EP0345426A1 - Partition wall for a boiler - Google Patents

Partition wall for a boiler Download PDF

Info

Publication number
EP0345426A1
EP0345426A1 EP89105817A EP89105817A EP0345426A1 EP 0345426 A1 EP0345426 A1 EP 0345426A1 EP 89105817 A EP89105817 A EP 89105817A EP 89105817 A EP89105817 A EP 89105817A EP 0345426 A1 EP0345426 A1 EP 0345426A1
Authority
EP
European Patent Office
Prior art keywords
cavity
heat
wall
combustion chamber
gusset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89105817A
Other languages
German (de)
French (fr)
Other versions
EP0345426B1 (en
Inventor
Hans Dr. Viessmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT89105817T priority Critical patent/ATE80938T1/en
Publication of EP0345426A1 publication Critical patent/EP0345426A1/en
Application granted granted Critical
Publication of EP0345426B1 publication Critical patent/EP0345426B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/182Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing especially adapted for evaporator or condenser surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/263Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body with a dry-wall combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing

Definitions

  • the invention relates to a partition for heating boilers, namely the combustion chamber wall or the heating gas draft tube, which separates the water side from the gas-carrying side and on the gas side of which heat transfer area enlargements are arranged in the form of longitudinal ribs folded from a sheet metal blank and the sheet metal blank is connected in a heat-conducting manner to the combustion chamber wall, the rib folds in limit their foot area with the inner surface of the combustion chamber wall.
  • Partition walls designed in this way are well known, so that no special printed evidence is required in this regard.
  • This design of the partitions which are suitable both for the enclosure of the combustion chamber and for the formation of heating gas pipes, have proven themselves well, since in addition to their function as gas-side heat transfer area enlargements, they also provide corrosion protection with regard to condensate.
  • the heat-conducting connection between the sheet metal blank folded into longitudinal ribs and the surrounding wall, which is generally a more or less large pipe, depending on whether the partition wall should enclose a combustion chamber or a hot gas flue, is achieved either by a press fit and / or partial welding .
  • the widths of the cavity gussets at the base of the rib folds add up to a not inconsiderable width, which cannot be used directly for direct heat transfer, because the wall parts of the sheet metal blank delimiting the respective cavity gussets do not necessarily exist to be brought into heat-conducting contact with the wall on which the sheet metal blank sits.
  • the invention is therefore based on the object of designing a partition of the type mentioned in such a way that the reduced heat transfer in the region of the cavity gusset can be intensified by simple means.
  • the design of the partition wall according to the invention is of particular importance for the case in which the fins not only absorb heat from the heating gases flowing past, but also directly and directly from the ends the ribs of the thermally conductively connected walls, because only in this way can the large amount of heat introduced into the ribs actually be dissipated.
  • the heat-conducting material can be designed in the form of filler profiles which in cross-section are at least approximately matched to the gusset cross-section. Since the rib folds are produced by machine, it can be assumed without further ado that the bending radii of the sheet metal blank at the foot of the rib folds are largely the same. In this respect, it would be readily possible to provide the filling profiles from the outset as rod material which corresponds in cross section to the gusset cross section. As has been shown, even roughly adapted filling profiles improve the heat transfer considerably.
  • Relatively soft, metallic material can also be used for the filling profiles, which adapts to the gusset cross-section when sufficient deformation forces are applied. Profiles used in this way naturally also stiffen the entire partition construction, so that rib deformations in the base area of the folding ribs practically no longer occur due to excessive heat.
  • the ribs are formed at the same time. Based on this, it is possible for the present case, instead of forming the ribs on the extruded profiles, to form small longitudinal ribs, the cross section of which corresponds to the cross section of the cavity gussets that are present on a sheet metal blank with unfolded ribs, as described, that is to say with such a configuration
  • the heat-conducting material in the form of the gusset cross-section is formed at least approximately according to the extruded profile with longitudinal ribs formed on the extruded profile.
  • the combustion chamber wall is formed into the cavity, the heat-conducting material forming it, which is molded onto the inner foot region of the rib folds, which can be easily accomplished with suitable deformation tools. It may well be considered to keep the thickness of the sheet metal blank greater than the thickness of the actual surrounding wall.
  • Another possibility is to simply arrange the heat-conducting material in the form of a heat-conducting filling compound in the gusset cavities, it being possible, depending on the properties of such heat-conducting filling compounds, to close the open ends of the gusset with a panel.
  • partition wall can be used both as a firebox enclosure and in the form of more or less small heating gas pipes, and only the special gusset design is of interest, a boiler that is equipped with such a partition wall is not particularly shown, especially since the most varied Boiler constructions that are suitable for this are well known.
  • the water side of such a partition is designated W in FIG. 1 and the gas side G.
  • the sheet metal blank 12, which is provided with the rib folds 8, as shown, is connected in a heat-conducting manner on the combustion chamber wall 9.
  • a partition wall has a large number of such rib folds 8, there is a corresponding number of hollow gussets 1, the areas of which add up to a total area, which is not inconsiderable to an extent, which is not directly involved in the direct heat transfer. This becomes particularly critical if, as indicated in FIG. 2, a separating chamber wall 14, which delimits the individual heating gas flues 15 upwards, is also in direct heat-conducting contact with the rib folds 8 and, as mentioned above, results in an additional amount of heat in the rib folds 8 is initiated. For this reason, the cavity gusset 1 with a thermally conductive Ma filled out material that at least partially fills the cavity 2 and is at least partially thermally conductive in contact with the wall parts 3 delimiting the cavity 2.
  • the heat-conducting material is in the form of filling profiles 4, which are at least approximately matched in cross section to the gusset cross section.
  • the filling profile 4 is shown in its simplest embodiment, i.e. with an approximately adapted triangular cross section.
  • the heat-conducting material in the form of the gusset cross-section is at least approximately corresponding to the extruded profile with shaped longitudinal ribs 6.
  • extruded profiles 5 are then assembled by welding to form a cylindrical body which forms the combustion chamber wall.
  • the sheet metal blank 12, which is provided with the rib folds 8 and is also cylindrical, is then pressed into this body using suitable auxiliary tools.
  • the partition wall is designed such that in the area 7 of the cavity gusset 1 on the side of the combustion chamber wall each rib folds 8, the combustion chamber wall 9 into the cavity 2, forming the heat-conducting material, on the inside Base area of the rib folds 8 is formed integrally.
  • This design of the partition is also carried out with auxiliary tools suitable for contact pressure.
  • thermally conductive material in the form of a thermally conductive filler 10 into the cavities 2, the open ones, as mentioned above Ends of the cavity gusset 1, if this is required by the properties of the filling compound, can be closed with an aperture 11.
  • FIG. 7 shows the partition wall rounded to a cylindrical tube train, as it is either used as a combustion chamber or reduced in diameter accordingly and inserted in a required number into a water-bearing boiler housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Thermal Insulation (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

