EP0348403B1 - Magnetic deflector system for charged particles - Google Patents

Magnetic deflector system for charged particles Download PDF

Info

Publication number
EP0348403B1
EP0348403B1 EP88901560A EP88901560A EP0348403B1 EP 0348403 B1 EP0348403 B1 EP 0348403B1 EP 88901560 A EP88901560 A EP 88901560A EP 88901560 A EP88901560 A EP 88901560A EP 0348403 B1 EP0348403 B1 EP 0348403B1
Authority
EP
European Patent Office
Prior art keywords
coils
deflection
path
field
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88901560A
Other languages
German (de)
French (fr)
Other versions
EP0348403A1 (en
Inventor
Berthold Krevet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Publication of EP0348403A1 publication Critical patent/EP0348403A1/en
Application granted granted Critical
Publication of EP0348403B1 publication Critical patent/EP0348403B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/093Deviation, concentration or focusing of the beam by electric or magnetic means by magnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures

Definitions

  • the invention relates to a magnetic deflection system for charged particles according to the preamble of claim 1.
  • and B
  • the magnetic field must be as large as possible to generate small deflection radii.
  • a technically feasible limit is 1.8 T. Higher fields can be reached with superconducting coils.
  • Coil concepts for superconducting deflection magnets are described therein, in which the magnetic guide field perpendicular to the nominal path plane is generated with coils, the winding surfaces of which are arranged parallel to the nominal path plane.
  • the winding surfaces have two long sides that run parallel to the particle path and two short sides that cross the particle spell.
  • the required magnetic field is generated by electrical currents that run parallel to the particle path.
  • the currents crossing the particle path cause a field increase with exclusive field reversal. Both cause a severe rail disruption. This effect is greater the closer the winding packets are brought to the particle path.
  • the path disturbances are reduced by leading the winding areas crossing the particle path away from the target path plane. This results in complicated coil geometries with considerable manufacturing problems, especially when using superconductors.
  • DE-A 2 318 507 describes the manufacture of elongated, saddle-shaped coils or partial coils lying on the outside of a hollow cylindrical body, and in particular the manufacture of the immovable coil ends or winding heads leading over the particle path. In this case, considerable mechanical effort must be applied to manufacture in order to keep the coil ends immovable in their position.
  • Superconducting coils are manufactured according to the bias principle to prevent a conductor movement, which is one of the causes of a quench.
  • a conductor enclosing the winding surface runs through an outer radius> r0 and an inner radius ⁇ r0, where r0 represents the deflection radius. No pre-tension can be applied in the area of the inner radius when winding the coil.
  • the pretension must be achieved by gripping the coil system.
  • an arrangement is required in which the synchrotron light generated emerges tangentially from the magnet system in the plane of the orbit of the particles can.
  • only clips that do not completely enclose the coil system may be used.
  • Such clip elements are known from DE-C-35 11 282. It describes a superconducting magnet system for particle accelerators of a synchrotron radiation source, in which the winding surfaces of the coils are arranged parallel to the nominal path plane and the windings cross the particle path.
  • the invention is based on the object of specifying a magnet concept for the magnetic deflection system mentioned at the outset, which can be implemented while reducing the design effort and which simplifies the use of superconducting coils by means of a simple manufacturing technique.
  • the advantages achieved by the coil arrangement according to the invention are essentially to be seen in the fact that the coils can be manufactured according to the pretensioning principle, in that the conductor is wound with tensile stress in conventional technology and the winding packages on the magnet ends are not guided over the particle path.
  • a sufficiently large gap is available for leading out the synchrotron radiation without having to do without clips, if these should not be superfluous anyway due to the winding technology.
  • the magnetic deflection system consists of 4 coils 1, 2, 3, 4, the spatial arrangement of which can be seen from the (x, y, z) coordinate system shown.
  • the nominal path plane S E lies in the (x, z) plane in which the deflection path between the sinks and parallel to them passes through the coordinate jump.
  • the winding surfaces with the curvature r ⁇ r0 adapted to the nominal path are aligned perpendicular to the nominal path plane S E.
  • Fig. 2 shows a section through the coil system in the (x, y) plane.
  • the surface A0 spanned by the magnetic guide field and the deflection radius r0 is shown schematically, which perpendicularly intersects the nominal path plane S E lying in the (x, z) plane.
  • the coils 1, 2, 3, 4 are arranged on both sides of the surface A an labor so that they do not intersect the surface A0.
  • the winding surfaces of the coils 1, 2, 3, 4 are, as shown here, aligned parallel to the surface A0.
  • Fig. 3 shows a winding of the deflection system, which consists of a double pancake. It is a winding technique that is preferably used in the manufacture of superconducting windings.
  • the winding disc 5 with the smaller radius of curvature r1 ⁇ r0 is first produced and uses the second winding disc 6 with the radius of curvature r2> r1 during winding.
  • the conductor can always be wound under tension. If required, several double pancakes can be connected in series to form a winding package.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Particle Accelerators (AREA)

