EP0354263A1 - Helium-supplying compressor for a cryogenic refrigerator - Google Patents
Helium-supplying compressor for a cryogenic refrigerator Download PDFInfo
- Publication number
- EP0354263A1 EP0354263A1 EP88113059A EP88113059A EP0354263A1 EP 0354263 A1 EP0354263 A1 EP 0354263A1 EP 88113059 A EP88113059 A EP 88113059A EP 88113059 A EP88113059 A EP 88113059A EP 0354263 A1 EP0354263 A1 EP 0354263A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooler
- compressor
- helium
- housing
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000001307 helium Substances 0.000 claims abstract description 39
- 229910052734 helium Inorganic materials 0.000 claims abstract description 39
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims abstract description 39
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 4
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 238000007789 sealing Methods 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/006—Cooling of compressor or motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/06—Cooling; Heating; Prevention of freezing
- F04B39/066—Cooling by ventilation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/02—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
Definitions
- the invention relates to an air-cooled compressor for supplying a cryo-refrigerator with helium with a first cooler through which compressed helium flows, with a further cooler through which the operating oil of the compressor flows, and with a blower.
- Cryogenic refrigerators are low-temperature refrigeration machines in which thermodynamic cycle processes take place (see, for example, US Pat. No. 2,9 06,101).
- a single-stage cryo-refrigerator essentially comprises a compressor, connecting lines and a cold head with a displacer and a work space, hereinafter referred to as the chamber.
- the chamber is alternately connected to a high pressure and a low pressure helium source so that the thermodynamic cycle (Stirling process, Gifford / Mc Mahon process, etc.) takes place during the reciprocating movement of the displacer, whereby the working gas is conducted in a closed circuit.
- the result is that heat is extracted from a certain area of the chamber.
- a two-stage refrigerator of this type e.g. B. generate temperatures below 10 K.
- An essential supply device for a refrigerator is the compressor, in which the helium expanded in the refrigerator is compressed again, from approximately 7 bar (low pressure) to approximately 22 bar (high pressure). Almost all of the power required for this compression is converted into heat. This heat is approx. 25% from the helium and approx. 75% from the compressor operating oil added. It is known to use water or air to cool the helium and the operating oil. Water cooling systems have relatively high operating costs. The aim of the present invention is therefore to create an air-cooled compressor which is particularly suitable for supplying refrigerators.
- the present invention has for its object to provide an air-cooled compressor for supplying a cryo-refrigerator with helium, which no longer has the disadvantages described.
- this object is achieved in that the coolers for the operating oil of the compressor and the helium and the blower are accommodated in a separate housing from the compressor, that the cooler for the helium is upstream of the oil cooler in relation to the air flow generated by the blower and that the compressor housing and the cooler housing are connected to one another via lines.
- the size of the compressor housing can be chosen to be so small that it can be installed in the frames for electronic components (racks).
- the connecting lines to the refrigerator can be kept short.
- the connecting lines between the compressor and the combined cooler can be chosen so long that the cooler is outside the room, e.g. of a "clean room" in which the refrigerator is located. Placing the cooler outdoors is particularly advantageous.
- the refrigerator to be supplied with helium is designated by 1 in FIG. It is connected to the compressor 4 via the gas connecting lines 2 and 3.
- the connecting lines 2, 3 are connected to the refrigerator 1 and the compressor housing 4 via self-sealing couplings 5, 6 and 7, 8.
- the actual compressor 11 is located within the compressor housing 4, the input of which is connected via the line 12 to the connecting line 2 between the compressor housing 4 and the refrigerator 1.
- a line section 13 connects to the outlet of the compressor 11 and leads to the self-sealing coupling 14 on the compressor housing 4. This is followed by a line 15, which leads to the separate cooler housing 16.
- the helium cooler 17, the oil cooler 18 and the blower 19 are located within the cooler housing 16. The arrangement is such that the air flow generated by the suction blower 19 (or - when the blower is arranged in front of the helium cooler - pressing air flow) first the helium cooler 17 and only then hits the oil cooler 18.
- the helium cooler 17 is connected via the line section 21 to the self-sealing coupling 22, to which the line 15 is connected, which is connected to the compressor via the self-sealing coupling 14.
- the line section 23 located within the cooler housing 16, which is again connected to the compressor housing 4 via self-sealing couplings 24 and 25 and the line 26.