The partition wall is intended for boilers, in particular as a fire-space wall (9) or as a heating gas draught pipe which separates the water side from the gas-conducting side in the boiler housing, and heat-transfer surface enlargements in the form of longitudinal ribs folded from a sheet metal blank (12) are disposed on the gas-conducting side, and the sheet metal blank is in heat-conducting connection with the fire-space wall (9), the rib folds (8) defining wedge-shaped cavities (1) in their foot areas with the inner surface of the fire-space wall (9). In order to optimise the heat transfer of a fire-space wall, particularly in the regions of the wedge-shaped cavities, the partition wall according to the invention is so designed that the wedge-shaped cavities (1) are filled with a heat-conducting material which at least partly fills the cavity (2) and is designed, at least partly, to be in heat-conducting contact with the wall parts (3) defining the cavity (2). <IMAGE>

Description

Die Erfindung betrifft eine Trennwand für Heizungskessel, näm­lich Feuerraumwand oder Heizgaszugrohr, die die Wasserseite von der gasführenden Seite trennt und auf der gasseitig Wärme­übertragungsflächenvergrößerungen in Form von aus einem Blech­zuschnitt gefalteten Längsrippen angeordnet sind und der Blechzuschnitt mit der Feuerraumwand wärmeleitend verbunden ist, wobei die Rippenfaltungen in ihrem Fußbereich mit der in­neren Fläche der Feuerraumwand Hohlraumzwickel begrenzen.The invention relates to a partition for heating boilers, namely the combustion chamber wall or the heating gas draft tube, which separates the water side from the gas-carrying side and on the gas side of which heat transfer area enlargements are arranged in the form of longitudinal ribs folded from a sheet metal blank and the sheet metal blank is connected in a heat-conducting manner to the combustion chamber wall, the rib folds in limit their foot area with the inner surface of the combustion chamber wall.