Abstract

Magnetic deflector system (1-4) for charged particles with a coil arrangement to generate a magnetic guide field, said field standing vertical at the level of the desired course (SE), and guiding the particles along a deflection course with the deflection radius ro. The coils generating the magnetic guide field are arranged in such a way that the windings do not cross the course of the particles.

Description

Die Erfindung betrifft ein magnetisches Ablenksystem für geladene Teilchen nach dem Oberbegriff des Anspruches 1.The invention relates to a magnetic deflection system for charged particles according to the preamble of claim 1.

Für die Führung von Teilchenstrahlen auf Kreisbahnen, insbesondere in einem Synchrotron oder Massenspektrometer, sind hohe Magnetfeldstärken nötig, die mit speziell geformten Biegemagneten erzeugt werden.For guiding particle beams on circular orbits, especially in a synchrotron or mass spectrometer, high magnetic field strengths are required, which are generated with specially shaped bending magnets.

Der Ablenkradius r₀ ist eine Funktion des Teilchenimpulses

Figure imgb0001
und des Magnetfeldes
Figure imgb0002
. Es gilt
Figure imgb0003

mit q als der Ladung des Teilchens, p=|
Figure imgb0004
| und B=|
Figure imgb0005
|.The deflection radius r₀ is a function of the particle momentum
Figure imgb0001
and the magnetic field
Figure imgb0002
. It applies
Figure imgb0003

with q as the charge of the particle, p = |
Figure imgb0004
| and B = |
Figure imgb0005
|.

Bei vorgegebenem Teilchenimpuls muß zum Erzeugen kleiner Ablenkradien r₀ das Magnetfeld möglichst groß sein. Bei Eisenmagneten liegt aber eine technisch realisierbare Grenze bei 1,8 T. Höhere Felder sind mit supraleitenden Spulen erreichbar.For a given particle pulse, the magnetic field must be as large as possible to generate small deflection radii. In the case of iron magnets, however, a technically feasible limit is 1.8 T. Higher fields can be reached with superconducting coils.

Einzelheiten des Aufbaus und der Arbeitsweise derartiger Ablenksysteme sind z.B. der Veröffentlichung KfK 3976, September 1985, ISSN 0303-4003, mit dem Titel "Entwurf einer Synchrotronstrahlungsquelle mit supraleitenden Ablenkmagneten für die Mikrofertigung nach dem LIGA-Verfahren" zu entnehmen.Details of the structure and operation of such deflection systems can be found, for example, in the publication KfK 3976, September 1985, ISSN 0303-4003, entitled "Design of a synchrotron radiation source with superconducting deflection magnets for microfabrication using the LIGA method".

