EP0345205B1 - Procédé pour tremper des tubes d'acier - Google Patents

Procédé pour tremper des tubes d'acier Download PDF

Info

Publication number
EP0345205B1
EP0345205B1 EP89730122A EP89730122A EP0345205B1 EP 0345205 B1 EP0345205 B1 EP 0345205B1 EP 89730122 A EP89730122 A EP 89730122A EP 89730122 A EP89730122 A EP 89730122A EP 0345205 B1 EP0345205 B1 EP 0345205B1
Authority
EP
European Patent Office
Prior art keywords
hollow body
cooling
bath
process according
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89730122A
Other languages
German (de)
English (en)
Other versions
EP0345205A1 (fr
Inventor
Wolfgang Dipl.-Ing. Hengstenberg
Wilhelm Lüdecke
Christoph Dr. Ing. Prasser
Ingo Dr. Ing. Von Hagen
Klaus Dr. Ing. Prochaska
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19883818878 external-priority patent/DE3818878A1/de
Application filed by Mannesmann AG filed Critical Mannesmann AG
Priority to AT89730122T priority Critical patent/ATE71153T1/de
Publication of EP0345205A1 publication Critical patent/EP0345205A1/fr
Application granted granted Critical
Publication of EP0345205B1 publication Critical patent/EP0345205B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • C21D1/64Quenching devices for bath quenching with circulating liquids