- the relaxed helium gelant via lines 2 and 12 to the compressor 11 and is compressed to the required pressure.
- the compressed and heated helium reaches the helium cooler 17 via the line sections 13, 15 and 21. In this cooler, it is cooled to the desired temperature of maximum 40 ° C. and reaches the refrigerator 1 again via the line sections 23, 26, 27 and 3.
- Oil contaminants of the helium gas are separated in the separators 28 and 29 and in the adsorber 31. The separated oil is fed back to the compressor 11 via the lines 32 and 33.
- the feed pump 34 located in the compressor housing 4, which is arranged in the line section 35, serves to transport the operating oil of the compressor 11 in an oil circuit.
- the oil circuit comprises this line section 35, the lines 36 and 37, the oil cooler 18 and the line sections 38, 39 and 40.
- the line sections 35 and 40 are accommodated within the compressor housing 4; the line sections 37 and 38 are located in the cooler housing 16.
- Self-sealing couplings 41 to 44 serve to couple the connecting lines 36 and 39 to the compressor housing 4 and to the cooler housing 16. This prevents contamination of the media, oil and helium, which is carried.
- FIG. 2 shows a view of the cooler housing 16 with the walls shown broken away in the area of the blower 19.
- Three housing sections 51, 52 and 53 are provided.
- the helium cooler 17 is located in the first or front section 51 with respect to the flowing cooling air (arrows 54).
- the oil cooler 18 (not visible).
- a cross-flow fan 19 is accommodated in the third section 53.
- the length of the rotor 19 drum rotor
- the drive motor 56 of the fan 19 is accommodated in an attachment 55 on the housing 16. In this embodiment, it is possible to have a strong one, via the cooler 17 and 18 to produce a substantially uniformly distributed air flow.
- FIG. 3 shows the manner in which the helium cooler 17 (in the housing section 51) and the oil cooler 18 (in the housing section 52) are flowed through.
- the supply and discharge lines (15, 36 and 26, 39) for helium and oil are connected to a lower, divided inlet and outlet box 61 and 62 in the foot of the housing sections 51 and 52, respectively.
- the central regions of the housing sections 51, 52 have vertical pipe sections 63 which are flowed through from bottom to top or top to bottom. The redirection takes place in an upper box.
- the air flow generated by the fan 19 in the housing section 53 flows perpendicular to this.
- Figure 4 shows a view of the compressor housing 4 and the cooler housing 16, connected by the parallel and spaced lines 15, 26, 36 and 39.
- an electrical supply line 57 is provided.
- the lines 15, 26, 26 and 39 are connected to the compressor housing 4 and the cooler housing 16 via self-sealing couplings. They are expediently designed to be flexible, so that the arrangement of the cooler 16 with respect to the compressor can be selected as desired. It is particularly advantageous to use corrugated hoses made of metal (stainless steel) as connecting lines, which are kept at a distance by means of clips. Part of the heat absorbed by the helium and oil is then released to the environment in the area of the connecting lines.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Compressor (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
Die Erfindung bezieht sich auf einen luftgekühlten Kompressor zur Versorgung eines Kryo-Refrigerators mit Helium mit einem vom komprimierten Helium durchströmten ersten Kühler, mit einem vom Betriebsöl des Kompressors durchströmten weiteren Kühler und mit einem Gebläse.The invention relates to an air-cooled compressor for supplying a cryo-refrigerator with helium with a first cooler through which compressed helium flows, with a further cooler through which the operating oil of the compressor flows, and with a blower.
