l'une à l'autre. Les première et deuxième sources de courant sont conçues avec des paramètres programmables et sont directement reliés l'une à l'autre.
EP87905557A 1987-04-28 1987-04-28 Procede et dispositif pour fabriquer des granules a partir d'un metal en fusion Withdrawn EP0357771A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SU1987/000051 WO1988008345A1 (fr) 1987-04-28 1987-04-28 Procede et dispositif pour fabriquer des granules a partir d'un metal en fusion

Publications (2)

Publication Number Publication Date
EP0357771A4 EP0357771A4 (fr) 1989-09-19
EP0357771A1 true EP0357771A1 (fr) 1990-03-14

Family

ID=21617102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87905557A Withdrawn EP0357771A1 (fr) 1987-04-28 1987-04-28 Procede et dispositif pour fabriquer des granules a partir d'un metal en fusion

Country Status (3)

Country Link
EP (1) EP0357771A1 (fr)
JP (1) JPH04506543A (fr)
WO (1) WO1988008345A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5484766B2 (ja) * 2009-03-31 2014-05-07 国立大学法人東北大学 導電性粒子の製造方法および製造装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3116792A1 (de) * 1981-05-12 1982-11-25 Institut elektrodinamiki Akademii Nauk Ukrainskoj SSR, Kiev "verfahren zur gewinnung von granalien aus einer metallschmelze und einrichtung zur durchfuehrung desselben"

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU428861A1 (ru) * 1972-07-14 1974-05-25 А. А. Колпачев , Ю. А. Самойлов Установка для распыления жидких металлови сплавов
SU485824A1 (ru) * 1974-05-13 1975-09-30 Кемеровский Межотраслевой Научно-Исследовательский И Проектно-Технологический Институт По Механизации И Автоматизации Машиностроения Способ получени металлических гранул
FR2391799A1 (fr) * 1977-05-27 1978-12-22 Pechiney Aluminium Procede de pulverisation electromagnetique de metaux liquides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3116792A1 (de) * 1981-05-12 1982-11-25 Institut elektrodinamiki Akademii Nauk Ukrainskoj SSR, Kiev "verfahren zur gewinnung von granalien aus einer metallschmelze und einrichtung zur durchfuehrung desselben"

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO8808345A1 *

Also Published As

Publication number Publication date
EP0357771A4 (fr) 1989-09-19
WO1988008345A1 (fr) 1988-11-03
JPH04506543A (ja) 1992-11-12

Similar Documents

Publication Publication Date Title
DE69014075T2 (de) Verfahren zur Herstellung von Titanpulver.
EP3083107B1 (fr) Dispositif et procédé de fusion en zone flottante d'un matériau et d'atomisation du matériau fondu pour fabriquer de la poudre
DE2313677A1 (de) Metallisches gefuege, verfahren zu seiner herstellung sowie vorrichtung zur durchfuehrung dieses verfahrens
DE60025600T2 (de) Verfahren zur bolzenschweissen mit einer reinigungsstufe
DE69701857T2 (de) Vorrichtung zum giessen in eine form
DE19881316B4 (de) Verfahren und Vorrichtung zur Herstellung von Metallpulver durch Zerstäubung
WO2009018809A1 (fr) Procédé et module d'agitation électromagnétique de liquides électriquement conducteurs
DE2400026A1 (de) Verfahren und vorrichtung zur herstellung von kugelfoermigen koerpern
EP3305445A1 (fr) Procédé de fabrication additive d'un composant tridimensionnel
DE2159907A1 (de) Verfahren zur Herstellung von kugel formigen Teilchen mit einer engen Großen verteilung
DE69318450T2 (de) Verfahren und Vorrichtung zur Strömungskontrolle eines Metallgiessstrahles
EP3323597A1 (fr) Dispositif et procédé de fabrication additive d'un produit tridimensionnel
EP0486830A2 (fr) Procédé pour la production des particules métalliques à partir des métaux fondus par atomisation
DE69008922T2 (de) Verfahren zum Verpacken von permanentmagnetischem Pulver.
EP0357771A1 (fr) Procede et dispositif pour fabriquer des granules a partir d'un metal en fusion
DE3883788T2 (de) Vorrichtung und verfahren zur mikroatomisierung von flüssigkeiten, insbesondere schmelzen.
DE3618531A1 (de) Verfahren zur herstellung eines barrens aus metallschrott
DE3116792C2 (de) Verfahren zur Gewinnung von Granalien aus einer Legierungsschmelze und Vorrichtung zur Durchführung desselben
DE2342470A1 (de) Verfahren zum zerteilen eines fluessigkeitsstrahls, vorrichtung zur durchfuehrung dieses verfahrens und anwendung dieses verfahrens auf die granulierung eines zuvor verfluessigten produktes
DE69120829T2 (de) Verfahren und vorrichtung zur spätzugabe teilchenförmiger legierungen beim giessen von metallschmelzen
DE2007230A1 (fr)
DE2115208A1 (de) Verfahren zum Herstellen von Strangguß aus Stahl und anderen Metallen und Vornch tung zur Ausübung des Verfahrens
EP0128132A2 (fr) Récipient métallurgique
DE2814171A1 (de) Verfahren zur herstellung einer metallischen abschmelz- bzw. schweisselektrode mit vertikaler achse zum um- oder wiedereinschmelzen nach dem elektro-schlackeverfahren und zur herstellung eines metallblocks mit entlang seiner achse sich fortlaufend aendernder chemischer zusammensetzung
DE102017218926A1 (de) Vorrichtung und Verfahren zur additiven Herstellung eines dreidimensionalen Produktes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19910703

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19920114