Definitions

  • the invention relates to a method for hardening a cylindrical hollow body made of steel according to the preamble of patent claim 1.
  • the immersion depth of a container closed on both sides depends on the extent to which its ends have to be cooled
  • the practical immersion depth for pipes ie for hollow bodies that are open at the ends, depends on how uniform the material properties should be in the longitudinal direction of the pipe.
  • the uniformity of the cooling on the outside of the tube does not depend on the immersion depth. This is different, however, when cooling the inside of the tube, since the coolant flowing in at the ends is exposed its way to the center is heated so that the cooling effect weakens towards the center. However, with increasing immersion depth, this effect becomes less pronounced.
  • the cooling effect on the inside is sufficiently uniform over the entire length of the tube, even for tubes with a length of 60 times the diameter, in order to achieve continuous martensitic hardening, provided the wall thickness is not too great (e.g. for one Tempering steel 34 CrMo 4 smaller than approx. 28 mm). For this reason, correspondingly large immersion depths can be regarded as advantageous for achieving uniform properties.
  • a complete immersion of a pipe to be cooled should be avoided, however, since vapor bubbles form inside the pipe, which can escape only with difficulty when immersed and can lead to different cooling windings.
  • a method for hardening thick-walled, large-format tubular steel tubular bodies is known from US-A-3695598.
  • the hollow body lying horizontally with its longitudinal axis is immersed with a part of its surface in a coolant bath.
  • the part protruding from the coolant bath is heated to approximately 700 ° C. by inductive heating, in which a low-frequency inductor is arranged on the inner and outer surface of the hollow body. Further heating up to about 900 ° C takes place by a second inductor, which is operated at high frequency, only to a certain depth of penetration.
  • the hollow body is rotated slowly and slowly during the treatment, so that the heated parts are immersed in the coolant bath and cooled rapidly. Part of the hollow body is thus constantly cooled while another part is being heated. By repeating heating and cooling several times, i.e. by repeated turning around the longitudinal axis, the treated hollow bodies are to obtain significantly improved mechanical properties.
  • This method is not comparable to rotary diving according to DE-PS 3721685, in particular because initially not the entire hollow body, i.e. its length, its wall thickness and its circumference, is heated to the austenitizing temperature and only then is it accelerated overall, but rather heating and cooling in each case zone by zone and to a certain depth in the hollow body wall in several heating / cooling cycles.
  • the object of the invention is to provide a method and a device for its implementation, with which the cooling of hollow bodies during rotary diving can be significantly intensified and more evened out.
  • the solution according to the invention provides for a swirling of the coolant below the rotating hollow body to be cooled (eg pipe).
  • the swirling which could also be achieved, for example, by circulating pumps, is expediently brought about by introducing compressed air, for example with the aid of a nozzle tube arranged below the hollow body.
  • This nozzle tube is located, for example, at the bottom of the coolant tank and runs parallel to the longitudinal axis of the hollow body to be cooled.
  • the vapor layer (film evaporation) on the surface of the hollow body which occurs in the first cooling phase at a high temperature level is destroyed and in the second cooling phase the resulting vapor bubbles (bubble evaporation) are detached from the surface more quickly.
  • the cooling effect of the coolant is significantly increased.
  • the vapor layer collapses and the vapor bubbles detach at low relative speeds between the cooling medium and the surface of the hollow body (e.g. pipe or container) Depends in particular on the nature of this surface (eg roughness), an increase in this relative speed due to the swirling in the case of unevenly formed surfaces has the effect of making the cooling effect on the surface more uniform.
  • the intensified cooling effect leads to a considerable reduction in cooling times, that is to say, a greater deterrent. This is achieved with extremely simple means (e.g. compressed air introduction). This means that the application area of existing rotary immersion systems can be expanded significantly without great effort. Not only can hollow bodies with thicker walls than previously be quenched, but it is also possible to successfully quench pipes or containers made of steel materials with low contents of alloy elements with the same wall thickness.
  • the cooling effect can be reduced when the martensite start temperature is reached by simply switching off the compressed air supply.
  • more gentle cooling can be set if necessary by increasing the speed of the hollow body to be cooled.
  • the reduction in the immersion depth of the hollow body also results in a reduction in the cooling intensity; however, the risk increases that hollow bodies that are open on one or both sides cool faster on the inside at the open ends.
  • One way of eliminating these different cooling effects on the inside of the hollow body is fundamentally possible by preventing the coolant from entering the interior of the hollow body from the outset. This can be done by temporarily fitting suitable caps on the open end faces of the hollow body. However, such a measure requires considerable handling and apparatus expenditure and therefore appears to be less desirable.
  • the internal cooling which is reinforced at the open ends by the inflowing coolant is at least approximately compensated for by a corresponding weakening of the external cooling in this area.
  • This is ensured by the swirling of the coolant bath in these end areas e.g. due to local reduction in the pressure of the compressed air supplied for swirling or the coolant supplied with increased pressure (e.g. pressurized water).
  • This enables even microstructure formation (bainite) to be achieved with intercepting cooling even with sensitive materials.
  • Pieces of steel tube of 178 mm in diameter, 14.5 mm in wall thickness and 1500 mm in length were uniformly heated to 980 ° C. in an oven and inserted at a starting temperature of 960 ° C. in a rotary immersion system with a water bath.
  • the rotary immersion device could be lowered so that the pipe sections could be lifted out of the water bath after predetermined quenching times in order to be able to determine the pipe compensation temperature.
  • the immersion depth was 90% of the pipe diameter and the speed of the pipe was 80 rpm.
  • FIGS. 5 and 6 The effectiveness of the invention in a procedure according to claim 6 can be seen in the measurement results in FIGS. 5 and 6, which were determined on another steel tube which was cooled on a system which is shown schematically in FIG.
  • the material and pipe dimensions corresponded to those of the comparative test according to FIGS. 2 and 3.
  • FIG. 4 a large number of arrows indicate that the compressed air supply for swirling the coolant bath below the immersed pipe 1 in the area of the pipe start 1a and the pipe end 1b into individual nozzle strips 2a and 2b 2b is divided, which can be subjected to different pressures.
  • 8 individual nozzle strips 2a and 2b each with an individual length of 350 mm have been provided on the two pipe ends 1a, 1b.
  • a continuous nozzle strip 2 is arranged in the central region of the tube 1. In principle, this makes it possible to cool a partial length of approximately 3 m each at the two pipe ends to different degrees compared to the central region.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Claims (10)