Kryo-Refrigeratoren sind Tieftemperatur-Kältemaschinen, in denen thermodynamische Kreisprozesse ablaufen (vgl. z. B. die US-PS 29 06 101). Ein einstufiger Kryo-Refrigerator umfaßt im wesentlichen einen Kompressor, verbindende Leitungen und einen Kaltkopf mit Verdränger und einem Arbeitsraum, im Nachfolgenden Kammer genannt. Im Betrieb wird die Kammer in bestimmter Weise alternierend mit einer Hochdruck- und einer Niederdruck-Heliumquelle verbunden, so daß während der Hin- und Herbewegung des Verdrängers der thermodynamische Kreisprozeß (Stirling-Prozeß, Gifford/Mc Mahon-Prozeß usw.) abläuft, wobei das Arbeitsgas in einem geschlossenen Kreislauf geführt wird. Die Folge ist, daß einem bestimmten Bereich der Kammer Wärme entzogen wird. Mit einem zweistufigen Refrigerator dieser Art lassen sich z. B. Temperaturen bis unter 10 K erzeugen.Cryogenic refrigerators are low-temperature refrigeration machines in which thermodynamic cycle processes take place (see, for example, US Pat. No. 2,9 06,101). A single-stage cryo-refrigerator essentially comprises a compressor, connecting lines and a cold head with a displacer and a work space, hereinafter referred to as the chamber. In operation, the chamber is alternately connected to a high pressure and a low pressure helium source so that the thermodynamic cycle (Stirling process, Gifford / Mc Mahon process, etc.) takes place during the reciprocating movement of the displacer, whereby the working gas is conducted in a closed circuit. The result is that heat is extracted from a certain area of the chamber. With a two-stage refrigerator of this type, e.g. B. generate temperatures below 10 K.
Ein wesentliches Versorgungsgerät für einen Refrigerator ist der Kompressor, in dem das im Refrigerator entspannte Helium wieder komprimiert wird, und zwar von ca. 7 bar (Niederdruck) auf ca. 22 bar (Hochdruck). Nahezu die gesamte für diese Kompression benötigte Leistung wird in Wärme umgewandelt. Diese Wärme wird zu ca. 25% vom Helium und zu ca. 75% vom Betriebsöl des Kompressors aufgenommen. Es ist bekannt, zur Kühlung des Heliums und des Betriebsöls Wasser oder Luft einzusetzen. Wasserkühlungen haben relativ hohe Betriebskosten. Ziel der vorliegenden Erfindung ist deshalb die Schaffung eines für die Versorgung von Refrigeratoren besonders geeigneten luftgekühlten Kompressors.An essential supply device for a refrigerator is the compressor, in which the helium expanded in the refrigerator is compressed again, from approximately 7 bar (low pressure) to approximately 22 bar (high pressure). Almost all of the power required for this compression is converted into heat. This heat is approx. 25% from the helium and approx. 75% from the compressor operating oil added. It is known to use water or air to cool the helium and the operating oil. Water cooling systems have relatively high operating costs. The aim of the present invention is therefore to create an air-cooled compressor which is particularly suitable for supplying refrigerators.
Bekannte Kompressoren mit Luftkühlung haben den Nachteil, daß sie relativ großvolumig sind. Das im Kompressorgehäuse befindliche Gebläse erzeugt Luftbewegungen und damit verbunden Staubwirbel. Bekannte Kompressoren mit Luftkühlung sind deshalb nicht in Gestelle einsetzbar, in denen sich für die Durchführung von Tieftemperatur-Experimenten erforderliche elektronische Versorgungs- und Meßgeräte befinden. Besonders nachteilig ist, daß luftgekühlte Kompressoren nicht in staubfreien "cleanrooms" einsetzbar sind. Die in den Raum abgegebene Wärme ist besonders problematisch, da die Leistung üblicher Kompressoren für Kryo-Refrigeratoren 3 bis 7 KW beträgt. Sie trägt zu einer beträchtlichen Raumaufheizung bei, welche besonders im Sommer störend ist und zu Problemen an elektronische Geräten führen kann.Known compressors with air cooling have the disadvantage that they are relatively large in volume. The fan in the compressor housing creates air movements and the associated dust swirls. Known compressors with air cooling can therefore not be used in racks in which there are electronic supply and measuring devices required for carrying out low-temperature experiments. It is particularly disadvantageous that air-cooled compressors cannot be used in dust-free "cleanrooms". The heat given off in the room is particularly problematic since the output of conventional compressors for cryogenic refrigerators is 3 to 7 KW. It contributes to considerable room heating, which is particularly annoying in summer and can lead to problems with electronic devices.