Derart ausgebildete Trennwände sind hinlänglich bekannt, so daß es diesbezüglich keines besonderen druckschriftlichen Nachweises bedarf. Diese Ausgestaltung der Trennwände, die sowohl für die Umschließung des Feuerraumes aber auch für die Ausbildung von Heizgaszugrohren in Frage kommen, haben sich gut bewährt, da sie neben ihrer Funktion als gasseitige Wärmeübertragungsflächenvergrößerungen auch einen Korrosions­schutz hinsichtlich anfallenden Kondensats darstellen. Die wärmeleitende Verbindung zwischen dem zu Längsrippen aufgefal­teten Blechzuschnitt und der umschließenden Wand, die in der Regel ein mehr oder weniger durchmessergroßes Rohr darstellt, je nachdem, ob die Trennwand einen Feuerraum umschließen soll oder einen Heizgaszug, wird entweder durch Preßsitz und/oder partielle Verschweißung erreicht.Partition walls designed in this way are well known, so that no special printed evidence is required in this regard. This design of the partitions, which are suitable both for the enclosure of the combustion chamber and for the formation of heating gas pipes, have proven themselves well, since in addition to their function as gas-side heat transfer area enlargements, they also provide corrosion protection with regard to condensate. The heat-conducting connection between the sheet metal blank folded into longitudinal ribs and the surrounding wall, which is generally a more or less large pipe, depending on whether the partition wall should enclose a combustion chamber or a hot gas flue, is achieved either by a press fit and / or partial welding .

Aus fertigungstechnischen Gründen ist es bei der Vorbereitung bzw. Auffaltung des Blechzuschnittes, will man den Fertigungs­aufwand in vernünftigen Grenzen halten, praktisch nicht mög­lich, die Rippenfaltungen im Fußbereich derart scharfkantig anzulegen, daß keine Hohlraumzwickel entstehen, d.h., je groß­zügiger man mit der Faltung in diesem Bereich verfährt, desto größer werden die Hohlraumzwickel an der Basis der Rippenfal­tungen. Da diese Rippenfaltungen untereinander relativ geringe Abstände haben, summieren sich die Breiten der Hohlraumzwickel an der Basis der Rippenfaltungen zu einer nicht unbeträchtli­chen Breite auf, die nicht unmittelbar für einen direkten Wär­meübergang nutzbar gemacht werden kann, weil die die jeweili­gen Hohlraumzwickel begrenzenden Wandungsteile des Blech­zuschnittes zwangsläufig nicht mit der Wand in wärmeleitenden Kontakt zu bringen sind, auf der der Blechzuschnitt sitzt. Ab­gesehen davon, daß dies sowieso nicht im Sinne eines optimalen Wärmeüberganges liegt, ist diese konstruktive Gegebenheit der an sich vorteilhaften Rippenausbildung durch Faltung insbeson­dere dann nachteilig, wenn derartig ausgebildete Trennwände in Verbindung mit die eingentliche Brennkammer umschließenden Wän­den benutzt werden, was in der Regel der Fall ist, und wobei aus bestimmten Gründen die Brennkammerwand mit den Enden der Rippen ebenfalls in wärmeleitendem Kontakt steht, um die von der Brennkammerwand aufgenommene Wärme unmittelbar in die Rip­pen einzuleiten. Hierbei machen sich die vorbeschriebenen und unvermeidbaren Hohlraumzwickel nachteilig bemerkbar, da deren Flächen am Wärmeübergang mehr oder weniger unbeteiligt sind, d.h. die von der Brennkammerwand zusätzlich eingeleitete Wärme kann ebenfalls nur über die Flächen abgeführt werden, die in unmittelbarem Wärmeleitkontakt stehen. Dies zeigt sich bspw. ganz deutlich in entsprechenden "Wärmemarkierungen" auf der Wasserseite der Trennwand.For technical reasons, when preparing or unfolding the sheet metal blank, if you want to keep the manufacturing effort within reasonable limits, it is practically impossible for the rib folds in the foot area to be so sharp-edged to ensure that no gussets are created, ie, the more generously you fold the area, the larger the gussets become at the base of the rib folds. Since these rib folds have relatively small distances from one another, the widths of the cavity gussets at the base of the rib folds add up to a not inconsiderable width, which cannot be used directly for direct heat transfer, because the wall parts of the sheet metal blank delimiting the respective cavity gussets do not necessarily exist to be brought into heat-conducting contact with the wall on which the sheet metal blank sits. Apart from the fact that this is not in the sense of an optimal heat transfer anyway, this constructive fact of the rib formation which is advantageous per se by folding is particularly disadvantageous when such partition walls are used in connection with the walls surrounding the actual combustion chamber, which is usually the case and, for certain reasons, the combustion chamber wall is also in heat-conducting contact with the ends of the ribs in order to introduce the heat absorbed by the combustion chamber wall directly into the ribs. Here, the previously described and unavoidable gusset cavities have a disadvantageous effect, since their surfaces are more or less uninvolved in the heat transfer, ie the heat additionally introduced from the combustion chamber wall can also be dissipated only via the surfaces which are in direct thermal contact. This is clearly shown, for example, in corresponding "heat markings" on the water side of the partition.