1. Procédé pour durcir un corps creux cylindrique en acier dans le cadre d'un traitement thermique, le corps creux réchauffé en totalité à la température d'austénitisation étant refroidi dans un bain de fluide de refroidissement, en particulier un bain d'eau, par immersion tournante, de façon que son axe longitudinal soit orienté parallèlement à la surface du bain de fluide de refroidissement, qu'il ne plonge que par une partie de sa surface dans le bain de fluide de refroidissement et que, pendant ce refroidissement, il soit tourné plusieurs fois autour de son axe longitudinal, caractérisé en ce que le bain de fluide de refroidissement, au-dessous du corps creux, est brassé violemment, au moins temporairement, par du gaz comprimé, en particulier de l'air comprimé.
2. Procédé selon la revendication 1, caractérisé en ce que le brassage violent est terminé lorsque l'on atteint la température de démarrage de la martensite.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la profondeur d'immersion du corps creux est diminuée lorsque l'on atteint la température de démarrage de la martensite.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la vitesse de rotation du corps creux est augmentée après avoir atteint la température de démarrage de la martensite.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que, lors du refroidissement du corps creux ouvert au moins sur une face frontale, le brassage violent a lieu, à chaque fois, moins fortement dans la zone de l'extrémité ou des extrémités à face frontale ouverte que dans la zone médiane et, le cas échéant, dans la zone d'extrémité à face frontale fermée du corps creux, la réduction du brassage violent étant dosée de sorte que la dissipation de chaleur externe plus faible qui lui est liée corresponde à peu près au refroidissement interne plus fort dans ces zones d'extrémité.
6. Procédé selon la revendication 5, caractérisé en ce que le brassage violent est effectué par amenée d'air comprimé avec des zones de pressions différentes.
7. Procédé selon la revendication 5 ou 6, caractérisé en ce que le brassage violent n'est effectué temporairement que dans la zone médiane et, le cas échéant, dans la zone de la face frontale fermée.
8. Dispositif pour la mise en oeuvre du procédé selon la revendication 1, comportant un récipient pour la réception d'un bain de fluide de refroidissement et un dispositif pour faire tourner dans le bain de fluide de refroidissement des corps creux cylindriques agencés horizontalement, un système de buses étant agencé au-dessous de l'axe imaginaire du corps creux cylindrique et au-dessous de la surface prévue du bain de fluide de refroidissement, caractérisé en ce que les buses (2, 2a, 2b) agencées individuellement ou réunies par zone sont alimentées en gaz comprimé à des pressions de service différentes l'une de l'autre.
9. Dispositif selon la revendication 8, caractérisé en ce que le système de buses est réalisé en tant que tronçon de tube agencé horizontalement, dont la paroi, dans la zone de sa génératrice la plus supérieure, présente une pluralité de perçages.
10. Dispositif selon la revendication 8, caractérisé en ce que le dispositif de mise en rotation peut être réglé à différentes hauteurs par rapport à la surface du bain.
EP89730122A 1988-06-01 1989-05-16 Procédé pour tremper des tubes d'acier Expired - Lifetime EP0345205B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89730122T ATE71153T1 (de) 1988-06-01 1989-05-16 Verfahren zum haerten eines zylindrischen hohlkoerpers aus stahl.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19883818878 DE3818878A1 (de) 1988-06-01 1988-06-01 Verfahren zum haerten eines zylindrischen hohlkoerpers aus stahl
DE3818878 1988-06-01
DE3900995 1989-01-11
DE3900995A DE3900995A1 (de) 1988-06-01 1989-01-11 Verfahren zum haerten eines zylindrischen hohlkoerpers

Publications (2)

Publication Number Publication Date
EP0345205A1 EP0345205A1 (fr) 1989-12-06
EP0345205B1 true EP0345205B1 (fr) 1992-01-02

Family

ID=25868756

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89730122A Expired - Lifetime EP0345205B1 (fr) 1988-06-01 1989-05-16 Procédé pour tremper des tubes d'acier

Country Status (4)

Country Link
EP (1) EP0345205B1 (fr)
JP (1) JPH0225520A (fr)
DE (2) DE3900995A1 (fr)
ES (1) ES2027828T3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838673C1 (de) * 1998-08-20 2000-04-20 Mannesmann Ag Verfahren zur Herstellung hochfester und hochzäher Stahlprofilrohre und Anlage zu dessen Durchführung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4111125C1 (en) * 1991-04-04 1992-11-12 Mannesmann Ag, 4000 Duesseldorf, De Method and appts. for accelerated cooling of long hollow components
DE10019306C1 (de) * 2000-04-19 2001-09-13 Vaw Mandl & Berger Gmbh Linz Verfahren und Vorrichtung zum gesteuerten Abschrecken von Leichtmetallstücken in einem Flüssigkeitsbad