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen luftgekühlten Kompressor zur Versorgung eines Kryo-Refrigerators mit Helium zu schaffen, dem die geschilderten Nachteile nicht mehr anhaften.The present invention has for its object to provide an air-cooled compressor for supplying a cryo-refrigerator with helium, which no longer has the disadvantages described.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Kühler für das Betriebsöl des Kompressors und das Helium sowie das Gebläse in einem vom Kompressor separaten Gehäuse untergebracht sind, daß der Kühler für das Helium dem Ölkühler - in Bezug auf den vom Gebläse erzeugten Luftstrom - vorgelagert ist und daß das Kompressorgehäuse und das Kühlergehäuse über Leitungen miteinander verbunden sind. Infolge der Unterbringung der Kühler in einem separaten Gehäuse kann die Größe des Kompressorgehäuses so klein gewählt werden, daß es in die Gestelle für Elektronik-Komponenten (Rack's) eingebaut werden kann. Die Verbindungsleitungen zum Refrigerator können kurz gehalten werden. Die Verbindungsleitungen zwischen dem Kompressor und dem kombinierten Kühler können so lang gewählt werden, daß der Kühler außerhalb des Raumes, z.B. eines "cleanrooms" , in dem sich der Refrigerator befindet, angeordnet werden kann. Die Aufstellung des Kühlers im Freien ist dabei besonders vorteilhaft. Da ein Teil des Wärmeinhaltes der zu kühlenden Medien bereits im Bereich der Verbindungsleitungen abgegeben wird, haben relativ lange Verbindungsleitungen noch den Vorteil, die Wirkung des kombinierten Kühlers zu unterstützen. Dadurch, daß der Kühler für das Helium dem Ölkühler vorgelagert ist, wird der gesamte Luftstrom des Gebläses zuerst über den Helium-Kühler geführt, wodurch eine besonders gute Abkühlung des Gases erreicht wird. Die Heliumaustrittstemperatur liegt üblicherweise ca. 5 bis 8° über der Luftansaugtemperatur.According to the invention this object is achieved in that the coolers for the operating oil of the compressor and the helium and the blower are accommodated in a separate housing from the compressor, that the cooler for the helium is upstream of the oil cooler in relation to the air flow generated by the blower and that the compressor housing and the cooler housing are connected to one another via lines. As a result of the cooler being accommodated in a separate housing, the size of the compressor housing can be chosen to be so small that it can be installed in the frames for electronic components (racks). The connecting lines to the refrigerator can be kept short. The connecting lines between the compressor and the combined cooler can be chosen so long that the cooler is outside the room, e.g. of a "clean room" in which the refrigerator is located. Placing the cooler outdoors is particularly advantageous. Since part of the heat content of the media to be cooled is already given off in the area of the connecting lines, relatively long connecting lines still have the advantage of supporting the effect of the combined cooler. Because the cooler for the helium is located upstream of the oil cooler, the entire air flow of the blower is first passed over the helium cooler, whereby particularly good cooling of the gas is achieved. The helium outlet temperature is usually approx. 5 to 8 ° above the air intake temperature.
Weitere Vorteile und Einzelheiten der Erfindung sollen anhand von in den Figuren 1 bis 3 dargestellten Ausführungsbeispielen erläutert werden. Es zeigen
- Figur 1 eine schematische Darstellung der erfindungsgemäß ausgebildeten luftgekühlten Kompressors,
Figur 2 den kombinierten Öl/Heliumkühler mit Querstromgebläse- Figur 3 eine Teilansicht des Kühlers, welche Durchströmungsrichtungen erkennen läßt, und
- Figur 4 eine Ansicht des erfindungsgemäß ausgebildeten luftgekühlten Kompressors mit separater Anordnung des Kühlers.
- FIG. 1 shows a schematic illustration of the air-cooled compressor designed according to the invention,
- Figure 2 shows the combined oil / helium cooler with cross flow fan
- Figure 3 is a partial view of the cooler, which shows flow directions, and
- Figure 4 is a view of the air-cooled compressor designed according to the invention with a separate arrangement of the cooler.