Der Erfindung liegt demgemäß die Aufgabe zugrunde, eine Trenn­wand der eingangs genannten Art dahingehend auszubilden, daß der reduzierte Wärmeübergang im Bereich der Hohlraumzwickel mit einfachen Mitteln intensiviert werden kann.The invention is therefore based on the object of designing a partition of the type mentioned in such a way that the reduced heat transfer in the region of the cavity gusset can be intensified by simple means.

Diese Aufgabe ist mit einer Trennwand der eingangs genannten Art nach der Erfindung durch die im Kennzeichen des Haupt­ anspruches angeführten Merkmale gelöst. Vorteilhafte Weiter­bildungen und praktische Ausführungsformen ergeben sich nach den Unteransprüchen.This object is with a partition of the type mentioned in the invention by the in the hallmark of the main Claimed features resolved. Advantageous further developments and practical embodiments result from the subclaims.

Abgesehen davon, daß damit die verfügbare Wärmeübertra­gungsfläche bzw. der Wärmedurchgang insgesamt optimiert ist, hat die erfindungsgemäße Ausbildung der Trennwand besondere Bedeutung für den Fall, bei dem die Rippen Wärme nicht nur aus den vorbeiströmenden Heizgasen aufnehmen, sondern auch direkt und unmittelbar aus mit den Enden der Rippen wärmeleitend ver­bundenen Wandungen, denn nur auf diese Weise kann die in die Rippen eingeleitete große Wärmemenge auch tatsächlich abge­führt werden.In addition to the fact that the available heat transfer surface or heat transfer is optimized as a whole, the design of the partition wall according to the invention is of particular importance for the case in which the fins not only absorb heat from the heating gases flowing past, but also directly and directly from the ends the ribs of the thermally conductively connected walls, because only in this way can the large amount of heat introduced into the ribs actually be dissipated.

Für die praktische Verwirklichung der neuartigen Trennwand stehen verschiedene Ausführungsformen zur Verfügung. So kann das wärmeleitende Material in Form von Füllprofilen ausgebil­det sein, die im Querschnitt zumindest angenähert dem Zwickel­querschnitt angepaßt sind. Da die Rippenfaltungen maschinell hergestellt werden, ist ohne weiteres davon auszugehen, daß die Biegeradien des Blechzuschnittes am Fuße der Rippenfal­tungen weitestgehend gleich sind. Insofern wäre es ohne wei­teres möglich, die Füllprofile von vornherein als Stangenmate­rial vorzusehen, das im Querschnitt dem Zwickelquerschnitt entspricht. Wie sich gezeigt hat, verbessern auch schon grob angepaßte Füllprofile den Wärmeübergang ganz wesentlich. Es kann für die Füllprofile auch relativ weiches, metallisches Material verwendet werden, das sich bei Anwendung ausreichen­der Verformungskräfte an den Zwickelquerschnitt anpaßt. Derar­tig eingesetzte Profile versteifen natürlich nebenbei auch die gesamte Trennwandkonstruktion, so daß Rippenverformungen im Fußbereich der Faltrippen aufgrund zu starker Wärmeeinwirkung praktisch nicht mehr auftreten.Various embodiments are available for the practical implementation of the new partition. For example, the heat-conducting material can be designed in the form of filler profiles which in cross-section are at least approximately matched to the gusset cross-section. Since the rib folds are produced by machine, it can be assumed without further ado that the bending radii of the sheet metal blank at the foot of the rib folds are largely the same. In this respect, it would be readily possible to provide the filling profiles from the outset as rod material which corresponds in cross section to the gusset cross section. As has been shown, even roughly adapted filling profiles improve the heat transfer considerably. Relatively soft, metallic material can also be used for the filling profiles, which adapts to the gusset cross-section when sufficient deformation forces are applied. Profiles used in this way naturally also stiffen the entire partition construction, so that rib deformations in the base area of the folding ribs practically no longer occur due to excessive heat.

Insbesondere für Feuerraumumgebungswände ist es bekannt, diese Wände aus mehr oder weniger großen Strangpreßprofilen zusam­ menzusetzen, bei deren Strangverpressung die Rippen sogleich mit ausgeformt werden. Davon ausgehend, ist es für den vorlie­genden Fall möglich, statt der Rippen an den Strangpreßprofi­len kleine Längsrippen mit auszuformen, deren Querschnitt dem Querschnitt der Hohlraumzwickel entspricht, die an einem Blechzuschnitt mit aufgefalteten Rippen, wie beschrieben, vor­liegen, d.h., bei einer derartigen Ausbildung der Feuerraum­wand ist das wärmeleitende Material in Form von dem Zwickel­querschnitt zumindest angenähert entsprechend am Strang­preßprofil mitausgeformten Längsrippen ausgebildet.In particular for combustion chamber surrounding walls, it is known to assemble these walls from more or less large extruded profiles with the extrusions, the ribs are formed at the same time. Based on this, it is possible for the present case, instead of forming the ribs on the extruded profiles, to form small longitudinal ribs, the cross section of which corresponds to the cross section of the cavity gussets that are present on a sheet metal blank with unfolded ribs, as described, that is to say with such a configuration The heat-conducting material in the form of the gusset cross-section is formed at least approximately according to the extruded profile with longitudinal ribs formed on the extruded profile.