Darin sind Spulenkonzepte für supraleitende Ablenkmagnete beschrieben, bei denen das senkrecht auf der Sollbahnebene stehende magnetische Führungsfeld mit Spulen erzeugt wird, deren Windungsflächen parallel zur Sollbahnebene angordnet sind. Die Windungsflächen weisen zwei lange, parallel zur Teilchenbahn verlaufende und zwei kurze, die Teilchenbann überquerende Seiten auf. Das erforderliche Magnetfeld wird von elektrischen Strömen erzeugt, die parallel zur Teilchenbahn verlaufen. Die die Teilchenbahn überquerenden Ströme bewirken eine Feldüberhöhung mit ausschließlicher Feldumkehr. Beides verursacht eine starke Bahnstörung. Dieser Effekt ist umso größer, je näher die Wickelpakete an die Teilchenbahn herangeführt werden. Die Bahnstörungen werden reduziert, indem die die Teilchenbahn überquerenden Wicklungsbereiche von der Sollbahnebene weggeführt werden. Dabei ergeben sich komplizierte Spulengeometrien mit beträchtlichen Fertigungsproblemen, insbesondere bei Verwendung von Supraleitern. Weiter wird in der DE-A 2 318 507 die Fertigung langgestreckter, sattelartig geformter, auf der Außenseite eines hohlzylindrischen Körpers anliegenden Spulen bzw. Teilspulen und dabei insbesondere die Herstellung der über die Teilchenbahn führenden, unverrückbare Spulenenden bzw. Wickelköpfe beschrieben. Hierbei muß zur Fertigung ein erheblicher mechanischer Aufwand angewendet werden, um die Spulenenden eben unverrückbar in ihrer Lage zu halten. Supraleitende Spulen werden nach dem Vorspannungsprinzip hergestellt, um eine Leiterbewegung zu verhindern, die als eine der einen Quench auslösenden Ursachen gilt. Bei den hier betrachteten Spulen nach dem Stande der Technik durchläuft ein die Windungsfläche umschließender Leiter einen äußeren Radius > r₀ und einen inneren Radius < r₀, wobei r₀ den Ablenkradius darstellt. Im Bereich des inneren Radius kann beim Wickeln der Spule keine Vorspannung aufgebracht werden. Demzufolge muß die Vorspannung durch eine Umklammerung des Spulensystems erfolgen. Bei einem Synchrotron wird aber eine Anordnung gefordert, bei der das erzeugte Synchrotronlicht in der Ebene der Umlaufbahn der Teilchen tangential aus dem Magnetsystem austreten kann. Demzufolgen dürfen nur Klammern eingesetzt werden, die das Spulensystem nicht vollständig umschließen.Coil concepts for superconducting deflection magnets are described therein, in which the magnetic guide field perpendicular to the nominal path plane is generated with coils, the winding surfaces of which are arranged parallel to the nominal path plane. The winding surfaces have two long sides that run parallel to the particle path and two short sides that cross the particle spell. The required magnetic field is generated by electrical currents that run parallel to the particle path. The currents crossing the particle path cause a field increase with exclusive field reversal. Both cause a severe rail disruption. This effect is greater the closer the winding packets are brought to the particle path. The path disturbances are reduced by leading the winding areas crossing the particle path away from the target path plane. This results in complicated coil geometries with considerable manufacturing problems, especially when using superconductors. Furthermore, DE-A 2 318 507 describes the manufacture of elongated, saddle-shaped coils or partial coils lying on the outside of a hollow cylindrical body, and in particular the manufacture of the immovable coil ends or winding heads leading over the particle path. In this case, considerable mechanical effort must be applied to manufacture in order to keep the coil ends immovable in their position. Superconducting coils are manufactured according to the bias principle to prevent a conductor movement, which is one of the causes of a quench. In the prior art coils considered here, a conductor enclosing the winding surface runs through an outer radius> r₀ and an inner radius <r₀, where r₀ represents the deflection radius. No pre-tension can be applied in the area of the inner radius when winding the coil. As a result, the pretension must be achieved by gripping the coil system. In the case of a synchrotron, however, an arrangement is required in which the synchrotron light generated emerges tangentially from the magnet system in the plane of the orbit of the particles can. As a result, only clips that do not completely enclose the coil system may be used.

Solche Klammerelemente sind aus der DE-C-35 11 282 bekannt. Darin wird ein supraleitendes Magnetsystem für Teilchenbeschleuniger einer Synchrotron-Strahlungsquelle beschrieben, bei dem die Windungsflächen der Spulen parallel zur Sollbahnebene angeordnet sind und die Windungen die Teilchenbahn überqueren.Such clip elements are known from DE-C-35 11 282. It describes a superconducting magnet system for particle accelerators of a synchrotron radiation source, in which the winding surfaces of the coils are arranged parallel to the nominal path plane and the windings cross the particle path.

Der Erfindung liegt die Aufgabe zugrunde, ein Magnetkonzept für das eingangs genannte magnetische Ablenksystem anzugeben, das unter Reduzierung des konstruktiven Aufwandes realisiert werden kann und durch eine einfache Fertigungstechnik den Einsatz supraleitender Spulen erleichtert.The invention is based on the object of specifying a magnet concept for the magnetic deflection system mentioned at the outset, which can be implemented while reducing the design effort and which simplifies the use of superconducting coils by means of a simple manufacturing technique.