In Figur 1 ist der mit Helium zu versorgende Refrigerator mit 1 bezeichnet. Über die Gasverbindungsleitungen 2 und 3 ist er mit dem Kompressor 4 verbunden. Über selbstdichtende Kupplungen 5, 6 und 7, 8 sind die Verbindungsleitungen 2, 3 am Refrigerator 1 und am Kompressorgehäuse 4 angeschlossen.The refrigerator to be supplied with helium is designated by 1 in FIG. It is connected to the compressor 4 via the
Innerhalb des Kompressorgehäuses 4 befindet sich der eigentliche Kompressor 11, dessen Eingang über die Leitung 12 mit der Verbindungsleitung 2 zwischen Kompressorgehäuse 4 und Refrigerator 1 in Verbindung steht. An den Auslaß des Kompressors 11 schließt sich ein Leitungsabschnitt 13 an, der zur selbstdichtenden Kupplung 14 am Kompressorgehäuse 4 führt. Daran schließt sich eine Leitung 15 an, die zum separaten Kühlergehäuse 16 führt. Innerhalb des Kühlergehäuses 16 befinden sich der Heliumkühler 17, der Ölkühler 18 und das Gebläse 19. Die Anordnung ist so getroffen, daß der vom saugenden Gebläse 19 erzeugte Luftstrom (oder - bei Anordnung des Gebläses vor dem Helium-Kühler -drückende Luftstrom) zuerst auf den Helium-Kühler 17 und dann erst auf den Öl-Kühler 18 trifft.The
Der Helium-Kühler 17 ist über den Leitungsabschnitt 21 mit der selbstdichtenden Kupplung 22 verbunden, an der die Leitung 15 angeschlossen ist, die über die selbstdichtende Kupplung 14 mit dem Kompressor verbunden ist. An den Ausgang des Heliumkühlers 17 schließt sich der innerhalb des Kühlergehäuses 16 liegende Leitungsabschnitt 23 an, der wieder über selbstdichtende Kupplungen 24 und 25 und die Leitung 26 mit dem Kompressorgehäuse 4 verbunden ist. Zwischen den Kupplungen 6 und 24 erstreckt sich innerhalb des Kompressorgehäuses 4 der Leitungsabschnitt 27, der mit bis zu zwei Ölabscheidern 28 und 29 sowie mit einem Adsorptionsfilter 31 ausgerüstet ist.The
Das entspannte Helium gelant über die Leitungen 2 und 12 zum Kompressor 11 und wird auf den erforderlichen Druck komprimiert. über die Leitungsabschnitte 13, 15 und 21 gelangt das komprimierte und erwärmte Helium zum Heliumkühler 17. In diesem Kühler wird es auf die gewünschte Temperatur von maximal 40° C abgekühlt und gelangt durch die Leitungsabschnitte 23, 26, 27 und 3 wieder zum Refrigerator 1. In den Abscheidern 28 und 29 sowie im Adsorber 31 werden Ölverunreinigungen des Helium-Gases abgeschieden. Über die Leitungen 32 und 33 wird das abgeschiedene Öl wieder dem Kompressor 11 zugeführt.The relaxed helium gelant via
Zum Transport des Betriebsöles des Kompressors 11 in einem Ölkreislauf dient die im Kompressorgehäuse 4 befindliche Förderpumpe 34, die im Leitungsabschnitt 35 angeordnet ist. Der Ölkreislauf umfaßt diesen Leitungsabschnitt 35, die Leitungen 36 und 37, den Ölkühler 18 sowie die Leitungsabschnitte 38, 39 und 40. Die Leitungsabschnitte 35 und 40 sind innerhalb des Kompressorgehäuses 4 untergebracht; die Leitungsabschnitte 37 und 38 befinden sich im Kühlergehäuse 16. Selbstdichtende Kupplungen 41 bis 44 dienen der Ankopplung der Verbindungsleitungen 36 und 39 am Kompressorgehäuse 4 bzw. am Kühlergehäuse 16. Eine Verschmutzung der geführten Medien Öl und Helium wird damit vermieden.The
Es läßt sich nicht vermeiden, daß das Heliumgas während des Durchganges durch den Kompressor 11 mit dem Betriebsöl Kontakt hat. Das den Kompressor 11 verlassende Gas ist deshalb mit Öldampf beladen. Innerhalb des Kühlers 17 kondensiert ein großer Teil des Öldampfes und sammelt sich in flüssiger Form an. Um dieses Öl in den Ölkreislauf befördern zu können, sind die Leitungsabschnitte 23 und 38 innerhalb des Kühlergehäuses 16 entweder über eine Leitung 45 mit einem Ventil 46 oder über eine Kapillare 47 miteinander verbunden. Für den Fall, daß eine Verbindungsleitung 45 mit einem Ventil 46 vorhanden ist, erfolgt zeitweise eine Öffnung des Ventils 46. Infolge des vorhandenen Druckgefälles [Ölleitungen haben Niederdruck (ca. 7 bar), Helium-Leitungen Hochdruck (ca. 22 bar)] strömt Öl, das sich im Leitungsabschnitt 23 angesammelt hat, in den Leitungsabschnitt 38 des Ölkreislaufs. Für den Fall, daß eine Kapillare 47 vorhanden ist, ist ständig für die Rückströmung kondensierten Öls in den Ölkreislauf gesorgt.It cannot be avoided that the helium gas has contact with the operating oil during the passage through the