Eine weitere vorteilhafte Ausführungsmöglichkeit besteht darin, daß im Bereich der feuerraumwandseitigen Hohlraum­zwickel jeder Rippenfaltung die Feuerraumwand in den Hohlraum hinein, das wärmeleitende Material bildende, an den inneren Fußbereich der Rippenfaltungen angeformt ausgebildet ist, was mit geeigneten Verformungswerkzeugen problemlos bewerkstelligt werden kann. Dabei kann durchaus in Betracht gezogen werden, ggf. die Stärke des Blechzuschnittes größer zu halten als die Stärke der eigentlichen Umschließungswand.Another advantageous embodiment is that in the region of the cavity gusset-side gusset of each rib fold, the combustion chamber wall is formed into the cavity, the heat-conducting material forming it, which is molded onto the inner foot region of the rib folds, which can be easily accomplished with suitable deformation tools. It may well be considered to keep the thickness of the sheet metal blank greater than the thickness of the actual surrounding wall.

Eine weitere Möglichkeit besteht darin, das wärmeleitende Ma­terial einfach in Form einer wärmeleitenden Füllmasse in den Zwickelhohlräumen anzuordnen, wobei je nach den Eigenschaften solcher wärmeleitenden Füllmassen vorgesehen werden kann, die offenen Enden der Zwickel mit einer Blende zu verschließen.Another possibility is to simply arrange the heat-conducting material in the form of a heat-conducting filling compound in the gusset cavities, it being possible, depending on the properties of such heat-conducting filling compounds, to close the open ends of the gusset with a panel.

Ausführungsbeispiele der Erfindung sind in der Zeichnung dar­gestellt und werden im folgenden näher beschrieben.Embodiments of the invention are shown in the drawing and are described in more detail below.

Es zeigen schematisch:

  • Fig. 1 im Schnitt und perspektivisch einen Abschnitt der Trennwand mit noch nicht ausgefüllten Hohl­raumzwickeln;
  • Fig. 2 - 6 verschiedene Ausführungsformen der Trenn­wand und
  • Fig. 7 einen Schnitt durch die Trennwand in zylindrisch gerundeter Form für den Einbau als Feuerraum in ein Heizkesselgehäuse.
They show schematically:
  • Figure 1 in section and in perspective a section of the partition with not yet filled cavity gussets.
  • Fig. 2-6 different embodiments of the partition and
  • Fig. 7 shows a section through the partition in a cylindrical rounded shape for installation as a combustion chamber in a boiler housing.