Die Aufgabe wird mittels der im kennzeichnenden Teil des Anspruches 1 gelöst.The object is achieved by means of the characterizing part of claim 1.

Die durch die erfindungsgemäße Spulenanordnung erreichten Vorteile sind im wesentlichen darin zu sehen, daß die Spulen nach dem Vorspannungsprinzip gefertigt werden können, indem der Leiter in herkömmlicher Technik mit Zugspannung gewickelt wird und die Wickelpakete an den Magnetenden nicht über die Teilchenbahn geführt werden. Außerdem steht zum Herausführen der Synchrotronstrahlung ein ausreichend großer Spalt zur Verfügung, ohne auf Klammern verzichten zu müssen, wenn diese nicht ohnehin aufgrund der Wickeltechnik überflüssig sein sollten.The advantages achieved by the coil arrangement according to the invention are essentially to be seen in the fact that the coils can be manufactured according to the pretensioning principle, in that the conductor is wound with tensile stress in conventional technology and the winding packages on the magnet ends are not guided over the particle path. In addition, a sufficiently large gap is available for leading out the synchrotron radiation without having to do without clips, if these should not be superfluous anyway due to the winding technology.

Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels mittels der Fig. 1 bis 3 beschrieben. Dabei zeigt

  • Fig. 1 eine 3-dimensionale Darstellung eines aus 4 Spulen bestehenden Magnetsystems,
  • Fig. 2 einen Schnitt in der (x,y)-Ebene aus Fig. 1 und
  • Fig. 3 ein Wickelpaket, das aus einem Doppelpancake besteht.
The invention is described below with reference to an embodiment using FIGS. 1 to 3. It shows
  • 1 is a 3-dimensional representation of a magnet system consisting of 4 coils,
  • Fig. 2 shows a section in the (x, y) plane of Fig. 1 and
  • Fig. 3 is a winding package consisting of a double pancake.

Gemäß Fig. 1 besteht das magnetische Ablenksystem aus 4 Spulen 1, 2, 3, 4, deren räumliche Anordnung anhand des eingezeichneten (x,y,z)-Koordinatensystems erkennbar ist. Die Sollbahnebene SE liegt in der (x,z)-Ebene, in der die Ablenkbahn zwischen den Spülen und parallel zu diesen den Koordinatensprung durchläuft. Die Windungsflächen mit der der Sollbahn angepaßten Krümmung r ≷ r₀ sind senkrecht zur Sollbahnebene SE ausgerichtet.1, the magnetic deflection system consists of 4 coils 1, 2, 3, 4, the spatial arrangement of which can be seen from the (x, y, z) coordinate system shown. The nominal path plane S E lies in the (x, z) plane in which the deflection path between the sinks and parallel to them passes through the coordinate jump. The winding surfaces with the curvature r ≷ r₀ adapted to the nominal path are aligned perpendicular to the nominal path plane S E.

Fig. 2 zeigt einen Schnitt durch das Spulensystem in der (x,y)-Ebene. Schematisch ist die vom magnetischen Führungsfeld und dem Ablenkradius r₀ aufgespannte Fläche A₀ gezeigt, die senkrecht die in der (x,z)-Ebene liegende Sollbahnebene SE schneidet. Beidseitig der Fläche A₀ sind die Spulen 1, 2, 3, 4 so angeordnet, daß sie die Fläche A₀ nicht schneiden. Die Windungsflächen der Spulen 1, 2, 3, 4 sind, wie hier dargestellt, parallel zur Fläche A₀ ausgerichtet.Fig. 2 shows a section through the coil system in the (x, y) plane. The surface A₀ spanned by the magnetic guide field and the deflection radius r₀ is shown schematically, which perpendicularly intersects the nominal path plane S E lying in the (x, z) plane. The coils 1, 2, 3, 4 are arranged on both sides of the surface A angeordnet so that they do not intersect the surface A₀. The winding surfaces of the coils 1, 2, 3, 4 are, as shown here, aligned parallel to the surface A₀.