Figur 2 zeigt eine Ansicht des Kühlergehäuses 16 mit im Bereich des Gebläses 19 aufgebrochen dargestellten Wandungen. Drei Gehäuseabschnitte 51, 52 und 53 sind vorgesehen. Im - in Bezug auf die strömende Kühlluft (Pfeile 54) - ersten oder vorderen Abschnitt 51 befindet sich der Heliumkühler 17. Im zweiten Abschnitt 52 befindet sich der Ölkühler 18 (nicht sichtbar). Im dritten Abschnitt 53 ist ein Querstromgebläse 19 untergebracht. Die Länge des Rotors 19 (Trommelläufer) entspricht der Höhe des Gehäuses 16. In einem Aufsatz 55 auf dem Gehäuse 16 ist der Antriebsmotor 56 des Gebläses 19 untergebracht. Bei dieser Ausführungsform ist es möglich, einen starken, über die Kühler 17 und 18 im wesentlichen gleichmäßig verteilten Luftstrom zu erzeugen.FIG. 2 shows a view of the
Figur 3 läßt die Art und Weise erkennen, wie der Heliumkühler 17 (im Gehäuseabschnitt 51) und der Ölkühler 18 (im Gehäuseabschnitt 52) durchströmt sind. An einen unteren, geteilten Ein- und Auslaßkasten 61 bzw. 62 im Fuß der Gehäuseabschnitte 51 und 52 sind jeweils die Zu- bzw. Abführungsleitungen (15, 36 bzw. 26, 39) für Helium und Öl angeschlossen. Die mittleren Bereiche der Gehäuseabschnitte 51, 52 weisen vertikal verlaufende Rohrabschnitte 63 auf, die von unten nach oben bzw. oben nach unten durchströmt sind. In jeweils einem oberen Kasten findet die Umlenkung statt. Senkrecht dazu strömt der vom Gebläse 19 im Gehäuseabschnitt 53 erzeugte Luftstrom.
Figur 4 zeigt eine Ansicht des Kompressorgehäuses 4 und des Kühlergehäuses 16, verbunden durch die parallel und mit Abstand geführten Leitungen 15, 26, 36 und 39. Zusätzlich ist eine elektrische Versorgungsleitung 57 vorgesehen. Wie bereits erwähnt, sind die Leitungen 15, 26, 26 und 39 über selbstdichtende Kupplungen mit dem Kompressorgehäuse 4 und dem Kühlergehäuse 16 verbunden. Zweckmäßig sind sie flexibel ausgebildet, so daß die Anordnung des Kühlers 16 in Bezug auf den Kompressor beliebig wählbar ist. Besonders vorteilhaft ist es, Wellschläuche aus Metall (Edelstahl) als Verbindungsleitungen zu verwenden, die mittels Klammern auf Abstand gehalten werden. Ein Teil der vom Helium und vom Öl aufgenommenen Wärme wird dann bereits im Bereich der Verbindungsleitungen an die Umgebung abgegeben.FIG. 3 shows the manner in which the helium cooler 17 (in the housing section 51) and the oil cooler 18 (in the housing section 52) are flowed through. The supply and discharge lines (15, 36 and 26, 39) for helium and oil are connected to a lower, divided inlet and
Figure 4 shows a view of the compressor housing 4 and the
Claims (10)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE8888113059T DE3869776D1 (en) | 1988-08-11 | 1988-08-11 | COMPRESSOR FOR SUPPLYING A KRYO REFRIGERATOR WITH HELIUM. |
EP88113059A EP0354263B1 (en) | 1988-08-11 | 1988-08-11 | Helium-supplying compressor for a cryogenic refrigerator |
DE8810215U DE8810215U1 (en) | 1988-08-11 | 1988-08-11 | Compressor for supplying a cryogenic refrigerator with helium |
AT88113059T ATE74420T1 (en) | 1988-08-11 | 1988-08-11 | COMPRESSOR TO SUPPLY A CRYOREFRIGERATOR WITH HELIUM. |
JP1204006A JPH0282059A (en) | 1988-08-11 | 1989-08-08 | Compressor for supplying low temperature refrigerator with helium |
US07/392,839 US4967572A (en) | 1988-08-11 | 1989-08-11 | Compressor assembly for supplying helium to a cryo-refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP88113059A EP0354263B1 (en) | 1988-08-11 | 1988-08-11 | Helium-supplying compressor for a cryogenic refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0354263A1 true EP0354263A1 (en) | 1990-02-14 |