Da die Trennwand sowohl als Feuerraumumschließung als auch in Form von mehr oder weniger durchmesserkleinen Heizgaszugrohren verwendet werden kann, und hier nur die besondere Zwickelaus­bildung von Interesse ist, ist ein Heizkessel, der mit einer solchen Trennwand ausgestattet wird, nicht besonders darge­stellt, zumal diesbezüglich die unterschiedlichsten Heizkesselkonstruktionen, die dafür infragekommen, hinlänglich bekannt sind. Die Wasserseite einer derartigen Trennwand ist in Fig. 1 mit W und die Gasseite mit G bezeichnet. Der Blech­zuschnitt 12, der mit den Rippenfaltungen 8, wie dargestellt, versehen ist, sitzt dabei wärmeleitend verbunden auf der Feu­erraumwand 9. Bei der Herstellung der Rippenfaltungen 8 ist es dabei nicht möglich, die Ausbildungen von Hohlraumzwickeln 1 im Fußbereich 13 zu vermeiden, was zwangsläufig damit verbun­den ist, daß die Wandungsteile 3, wie in Fig. 1 angedeutet, nicht bzw. nur in sehr beschränktem Maße an der Wärmeübertra­gung teilnehmen können, die im wesentlichen nur über die senk­recht schraffierten Bereiche erfolgen kann. Da in der Regel eine Trennwand eine Vielzahl solcher Rippenfaltungen 8 auf­weist, liegt eine entsprechende Anzahl von Hohlraumzwickeln 1 vor, deren Flächen sich in nicht unbeträchtlichem Umfange zu einer Gesamtfläche aufaddieren, die am direkten Wärmeübergang nicht unmittelbar beteiligt ist. Besonders kritisch wird dies, wenn, wie in Fig. 2 angedeutet, eine Trennkammerwand 14, die die einzelnen Heizgaszüge 15 nach oben begrenzt, ebenfalls in direktem wärmeleitenden Kontakt mit den Rippenfaltungen 8 steht und durch die, wie vorerwähnt, eine zusätzliche Wärme­menge in die Rippenfaltungen 8 eingeleitet wird. Aus diesem Grunde sind die Hohlraumzwickel 1 mit einem wärmeleitenden Ma­ terial ausgefüllt, das den Hohlraum 2 mindestens teilsweise ausfüllt und mindestens teilweise mit den den Hohlraum 2 be­grenzenden Wandungsteilen 3 wärmeleitend in Kontakt stehend ausgebildet ist.Since the partition wall can be used both as a firebox enclosure and in the form of more or less small heating gas pipes, and only the special gusset design is of interest, a boiler that is equipped with such a partition wall is not particularly shown, especially since the most varied Boiler constructions that are suitable for this are well known. The water side of such a partition is designated W in FIG. 1 and the gas side G. The sheet metal blank 12, which is provided with the rib folds 8, as shown, is connected in a heat-conducting manner on the combustion chamber wall 9. When producing the rib folds 8, it is not possible to avoid the formation of hollow gussets 1 in the foot region 13, which is inevitable is connected to the fact that the wall parts 3, as indicated in FIG. 1, cannot or only to a very limited extent participate in the heat transfer, which can essentially only take place via the vertically hatched areas. Since, as a rule, a partition wall has a large number of such rib folds 8, there is a corresponding number of hollow gussets 1, the areas of which add up to a total area, which is not inconsiderable to an extent, which is not directly involved in the direct heat transfer. This becomes particularly critical if, as indicated in FIG. 2, a separating chamber wall 14, which delimits the individual heating gas flues 15 upwards, is also in direct heat-conducting contact with the rib folds 8 and, as mentioned above, results in an additional amount of heat in the rib folds 8 is initiated. For this reason, the cavity gusset 1 with a thermally conductive Ma filled out material that at least partially fills the cavity 2 and is at least partially thermally conductive in contact with the wall parts 3 delimiting the cavity 2.

Gemäß Fig. 2 ist das wärmeleitende Material in Form von Füll­profilen 4 ausgebildet, die im Querschnitt zumindest angenä­hert dem Zwickelquerschnitt angepaßt sind. In Fig. 2 ist dabei das Füllprofil 4 in seiner einfachsten Ausführungsform darge­stellt, d.h., mit einem in etwa angepaßten Dreiecksquer­schnitt.2, the heat-conducting material is in the form of filling profiles 4, which are at least approximately matched in cross section to the gusset cross section. In Fig. 2 the filling profile 4 is shown in its simplest embodiment, i.e. with an approximately adapted triangular cross section.

Beim Ausführungsbeispiel gemäß Fig. 3, bei dem die Feu­erraumwand aus Strangpreßprofilen 5 gebildet ist, ist das wär­meleitende Material in Form von dem Zwickelquerschnitt zumin­dest angenähert entsprechenden, am Strangpreßprofil mit ausge­formten Längsrippen 6 ausgebildet. Mehrere solche Strang­preßprofile 5 werden dann durch Verschweißung zu einem zy­lindrischen Körper zusammengesetzt, der die Feuerraumwand bil­det. In diesen Körper wird dann der mit den Rippenfaltungen 8 versehene und ebenfalls zylindrische Blechzuschnitt 12 mit ge­eigneten Hilfswerkzeugen eingepreßt.In the embodiment according to FIG. 3, in which the combustion chamber wall is formed from extruded profiles 5, the heat-conducting material in the form of the gusset cross-section is at least approximately corresponding to the extruded profile with shaped longitudinal ribs 6. Several such extruded profiles 5 are then assembled by welding to form a cylindrical body which forms the combustion chamber wall. The sheet metal blank 12, which is provided with the rib folds 8 and is also cylindrical, is then pressed into this body using suitable auxiliary tools.

Beim Ausführungsbeispiel gemäß Fig. 4 ist ebenfalls kein zu­sätzliches wärmeleitendes Material erforderlich, denn hierbei ist die Trennwand derart ausgebildet, daß im Bereich 7 der feuerraumwandseitigen Hohlraumzwickel 1 jede Rippenfaltungen 8 die Feuerraumwand 9 in den Hohlraum 2 hinein, das wärmelei­tende Material bildend, an dem inneren Fußbereich der Rippen­faltungen 8 angeformt ausgebildet ist. Auch diese Ausbildung der Trennwand erfolgt mit anpreßdruckgeeigneten Hilfswerkzeu­gen.In the exemplary embodiment according to FIG. 4, no additional heat-conducting material is required either, because here the partition wall is designed such that in the area 7 of the cavity gusset 1 on the side of the combustion chamber wall each rib folds 8, the combustion chamber wall 9 into the cavity 2, forming the heat-conducting material, on the inside Base area of the rib folds 8 is formed integrally. This design of the partition is also carried out with auxiliary tools suitable for contact pressure.