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695598A (en) * 1970-05-06 1972-10-03 Akira Ujue Method and apparatus for quenching a tubular shaped structure
CA1234338A (fr) * 1982-02-08 1988-03-22 Frederick W. Kruppert Methode et installation de trempe de tuyaux en acier
DE3721665C1 (de) * 1987-06-26 1988-04-14 Mannesmann Ag Verfahren zum Haerten eines Hohlkoerpers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838673C1 (de) * 1998-08-20 2000-04-20 Mannesmann Ag Verfahren zur Herstellung hochfester und hochzäher Stahlprofilrohre und Anlage zu dessen Durchführung

Also Published As

Publication number Publication date
DE58900656D1 (de) 1992-02-13
ES2027828T3 (es) 1992-06-16
EP0345205A1 (fr) 1989-12-06
DE3900995A1 (de) 1990-07-12
JPH0225520A (ja) 1990-01-29

Similar Documents

Publication Publication Date Title
DE102015112573B4 (de) Vorrichtung und Verfahren zum Härten und Richten eines stangenförmigen Halbzeugs
EP0345205B1 (fr) Procédé pour tremper des tubes d'acier
DE2165020A1 (de) Verfahren und Vorrichtung zum kontinuierlichen Glühen strangförmigen Guts
DE3532196C2 (fr)
EP1943364B1 (fr) Procédé et installation pour la transformation à sec d une structure de matériau de produits semi-finis
AT504706B1 (de) Verfahren und vorrichtung zur wärmebehandlung von metallischen langprodukten
DE3641617A1 (de) Verfahren zum regeln von stranggiessbedingungen
DE2548116C3 (de) Vorrichtung zum Abschrecken eines erwärmten Metallrohres
DE2105886A1 (de) Verfahren und Vorrichtung zum Abschreckhärten von Rohren
DE3226236A1 (de) Vorrichtung zum abschrecken von roehren in mehrfachanordnung
DE2920995A1 (de) Vorrichtung zum abkuehlen von gewalzten metallerzeugnissen
EP0103705B1 (fr) Procédé de traitement thermique de pièces à usiner
EP0621344B1 (fr) Trempe flexible et adaptive
DE3809645C2 (fr)
DE1583338C3 (de) Verfahren und Vorrichtung zum Härten der Außenschale einer mit einer Bohrung versehenen Stahlwalze
DE2529272A1 (de) Verfahren und vorrichtung fuer die behandlung von walzdraht
DE3818878A1 (de) Verfahren zum haerten eines zylindrischen hohlkoerpers aus stahl
DE2815090C2 (de) Verfahren und Vorrichtung zur Herstellung von Walzdraht aus hartem Stahl
DE2605826A1 (de) Verfahren und vorrichtung zum patentieren von stahldraehten
DE2433844C3 (de) Vorrichtung zur gesteuerten Temperaturführung von im Durchlaufverfahren wärmezubehandelndem Material
DE2026586C3 (de) Verfahren zum Härten eines Turbinenläüfers oder einer Walze
DE1193974B (de) Verfahren und Vorrichtung zur Anwendung des gebrochenen Haertens auf das induktive Haerten mit Vorschub
DE2746961A1 (de) Vorrichtung und verfahren zur verguetung von warmgewalzten stahlstangen
DE2364495C2 (de) Verfahren zum Herstellen von Großbauteilen durch Lichtbogen- oder Plasmaformschweißen
DE4111125C1 (en) Method and appts. for accelerated cooling of long hollow components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT

17P Request for examination filed

Effective date: 19891024

17Q First examination report despatched

Effective date: 19900129

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT

REF Corresponds to:

Ref document number: 71153

Country of ref document: AT

Date of ref document: 19920115

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 58900656

Country of ref document: DE

Date of ref document: 19920213

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2027828

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930413

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930420

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930524

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940516

Ref country code: GB

Effective date: 19940516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940517

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940516

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990419

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080527

Year of fee payment: 20