EP0354263B1 EP0354263B1 (en) | 1992-04-01 |
Family
ID=8199196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88113059A Expired - Lifetime EP0354263B1 (en) | 1988-08-11 | 1988-08-11 | Helium-supplying compressor for a cryogenic refrigerator |
Country Status (5)
Country | Link |
---|---|
US (1) | US4967572A (en) |
EP (1) | EP0354263B1 (en) |
JP (1) | JPH0282059A (en) |
AT (1) | ATE74420T1 (en) |
DE (2) | DE8810215U1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0933123A (en) * | 1995-07-19 | 1997-02-07 | Daikin Ind Ltd | Cryostatic refrigerating device |
TW426798B (en) * | 1998-02-06 | 2001-03-21 | Sanyo Electric Co | Stirling apparatus |
ATE356961T1 (en) * | 1998-11-02 | 2007-04-15 | Sanyo Electric Co | STIRLING DEVICE |
US6378312B1 (en) * | 2000-05-25 | 2002-04-30 | Cryomech Inc. | Pulse-tube cryorefrigeration apparatus using an integrated buffer volume |
US6488120B1 (en) * | 2000-09-15 | 2002-12-03 | Shi-Apd Cryogenics, Inc. | Fail-safe oil lubricated helium compressor unit with oil-free gas delivery |
GB2408071B (en) * | 2002-08-17 | 2005-10-19 | Siemens Magnet Technology Ltd | Pressure relief valve for a helium gas compressor |
CN1306229C (en) * | 2005-04-25 | 2007-03-21 | 中国科学院理化技术研究所 | Stirling refrigerating system driven by oil lubricating compressor |
CN100441980C (en) * | 2006-04-28 | 2008-12-10 | 中国科学院理化技术研究所 | Circulation refrigerating device for supplying air to oil lubrication compressor |
US8978400B2 (en) * | 2009-11-09 | 2015-03-17 | Sumitomo (Shi) Cryogenics Of America Inc. | Air cooled helium compressor |
DE102011012644A1 (en) * | 2011-02-28 | 2012-08-30 | Gea Bock Gmbh | Cooling system for cooling and freezing of foods in warehouses or supermarkets, has refrigerant circuit, which is provided for circulation of refrigerant, particularly carbon dioxide, in operating flow direction |
JP2024503798A (en) * | 2020-12-21 | 2024-01-29 | サルエアー エルエルシー | Cooler mount arrangement for gas compressor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2100716A (en) * | 1933-04-03 | 1937-11-30 | Lipman Patents Corp | Motor-compressor unit for refrigerating apparatus |
US3353370A (en) * | 1966-04-12 | 1967-11-21 | Garrett Corp | Movable, closed-loop cryogenic system |
FR2206485A1 (en) * | 1972-11-10 | 1974-06-07 | Aurore | |
DE3028217A1 (en) * | 1980-07-25 | 1982-02-18 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | DEVICE FOR GENERATING LOW TEMPERATURES |
DE3201496A1 (en) * | 1982-01-20 | 1983-07-28 | Leybold-Heraeus GmbH, 5000 Köln | REFRIGERATOR |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3507322A (en) * | 1969-05-08 | 1970-04-21 | Freez Porter Systems Inc | Apparatus for handling perishable materials |
US3740964A (en) * | 1971-06-14 | 1973-06-26 | Tomeco Inc | Portable air conditioner |
US4799359A (en) * | 1986-02-27 | 1989-01-24 | Helix Technology Corporation | Cryogenic refrigerator compressor with externally adjustable by-pass/relief valve |
US4831828A (en) * | 1987-05-27 | 1989-05-23 | Helix Technology Corporation | Cryogenic refrigerator having a convection system to cool a hermetic compressor |
-
1988
- 1988-08-11 DE DE8810215U patent/DE8810215U1/en not_active Expired - Lifetime
- 1988-08-11 DE DE8888113059T patent/DE3869776D1/en not_active Expired - Fee Related
- 1988-08-11 EP EP88113059A patent/EP0354263B1/en not_active Expired - Lifetime
- 1988-08-11 AT AT88113059T patent/ATE74420T1/en not_active IP Right Cessation
-
1989
- 1989-08-08 JP JP1204006A patent/JPH0282059A/en active Pending
- 1989-08-11 US US07/392,839 patent/US4967572A/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2100716A (en) * | 1933-04-03 | 1937-11-30 | Lipman Patents Corp | Motor-compressor unit for refrigerating apparatus |
US3353370A (en) * | 1966-04-12 | 1967-11-21 | Garrett Corp | Movable, closed-loop cryogenic system |
FR2206485A1 (en) * | 1972-11-10 | 1974-06-07 | Aurore | |
DE3028217A1 (en) * | 1980-07-25 | 1982-02-18 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | DEVICE FOR GENERATING LOW TEMPERATURES |