Fig. 3 zeigt eine Wicklung des Ablenksystems, die aus einem Doppelpancake besteht. Es handelt sich um eine Wickeltechnik, die vorzugsweise bei der Herstellung supraleitender Wicklungen angewandt wird. Die Wickelscheibe 5 mit dem kleineren Krümmungsradius r₁ ≷ r₀ wird zuerst hergestellt und sützt beim Wickeln die zweite Wickelscheibe 6 mit dem Krümmungsradius r₂ > r₁. Dabei kann der Leiter immer unter Zug gewickelt werden. Nach Bedarf können mehrere Doppelpancakes zu einem Wickelpaket in Reihe geschaltet werden. Die immer am größten Wickeldurchmesser befindlichen Leitungsenden 7, 8, erleichtern die Verbindungen zwischen den Doppelpancakes. Bei dieser Spulenform kann der Leiter auch in jeder anderen Wickeltechnik unter Zug verarbeitet werden.Fig. 3 shows a winding of the deflection system, which consists of a double pancake. It is a winding technique that is preferably used in the manufacture of superconducting windings. The winding disc 5 with the smaller radius of curvature r₁ ≷ r₀ is first produced and uses the second winding disc 6 with the radius of curvature r₂> r₁ during winding. The conductor can always be wound under tension. If required, several double pancakes can be connected in series to form a winding package. The line ends 7, 8, which are always at the largest winding diameter, facilitate the connections between the double pancakes. With this coil form the conductor can also be processed in any other winding technique under tension.

Claims (2)

  1. Magnetic deflector system for charged particles, having a coil arrangement for generating a magnetic guide field, which extends perpendicularly along the plane of the desired path and with which the particles are guided along a deflection path having the deflection radius rO in the desired plane SE, characterised in that at least two coils at a time are disposed one above the other on each side of a face AO, which extends from the direction of the magnetic guide field and from the deflection path, in such a manner that the winding faces of the coils extend parallel to the face AO, at least two of the coils being disposed above and at least two being disposed below the plane SE of the desired path and, in consequence, the deflector field in the region of the desired path at the end of the coils attenuating without field magnification and without subsequent field reversal.
  2. Magnetic deflector system according to claim 1, characterised in that the coils comprise at least one double pancake.
EP88901560A 1987-02-19 1988-02-18 Magnetic deflector system for charged particles Expired - Lifetime EP0348403B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3705294 1987-02-19
DE19873705294 DE3705294A1 (en) 1987-02-19 1987-02-19 MAGNETIC DEFLECTION SYSTEM FOR CHARGED PARTICLES

Publications (2)

Publication Number Publication Date
EP0348403A1 EP0348403A1 (en) 1990-01-03
EP0348403B1 true EP0348403B1 (en) 1994-03-30

Family

ID=6321329

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88901560A Expired - Lifetime EP0348403B1 (en) 1987-02-19 1988-02-18 Magnetic deflector system for charged particles

Country Status (5)