Gemäß Fig. 5, 6 ist es aber auch möglich, das wärmeleitende Material in Form einer wärmeleitenden Füllmasse 10 in die Hohlräume 2 einzubringen, wobei, wie vorerwähnt, die offenen Enden der Hohlraumzwickel 1, falls dies die Füllmasse aufgrund ihrer Eigenschaften erfordert, mit einer Blende 11 verschlos­sen sein können.5, 6, it is also possible to introduce the thermally conductive material in the form of a thermally conductive filler 10 into the cavities 2, the open ones, as mentioned above Ends of the cavity gusset 1, if this is required by the properties of the filling compound, can be closed with an aperture 11.

Fig. 7 stellt der Vollständigkeit halber die zu einem zy­lindrischen Rohrzug gerundete Trennwand dar, wie sie entweder als Feuerraum oder entsprechend durchmesserreduziert und in erforderlicher Anzahl in ein wasserführendes Kessgelgehäuse eingesetzt wird.For the sake of completeness, FIG. 7 shows the partition wall rounded to a cylindrical tube train, as it is either used as a combustion chamber or reduced in diameter accordingly and inserted in a required number into a water-bearing boiler housing.

Claims (6)

1. Trennwand für Heizungskessel, nämlich Feuerraumwand oder Heizgaszugrohr, die die Wasserseite von der gasführenden Seite trennt und auf der gasseitig Wärmeübertragungsflä­chenvergrößerungen in Form von aus einem Blechzuschnitt gefalteten Längsrippen angeordnet sind, und der Blech­zuschnitt mit der Feuerraumwand wärmeleitend verbunden ist, wobei die Rippenfaltungen an ihren Fußbereichen mit der inneren Fläche der Feuerraumwand Hohlraumzwickel be­grenzen,
dadurch gekennzeichnet,
daß die Hohlraumzwickel (1) mit einem wärmeleitenden Mate­rial ausgefüllt sind, das den Hohlraum (2) mindestens teilsweise ausfüllt und mindestens teilsweise mit den den Hohlraum (2) begrenzenden Wandungsteilen (3) wärmeleitend in Kontakt stehend ausgebildet ist.
1. Partition wall for heating boilers, namely the combustion chamber wall or the heating gas draft tube, which separates the water side from the gas-carrying side and on the gas side of which heat transfer area enlargements are arranged in the form of longitudinal ribs folded from a sheet metal blank, and the sheet metal blank is thermally conductively connected to the combustion chamber wall, the rib folds on their Limit areas of the foot with the inner surface of the combustion chamber wall
characterized,
that the cavity gussets (1) are filled with a thermally conductive material which at least partially fills the cavity (2) and is at least partially thermally conductive in contact with the wall parts (3) delimiting the cavity (2).
2. Trennwand nach Anspruch 1,
dadurch gekennzeichnet,
daß das wärmeleitende Material in Form von Füllprofilen (4) ausgebildet ist, die im Querschnitt zumindest angenä­hert dem Zwickelquerschnitt angepaßt sind.
2. partition according to claim 1,
characterized,
that the heat-conducting material is in the form of filling profiles (4) which are at least approximately matched in cross section to the gusset cross section.
3. Trennwand nach Anspruch 1,
dadurch gekennzeichnet,
daß bei Ausbildung der Feuerraumwand aus Strang­preßprofilen (5) das wärmeleitende Material in Form von dem Zwickelquerschnitt zumindest angenähert entsprechen­den, am Strangpreßprofil mit angeformten Längsrippen (6) ausgebildet ist.
3. partition according to claim 1,
characterized,
that when the combustion chamber wall is formed from extruded profiles (5), the heat-conducting material in the form of the gusset cross-section is at least approximately corresponding to the extruded profile with integrally formed longitudinal ribs (6).
4. Trennwand nach Anspruch 1,
dadurch gekennzeichnet,
daß im Bereich (7) der feuerraumwandseitigen Hohlraum­zwickel (1) jeder Rippenfaltung (8) die Feuerraumwand in den Hohlraum (2) hinein, das wärmeleitende Material bil­dend, an den inneren Fußbereich der Rippenfaltungen (8) angeformt ausgebildet ist.
4. partition according to claim 1,
characterized,
that in the region (7) of the cavity-side gusset (1) of each rib fold (8), the furnace wall into the cavity (2), forming the heat-conducting material, is formed integrally with the inner foot region of the rib folds (8).
5. Trennwand nach Anspruch 1,
dadurch gekennzeichnet,
daß das wärmeleitende Material in Form einer wär­meleitenden Füllmasse (10) im Hohlraum (2) angeordnet ist.
5. partition according to claim 1,
characterized,
that the thermally conductive material is arranged in the form of a thermally conductive filler (10) in the cavity (2).
6. Trennwand nach Anspruch 5,
dadurch gekennzeichnet,
daß die offenen Enden der Hohlraumzwickel (1) mit einer Blende (11) verschlossen sind.
6. partition according to claim 5,
characterized,
that the open ends of the cavity gusset (1) are closed with an aperture (11).
EP89105817A 1988-06-04 1989-04-03 Partition wall for a boiler Expired - Lifetime EP0345426B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89105817T ATE80938T1 (en) 1988-06-04 1989-04-03 PARTITION FOR BOILER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3819071 1988-06-04
DE3819071A DE3819071C1 (en) 1988-06-04 1988-06-04

Publications (2)

Publication Number Publication Date
EP0345426A1 true EP0345426A1 (en) 1989-12-13
EP0345426B1 EP0345426B1 (en) 1992-09-23

Family

ID=6355873

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89105817A Expired - Lifetime EP0345426B1 (en) 1988-06-04 1989-04-03 Partition wall for a boiler

Country Status (4)

Country Link
EP (1) EP0345426B1 (en)
AT (1) ATE80938T1 (en)
DE (1) DE3819071C1 (en)
ES (1) ES2035403T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9311128U1 (en) * 1993-07-28 1993-09-02 Viesmann Hans Dr boiler
DE9309771U1 (en) * 1993-07-01 1993-08-26 Viessmann Werke Kg Hot gas flue

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE458680A (en) *
DE8531100U1 (en) * 1985-11-04 1987-10-29 Viessmann, Hans, Dr.H.C., 3559 Battenberg, De

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE458680A (en) *
DE8531100U1 (en) * 1985-11-04 1987-10-29 Viessmann, Hans, Dr.H.C., 3559 Battenberg, De

Also Published As

Publication number Publication date
DE3819071C1 (en) 1989-07-13
ATE80938T1 (en) 1992-10-15
ES2035403T3 (en) 1993-04-16
EP0345426B1 (en) 1992-09-23

Similar Documents

Publication Publication Date Title
DE3917173C2 (en) Process for the production of a heat exchanger collector
DE3317162A1 (en) GAS HEATED OR OIL HEATED BOILER FOR THE PRODUCTION OF HOT WATER, HOT WATER OR STEAM
EP1108963B1 (en) Combustion gas heat exchanger
DD150105A5 (en) TWO CHAMBER BOILER
EP0345426A1 (en) Partition wall for a boiler
DE4232880A1 (en) Fossil-fuelled steam-generator - has tubes forming flue walls joined together gas-tight at bottom and leaving intervening gaps further up
DE3604842A1 (en) Heating boiler
EP0281125B1 (en) Section boiler
DE2126226C3 (en) Heat exchanger
DE3029298C2 (en) Space heater for small rooms
DE3205121C2 (en) Heating boiler
DE2104183C3 (en) Heat transfer device
EP0467250A1 (en) Flat heating gas draft tube
EP0387584B1 (en) Heating gas draft tube
EP0296276A2 (en) Boiler
EP0031571B1 (en) Boiler
DE3535341A1 (en) BOILER FOR LIQUID OR GASEOUS FUELS
DE3229757C2 (en) Profile tube for heat exchangers, in particular for space heaters
DE3334894A1 (en) Heating gas flue pipes
DE3108452C2 (en) Oil / gas boilers
DE2759448C2 (en) Flue gas heated air heater
DE19804267A1 (en) Large water boiler for creating steam and/or hot water
EP0345683A2 (en) Heating boiler for combustion of fluid or gaseous fuels
AT398350B (en) FLAT RADIATORS AND METHOD FOR THEIR PRODUCTION
DE7909513U1 (en) TWO-CHAMBER BOILER FOR BURNER AND SOLID FUEL BURNER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19900124

17Q First examination report despatched

Effective date: 19910115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 80938

Country of ref document: AT

Date of ref document: 19921015

Kind code of ref document: T

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930106

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2035403

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990331

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990415

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990416

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990421

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990429

Year of fee payment: 11

Ref country code: FR

Payment date: 19990429

Year of fee payment: 11

Ref country code: AT

Payment date: 19990429

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000403

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

BERE Be: lapsed

Owner name: VIESSMANN HANS

Effective date: 20000430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000403

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001229

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20001101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050403