DE3201496A1 (en) * | 1982-01-20 | 1983-07-28 | Leybold-Heraeus GmbH, 5000 Köln | REFRIGERATOR |
Also Published As
Publication number | Publication date |
---|---|
JPH0282059A (en) | 1990-03-22 |
US4967572A (en) | 1990-11-06 |
DE3869776D1 (en) | 1992-05-07 |
ATE74420T1 (en) | 1992-04-15 |
DE8810215U1 (en) | 1990-02-08 |
EP0354263B1 (en) | 1992-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69208025T2 (en) | Refrigeration systems | |
DE102006036549B4 (en) | ejector cycle | |
DE102005038858B4 (en) | Steam compression circuit with ejector pump | |
EP0855009B1 (en) | Sorption heat converter system with additional components | |
EP0354263B1 (en) | Helium-supplying compressor for a cryogenic refrigerator | |
DE102008048920A1 (en) | evaporator unit | |
EP0710807A2 (en) | Compressor refrigeration machine | |
DE3028304A1 (en) | HEAT EXCHANGER | |
DE3907859A1 (en) | COOLING UNIT WITH AIR COOLING | |
DE19612539A1 (en) | Multi-stage cryogenic refrigerator | |
DE2930404A1 (en) | SUPPLY AND PROTECTIVE DEVICE FOR REFRIGERATION PLANTS. | |
DE4119557A1 (en) | DEVICE WITH COOLING CIRCUIT | |
DE4135431A1 (en) | Multimode, high output room air conditioning unit - includes sections for adiabatic cooling supported by recuperative heat exchangers and refrigerator | |
DE1503677A1 (en) | Cold pump arrangement | |
DE4212162A1 (en) | Cooling device for refrigeration compressor electric drive motor - uses refrigerant provided by compressor, with obtained refrigerant combined with outputting evaporator in refrigeration circuit | |
EP0632240B1 (en) | Cooling and humidification device for cold rooms | |
DE60314547T2 (en) | Storage with internal desiccant | |
DE3130390A1 (en) | Refrigerating aggregate | |
DE4027838A1 (en) | Arrangement for humidity reduction - in air or gas drier and heat exchanger | |
DE2454757A1 (en) | Shell-and-tube heat exchanger - can be switched from condensing to vaporising duty or vice-versa | |
DE10358428A1 (en) | Refrigerating plant for a supercritical operating method with an economizer has a condenser with a coolant like carbon dioxide with its condensing pressure in a supercritical range | |
DE3615375C2 (en) | ||
DE3023925A1 (en) | Helium compressor for cryogenic refrigeration - has separate and detachable cooling water system to give choice of operating modes | |
DE818647C (en) | Chiller for air conditioners | |
DE2620511A1 (en) | Refrigerator system without special heat exchanger - brings gaseous and liquid refrigerant into contact for heat exchange before directing to expansion valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19900608 |
|
17Q | First examination report despatched |
Effective date: 19910118 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 74420 Country of ref document: AT Date of ref document: 19920415 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3869776 Country of ref document: DE Date of ref document: 19920507 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19920714 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19920721 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19920723 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19920831 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19930811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19930831 Ref country code: CH Effective date: 19930831 Ref country code: BE Effective date: 19930831 |
|
BERE | Be: lapsed |
Owner name: LEYBOLD A.G. Effective date: 19930831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19940301 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19960711 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19960723 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19960724 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970811 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19970811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050811 |