Country Link
US (1) US4902993A (en)
EP (1) EP0348403B1 (en)
JP (1) JPH02502684A (en)
DE (1) DE3705294A1 (en)
WO (1) WO1988006394A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4000666C2 (en) * 1989-01-12 1996-10-17 Mitsubishi Electric Corp Electromagnet arrangement for a particle accelerator
JP2529492B2 (en) * 1990-08-31 1996-08-28 三菱電機株式会社 Coil for charged particle deflection electromagnet and method for manufacturing the same
US5463291A (en) * 1993-12-23 1995-10-31 Carroll; Lewis Cyclotron and associated magnet coil and coil fabricating process
JPH10507589A (en) 1994-10-13 1998-07-21 アメリカン スーパーコンダクター コーポレイション Superconducting magnetic coil with changing contour
GB9813327D0 (en) * 1998-06-19 1998-08-19 Superion Ltd Apparatus and method relating to charged particles
EP3294045B1 (en) 2004-07-21 2019-03-27 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
ES2730108T3 (en) * 2005-11-18 2019-11-08 Mevion Medical Systems Inc Radiation therapy of charged particles
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) * 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
DE102008009494A1 (en) * 2008-02-15 2009-08-27 Fachhochschule Dortmund Device for measuring concentration and/or size distribution of soot particles in diesel exhaust gas of diesel vehicle in workshops, has magnets exhibiting magnetic field to deflect particles to electrodes dependent on size
GB2478265B (en) * 2008-09-03 2013-06-19 Superion Ltd Apparatus and method relating to the focusing of charged particles
ES2739634T3 (en) 2012-09-28 2020-02-03 Mevion Medical Systems Inc Particle therapy control
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
EP2901821B1 (en) 2012-09-28 2020-07-08 Mevion Medical Systems, Inc. Magnetic field regenerator
TWI604868B (en) 2012-09-28 2017-11-11 美威高能離子醫療系統公司 Particle accelerator and proton therapy system
JP6523957B2 (en) 2012-09-28 2019-06-05 メビオン・メディカル・システムズ・インコーポレーテッド Magnetic shim for changing the magnetic field
CN104822417B (en) 2012-09-28 2018-04-13 梅维昂医疗系统股份有限公司 Control system for particle accelerator
TW201434508A (en) 2012-09-28 2014-09-16 Mevion Medical Systems Inc Adjusting energy of a particle beam
EP2901823B1 (en) 2012-09-28 2021-12-08 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
JP6855240B2 (en) 2013-09-27 2021-04-07 メビオン・メディカル・システムズ・インコーポレーテッド Particle beam scanning
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
EP3906968A1 (en) 2016-07-08 2021-11-10 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10984935B2 (en) * 2017-05-02 2021-04-20 Hefei Institutes Of Physical Science, Chinese Academy Of Sciences Superconducting dipole magnet structure for particle deflection
WO2019006253A1 (en) 2017-06-30 2019-01-03 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
EP3934751A1 (en) 2019-03-08 2022-01-12 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2341922A1 (en) * 1976-02-17 1977-09-16 Cgr Mev IMPROVEMENT TO A TARGET SCANNING DEVICE BY A CHARGED PARTICLE BEAM
JPS5572019A (en) * 1978-11-25 1980-05-30 Toshiba Corp Preparation of saddle type multi-wound coil
DE3505281A1 (en) * 1985-02-15 1986-08-21 Siemens AG, 1000 Berlin und 8000 München MAGNETIC FIELD GENERATING DEVICE
DE3661672D1 (en) * 1985-06-24 1989-02-09 Siemens Ag Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles
EP0276360B1 (en) * 1987-01-28 1993-06-09 Siemens Aktiengesellschaft Magnet device with curved coil windings

Also Published As

Publication number Publication date
EP0348403A1 (en) 1990-01-03
WO1988006394A1 (en) 1988-08-25
JPH02502684A (en) 1990-08-23
US4902993A (en) 1990-02-20
DE3705294C2 (en) 1993-06-09
DE3705294A1 (en) 1988-09-01

Similar Documents

Publication Publication Date Title
EP0348403B1 (en) Magnetic deflector system for charged particles
DE3928037C2 (en) Device for accelerating and storing charged particles
EP0193837B1 (en) Magnetic field-generating device for a particle-accelerating system
DE4000666C2 (en) Electromagnet arrangement for a particle accelerator
DE4109931C2 (en) Deflection magnet for deflecting a beam of charged particles on a semicircular path
EP0208163B1 (en) Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles
EP0191392B1 (en) Magnetic field-generating device
DE3511282C1 (en) Superconducting magnet system for particle accelerators of a synchrotron radiation source
DE2730985C2 (en) Irradiation device using charged particles
WO1992003028A1 (en) Synchrotron radiation source
EP0193038A2 (en) Magnetic-field generating device for a particle accelerating system
EP2095695A1 (en) Planar-helical undulator
DE4025837A1 (en) Hall sensor avoiding inhomogeneity effects - has contoured pole face of magnetic field generator with at least magnets
DE2856782A1 (en) ELECTRON OPTICS LENS
DE2754791A1 (en) RACE TRACK MICROTRON
EP0185955A1 (en) Process for manufacturing a curved disc-shaped magnet coil, and devices for carrying out this process
DE3717819C2 (en) Synchrotron
DE3534383C2 (en)
DE2022001A1 (en) Device for the magnetic deflection of a bundle of electrically charged particles
DE2238402C2 (en) Tracked contactless vehicle supporting system - has additional winding in pole faces for side guidance
DE2533347C3 (en) Magnetic reflector
DE1098625B (en) Magnetic bundling system for bundled guidance of one (several) electron flow (s) by means of a homogeneous magnetic field along a larger distance, especially for traveling wave tubes
DE102021101953B3 (en) Transport lock for a movable optics of a laser processing head
DE1919097A1 (en) Device for deflecting charged particles
DE102008031757A1 (en) Accelerator for accelerating charged particles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): FR GB IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17Q First examination report despatched

Effective date: 19921111

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19940330

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940705

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KERNFORSCHUNGSZENTRUM KARLSRUHE GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950218

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST