EP0345182A1 - Procédé et appareillage de fabrication d'oléfines et de dioléfines par réaction de vapocraquage d'hydrocarbures contrôlée à l'aide d'un système comprenant un spectrophotomètre infrarouge - Google Patents

Procédé et appareillage de fabrication d'oléfines et de dioléfines par réaction de vapocraquage d'hydrocarbures contrôlée à l'aide d'un système comprenant un spectrophotomètre infrarouge Download PDF

Info

Publication number
EP0345182A1
EP0345182A1 EP89430014A EP89430014A EP0345182A1 EP 0345182 A1 EP0345182 A1 EP 0345182A1 EP 89430014 A EP89430014 A EP 89430014A EP 89430014 A EP89430014 A EP 89430014A EP 0345182 A1 EP0345182 A1 EP 0345182A1
Authority
EP
European Patent Office
Prior art keywords
cracking
reaction
hydrocarbons
mixture
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89430014A
Other languages
German (de)
English (en)
Other versions
EP0345182B1 (fr
Inventor
André Martens
Pierre Crouzet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compass Point 79-87 Kingston Road Staines Middl
ineos Europe Ltdtour Neptune La D?fense 1 20 Plac
Naphtachimie SA
PetroIneos Europe Ltd
Original Assignee
Naphtachimie SA
BP Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naphtachimie SA, BP Chemicals Ltd filed Critical Naphtachimie SA
Priority to AT89430014T priority Critical patent/ATE69254T1/de
Publication of EP0345182A1 publication Critical patent/EP0345182A1/fr
Application granted granted Critical
Publication of EP0345182B1 publication Critical patent/EP0345182B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • C10G9/206Tube furnaces controlling or regulating the tube furnaces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S208/00Mineral oils: processes and products
    • Y10S208/01Automatic control

Definitions

  • the present invention relates to a process and an apparatus for cracking hydrocarbons in the presence of water vapor, intended for manufacturing olefins and diolefins, in particular ethylene and propylene. It consists in particular in using an infrared spectrophotometer making it possible to analyze the hydrocarbons supplying a cracking furnace, and in controlling as a function of this analysis in particular the yields of olefins and of diolefins.
  • the cracking reaction conditions are chosen which make it possible to manufacture at least one product or a group of products, such as an olefin, a diolefin or a steam cracking gasoline, with a desired yield and fixed in advance.
  • yield of a product of the cracking reaction is understood to mean the weight ratio of the quantity produced of this product to the quantity used of hydrocarbons.
  • a cracking furnace is supplied with a mixture of hydrocarbons, the nature and composition of which can frequently vary over time, depending on the origin of these hydrocarbons.
  • a process and an apparatus for steam cracking of hydrocarbons have now been found which make it possible to avoid the drawbacks mentioned above and to manufacture olefins and diolefins with yields which can be fixed in advance at desired values.
  • One of the aims of the present invention is to control the productivity of one or more products of a hydrocarbon steam cracking reaction directly by means of the near infrared absorbance measurements of the mixture of hydrocarbons feeding a tube. cracked.
  • One of the advantages of the present process is to be able to control the steam cracking reaction while avoiding seeking to know and highlight the physical and / or chemical characteristics of the mixture of hydrocarbons to be cracked.
  • all the digital data obtained by absorbance measurements of the mixture of hydrocarbons at selected wavelengths in the near infrared can be used for information for monitoring the steam cracking reaction, with a view to '' obtain a desired productivity P in one or more products of this reaction.
  • the present invention uses an infrared spectrophotometer which, during the cracking reaction, allows a series of measurements to be carried out in an extremely short time, the results of which make it possible to directly determine the reaction conditions necessary for the manufacture of olefins, diolefins and other reaction products with desired yields.
  • the present invention therefore relates to a process for steam cracking a mixture of hydrocarbons consisting in passing steam and the mixture of hydrocarbons through at least one heated cracking tube, a process characterized in that the process is monitored (a) by analyzing the mixture of hydrocarbons feeding the cracking tube using an infrared spectrophotometer to determine n absorbances at n wavelengths ranging from 0.8 to 2.6 microns, (b ) using the results of n absorbances to determine at least one value V of one of the conditions of the steam cracking reaction, and (c) by operating the steam cracking at the value or values V thus determined, so as to obtain a value P desired and fixed in advance of the productivity in one or more products of the steam cracking reaction.
  • One of the essential characteristics of the present invention is to perform, during the steam cracking reaction, absorbance measurements on the mixture of hydrocarbons feeding the cracking tube using an infrared spectrophotometer. red operating according to the reflection technique, or the transmission technique, or even a combination of these two techniques.
  • the absorbance is generally defined, according to BEER-LAMBERT's law, as being the decimal logarithm of the ratio between the intensity Io of the radiation emitted by the infrared spectrophotometer and the intensity of the radiation transmitted and / or reflected by the mixture. of hydrocarbons.
  • the absorbance measurements can be carried out at the following 5 wavelengths, expressed in microns, or at substantially similar wavelengths: 2,278 -2,308 - 2,398 - 2,439 and 2,475.
  • the wavelengths to be used in the process in order to obtain a desired productivity P in one or more products of a steam cracking reaction can be chosen by statistical methods using factor analyzes and multilinear regressions, during a calibration procedure.
  • the latter may notably consist in varying the nature of the mixture of hydrocarbons to be cracked and the reaction conditions, according to an orthogonal experimental design, carried out in a cracking tube of an industrial production unit or in a cracking of laboratory, in particular of a micropyrolyser, and to choose the wavelengths in the near infrared, so that one can determine with an optimal precision and sufficient to carry out the process a correlative relation linking the productivity P to n results Ri of the n absorbance measurements and at the V values of the reaction conditions.
  • the wavelengths generally chosen are those of which the amplitude of absorbance varies greatly during the calibration procedure.
  • Another essential characteristic of the present invention is to fix, in an extremely short time, as a function of the absorbance measurements, at least one of the conditions of the cracking reaction so that the productivity of one or more reaction products is equal to a desired value P.
  • the conditions of the steam cracking reaction are those usually known for this type of reaction and can in particular be chosen from the flow rates of water vapor and of a mixture of hydrocarbons supplying the cracking tube, the temperature of cracking at any point of this tube, in particular at the entry or at the exit of the radiation area of the oven, the cracking pressure at any point of this tube, especially at the exit of the radiation area of the oven , as well as the weight ratio between the quantity used of the mixture of hydrocarbons and that of water vapor.
  • one of the objects of the present invention is to control the steam cracking process by fixing in advance at a desired value P the productivity of one or more products resulting from the cracking reaction.
  • the productivity can be fixed in an olefin such as ethylene, propylene or butene-1, the productivity in a diolefin such as butadiene, or also the productivity in several reaction products such as "gasoline". steam cracking ".
  • the productivity of one or more reaction products can be defined by the production rate, corresponding to the quantity produced of the product (s) per unit of time.
  • Productivity can also be defined as the yield of the cracking reaction in one or more products.
  • this ratio is an indication of the selectivity of the cracking reaction between two products or two groups of products.
  • the method of the present invention consists in particular in determining the value V of at least one of the conditions of the steam cracking reaction directly as a function of the n results R i from each series of the n absorbance measurements, as well as as a function of 'at least one desired value P of a productivity.
  • V the value of at least one of the conditions of the steam cracking reaction directly as a function of the n results R i from each series of the n absorbance measurements, as well as as a function of 'at least one desired value P of a productivity.
  • the value V of one of the conditions of the steam cracking reaction can advantageously be determined by means of a correlative relation linking the condition of the reaction to several variables. These variables are constituted in particular by the n results Ri of the n absorbance measurements, by at least one desired value P of the productivity and possibly by one or more other conditions of the reaction.
  • the correlative relationship can be established beforehand by means of a multivariate regression carried out on the basis of the productivity values of products obtained under different cracking conditions for various mixtures of hydrocarbons. In particular, it can be a function linear of the n results R i of the n absorbance measurements, of a value P of at least one productivity and possibly of a value V of at least one of the conditions of the reaction.
  • the correlative relation can be, for example, of the general form: form in which P represents a value of the productivity in one of the products of the reaction, R i represents one of the values of the n absorbance measurements with i varying from 1 to n, V m represents one of the values of the conditions of the reaction, m represents the number of controlled reaction conditions and a, b i and c m represent numerical coefficients, negative or positive, whole or decimal.
  • the correlative relation can also be an algebraic function of these same variables and can contain products or quotients of these variables, for example, in one of the following general forms: forms in which the variables and the parameters have the same definitions as before, V 1 represents one of the values V m of the conditions of the reaction, k ij represents a numerical coefficient, negative or positive, integer or decimal, R j represents a values of the n absorbance measures with j being different from i and varying from 1 to n, and P and P 'represent values of the productivity of two reaction products.
  • This correlative relationship depends on the type of infrared spectrophotometer used, the conditions under which it is used, the n of the wavelengths chosen, as well as the product or products of the cracking reaction whose productivity is to be fixed in advance.
  • an appropriate value V must be determined for each of these conditions, in particular by means of correlative relationships as defined previously.
  • the determination of the value V can advantageously be carried out by means of a computer.
  • the latter has the function of calculating the value V from the variables on which it depends, in particular the n results R, the n absorbance measurements and at least one desired value P.
  • the computer is connected directly to the infrared spectrophotometer , the acquisition of n results R; by the calculator is practically instantaneous, and the complete determination of the value V can take a few minutes, generally less than 2 minutes.
  • the process is controlled by operating and conducting the reaction to this value by means known in themselves, in particular using a computer. preferably linked to regulation means capable of maintaining the condition at the determined value V, until the moment when a new series of n absorbance measurements is carried out. If the nature and / or the composition of the mixture of hydrocarbons to be cracked have changed in the interval between two successive series of n absorbance measurements, a new value V will then be determined from the last series of measurements carried out and the condition of the cracking reaction will be immediately corrected and fixed at this new value, in order to maintain the productivity in one or more reaction products at the desired value P, fixed in advance.
  • One of the main advantages of the process of the present invention is that it is able to maintain the productivity of one or more products of the cracking reaction at a constant value, whatever the fluctuations in the nature or the composition of the mixture of hydrocarbons. feeding the cracking tube.
  • the corrections of the conditions of the cracking reaction are made in an extremely short time, which makes it possible to avoid any drift, even momentary, of the reaction , towards the production of undesirable products or products obtained with unsatisfactory productivities.
  • This result is obtained in particular thanks to the fact that the process does not comprise any stage consisting in the research or the determination of the physical and / or chemical characteristics of the mixture of hydrocarbons to be cracked.
  • the results of the absorbance measurements can be directly used in the form of digital data in the correlative relations linking these to the desired productivity P and to the values V of the conditions of the steam cracking reaction. It is particularly surprising to note that it is now possible to control a steam cracking process at a given level of productivity and that it can tolerate large variations in the quality of the hydrocarbons supplying the cracking tube, for example also hydrocarbons liquids containing approximately from 5 to 15 carbon atoms, such as naphtha, light gasolines and diesel oil, than gaseous hydrocarbons such as alkanes containing from 2 to 4 carbon atoms, optionally in admixture with alkenes containing 2 to 6 carbon atoms, or with methane and alkanes comprising from 5 to 6 carbon atoms, in particular natural gas, liquefied petroleum gas, also called LPG, ethane, propane, butane, or light by-products from the steam cracking of liquid hydrocarbons.
  • the conditions of the cracking reaction can be instantly corrected and set to V values within known limits.
  • the temperature of the reaction mixture at the entrance to the radiation zone of the furnace can be around 400 ° C. to 700 ° C.
  • the temperature of the reaction mixture at the exit from this zone can be around 720 ° C at 800 ° C
  • the pressure in the cracking tube at the outlet of this zone can be from 120 kPa to 240 kPa
  • the weight ratio of the quantity of hydrocarbon mixture used to that of water vapor can be from 1 to 6 approximately.
  • the temperature of the reaction mixture circulating in the cracking tube can increase from the entry to the exit from the radiation zone of the furnace according to a profile such as that described in European patent applications No. 252 355 and n ° 252 356.
  • the present invention also relates to an apparatus specially designed to be able to implement the method described above.
  • the apparatus comprises, on the one hand, a hydrocarbon steam cracking oven essentially comprising a thermal enclosure provided with heating means and crossed by at least one cracking tube, and, on the other hand, an infrared spectrophotometer capable of operating in at least one zone of the near infrared range ranging from approximately 0.8 to 2.6 microns and intended for carrying out absorbance measurements of the mixture of hydrocarbons supplying the cracking tube.
  • the heating means of the thermal enclosure of the cracking furnace are generally constituted by burners whose arrangement in the enclosure, the size and the adjustment can be chosen or adapted at will, so that the thermal power applied along of the cracking tube is distributed in a more or less homogeneous manner, in particular as described in European patent applications No. 252 355 and No. 252 356.
  • the cracking tube can be arranged horizontally or vertically through the thermal enclosure, especially in the radiation area of the oven. It can have a reaction volume which is constant or which varies between the first and second halves of the length of the cracking tube, from the entry to the exit from the radiation zone of the furnace, as described in the applications for European patent No. 252 355 and No. 252 356.
  • the absorbance measurements of the mixture of hydrocarbons feeding the cracking tube are carried out using the infrared spectrophotometer described above.
  • the latter can be of the Fourier transform infrared spectrophotometer type. It can also be advantageously combined with a calculator intended to determine the value V of at least one of the conditions of the cracking reaction, by virtue of a calculation program containing at least one of the correlative relations linking this condition to variables on which it depends.
  • the steam cracker oven can also be combined with a process computer and control systems which allow these conditions to be fixed and automatically adjusted to the determined V values.
  • the process computer can also include the calculator program for calculating the value V.
  • the infrared spectrophotometer may be placed near the supply line of the furnace with a mixture of hydrocarbons or of the enclosure for storing this mixture, or else at a distance more or less distant from these. It can be equipped with information transmission means such as optical fibers adapted to this particular type of analysis. In this case, these measurements are advantageously carried out directly in real time, that is to say online on the supply line of the furnace with a mixture of hydrocarbons, or on the enclosure for storing this mixture. It is also possible to install a system for taking samples of the mixture of hydrocarbons to be cracked, comprising either a manual device essentially consisting of an airlock provided with taps, or an automatic device controlled by a programmable automaton. This system can be, in this case, arranged on the supply line of the furnace with a mixture of hydrocarbons, or on the enclosure for storing this mixture.
  • the absorbance measurements can also be carried out in non-real time, that is to say in deferred time.
  • the present invention is particularly useful in industrial steam cracking installations having a considerable size and production capacity. Indeed, thanks to this process, any difference in productivity caused by fluctuations in the nature and composition of the mixture of hydrocarbons to be cracked is significantly reduced, if not eliminated, thus avoiding the manufacture of either undesirable products or of products obtained. with unsatisfactory productivity.
  • a steam cracking reaction of a naphtha is carried out in an oven essentially comprising a thermal radiation radiation enclosure, consisting of a rectangular parallelepiped having an internal length of 9.75 m, an internal width of 1.70 m and a height internal 4.85 m.
  • a thermal radiation radiation enclosure consisting of a rectangular parallelepiped having an internal length of 9.75 m, an internal width of 1.70 m and a height internal 4.85 m.
  • a cracking tube of refractory steel based on nickel and chromium having a total length of 80 m, an internal diameter of 108 mm and a thickness of 8 mm.
  • the cracking tube has the shape of a serpentine comprising 8 straight horizontal sections, of equal length each, connected to each other by elbows.
  • the oven's thermal radiation enclosure is fitted with burners arranged on the walls of the enclosure, in 5 horizontal rows, located at equal distance from each other. The thermal power of all of these burners is evenly distributed between these 5 rows.
  • the cracking tube is supplied, on the one hand, with water vapor at a constant flow rate of 900 kg / h and, on the other hand, with a naphtha of variable composition over time, at a constant flow rate of 2800 kg / h.
  • the composition of the naphtha used varies so that its weight content in paraffins increases from 72% to 68%, its weight content in naphthenic compounds from 20% to 23%, its weight content in aromatic compounds 8% at 9 0 / o, and its density from 0.713 to 0.719.
  • the pressure of the reaction mixture leaving the radiation zone of the furnace is approximately 165 kPa.
  • the cracking temperature T at the outlet of this zone is variable during this manufacture and is determined so that the yield of ethylene is constantly equal to 22%.
  • the cracking temperature at the entrance to the radiation zone of the oven initially close to 550 ° C., undergoes slight variations over time due to those of the exit temperature T.
  • the process computer is, in particular, provided with a program making it possible to calculate the value of the cracking temperature T at the exit from the radiation zone of the furnace as a function of the results Ri, R 2 , R 3 , R 4 and R 5 of the 5 absorbance measurements, of the ethylene yield, RE, desired and fixed in advance at 22%, by application of the following correlative relation: with T expressed in degrees Celsius.
  • the process computer immediately sets the cracking temperature at the exit from the radiation zone of the oven to this value.
  • the cracking reaction is carried out in an oven identical to that described in Example 1.
  • the cracking tube is supplied, on the one hand, with water vapor at a constant flow rate of 964 kg / h and, on the other hand, with a naphtha of variable composition over time, at a constant flow rate of 3000 kg / h.
  • the composition of the naphtha used varies so that its weight content in paraffins increases from 68% to 76%, its content by weight in naphthenic compounds increases from 23% to 19%, its content by weight in aramatic compounds goes from 9% to 5% and its density from 0.719 to 0.697.
  • the pressure of the reaction mixture leaving the radiation zone of the furnace is approximately 165 kPa.
  • the cracking temperature T at the outlet of this zone is variable during this manufacture and is determined so that the ratio between the yield of propylene and that of ethylene is constantly equal to 0.6.
  • the cracking temperature at the entrance to the radiation zone of the oven initially close to 550 ° C., undergoes slight variations over time due to those of the exit temperature T.
  • the process computer immediately sets the cracking temperature at the exit from the radiation zone of the oven to this value.
  • the cracking reaction is carried out in an oven identical to that described in Example 1.
  • the cracking tube is supplied with water vapor and with naphtha of variable composition over time.
  • the composition of the naphtha used varies so that its weight content in paraffins increases from 76% to 72%, its content by weight in naphthenic compounds from 19% to 20%, its content by weight in aromatic compounds from 5 % to 8% and its density from 0.697 to 0.713.
  • the pressure of the reaction mixture leaving the radiation zone of the furnace is approximately 165 kPa.
  • the cracking temperature T at the exit from the radiation zone of the furnace and the flow rate Q of supply of the naphtha tube are variable during this manufacture and are determined so that the production rates of ethylene and propylene are respectively and constantly equal to 0.640 T / h and 0.370 T / h.
  • the cracking temperature at the entrance to the radiation zone of the oven initially close to 550 ° C., undergoes slight variations over time due to those of the exit temperature T.
  • the water vapor supply rate varies over time so that the weight ratio of the quantity of hydrocarbon mixture used to that of water vapor is constantly 3.
  • the process computer immediately sets the cracking temperature at the outlet of the radiation zone of the furnace and the flow rate supply of naphtha to the cracking tube at these values.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un procédé de vapocraquage d'hydrocarbures dans un tube de craquage chauffé. En particulier, le procédé est contrôlé (a) en analysant le mélange d'hydrocarbures alimentant le tube de craquage à l'aide d'un spectrophotomètre infrarouge pour déterminer n absorbances à n longueurs d'ondes allant de 0,8 à 2,6 microns, (b) en utilisant les résultats des n absorbances pour déterminer au moins une valeur V d'une des conditions de la réaction de vapocraquage, et (c) en opérant le vapocraquage à la valeur ou aux valeurs V ainsi déterminées, de façon à obtenir une valeur P désirée et fixée par avance de la productivité en un ou plusieurs produits de la réaction de vapocraquage. L'invention concerne également un appareillage pour la mise en oeuvre de ce procédé.

Description

  • La présente invention se rapporte à un procédé et un appareillage de craquage d'hydrocarbures en présence de vapeur d'eau, destinés à fabriquer des oléfines et des dioléfines, en particulier de l'éthylène et du propylène. Elle consiste notamment à mettre en oeuvre un spectrophotomètre infrarouge permettant d'analyser les hydrocarbures alimentant un four de craquage, et à contrôler en fonction de cette analyse en particulier les rendements en oléfines et en dioléfines.
  • Il est connu de réaliser le craquage ou la pyrolyse d'hydrocarbures en présence de vapeur d'eau, encore appelé vapocraquage, en faisant passer un mélange d'hydrocarbures et de vapeur d'eau dans un tube de craquage disposé dans un four chauffé à haute température. Les hydrocarbures sont soumis à une réaction de craquage qui les transforme notamment (i) en une fraction hydrocarbonée gazeuse comprenant notamment des oléfines comportant de 2 à 6 atomes de carbone, telles que l'éthylène, le propylène et l'isobutène, et des dioléfines, telles que le butadiène et l'isoprène, (ii) en une fraction hydrocarbonée liquide, encore appelée "gasoline de vapocraquage", comprenant notamment des hydrocarbures comportant de 5 à 12 atomes de carbone, (iii) ainsi qu'en sous-produits indésirables, tels que le méthane.
  • Généralement, pour chaque type d'hydrocarbures à craquer, on choisit les conditions de la réaction de craquage qui permettent de fabriquer au moins un produit ou un groupe de produits, tel qu'une oléfine, une dioléfine ou une gasoline de vapocraquage, avec un rendement désiré et fixé par avance. On entend par rendement en un produit de la réaction de craquage, le rapport pondéral de la quantité fabriquée de ce produit à la quantité mise en oeuvre d'hydrocarbures. Cependant, il est courant d'observer qu'un four de craquage est alimenté en un mélange d'hydrocarbures dont la nature et la composition peuvent fréquemment varier au cours du temps, suivant l'origine de ces hydrocarbures. Il apparaît donc nécessaire de modifier les conditions de la réaction de craquage aussi souvent que la nature et la composition du mélange d'hydrocarbures changent, si l'on veut fabriquer au moins un produit ou un groupe de produits suivant un rendement désiré. Il en résulte que généralement on doit connaître et déterminer le plus fréquemment possible au cours de la réaction de craquage les caractéristiques des mélanges d'hydrocarbures à craquer. Cependant ces caractéristiques sont généralement déterminées par des mesures distinctes et spécifiques qui exigent pour chacune d'elles la mise en oeuvre d'un appareillage et d'une méthode analytique spécifiques, et qui demandent un temps relativement long. Aussi, lorsque la nature et la composition du mélange d'hydrocarbures varient au cours du temps, il en résulte que les conditions de la réaction de craquage sont modifiées avec un retard relativement important et qu'il n'est plus possible de maintenir les rendements souhaités à des valeurs fixées par avance. On comprend aisément l'importance de tels inconvénients, lorsqu'on connaît en outre la taille généralement considérable d'une installation industrielle de craquage d'hydrocarbures.
  • Il a été maintenant trouvé un procédé et un appareillage de vapocraquage d'hydrocarbures qui permettent d'éviter les inconvénients cités auparavant et de fabriquer des oléfines et des dioléfines avec des rendements pouvant être fixés par avance à des valeurs désirées. L'un des buts de la présente invention est de contrôler la productivité en un ou plusieurs produits d'une réaction de vapocraquage d'hydrocarbures directement à l'aide des mesures d'absorbance dans le proche infrarouge du mélange d'hydrocarbures alimentant un tube de craquage. L'un des avantages du présent procédé est de pouvoir contrôler la réaction de vapocraquage en évitant de chercher à connaître et à mettre en évidence les caractéristiques physiques et/ou chimiques du mélange d'hydrocarbures à craquer. Plus précisément, toutes les données numériques obtenues par les mesures d'absorbance du mélange d'hydrocarbures à des longueurs d'onde choisies dans le proche infrarouge peuvent être utilisées à titre d'information pour le contrôle de la réaction de vapocraquage, en vue d'obtenir une productivité désirée P en l'un ou plusieurs produits de cette réaction. En particulier, la présente invention met en oeuvre un spectrophotomètre infrarouge qui, pendant la réaction de craquage, permet d'effectuer en un temps extrêmement court une série de mesures dont les résultats permettent de déterminer directement les conditions de la réaction nécessaires pour la fabrication d'oléfines, de dioléfines et d'autres produits de la réaction avec des rendements désirés.
  • La présente invention a donc pour objet un procédé de vapocraquage d'un mélange d'hydrocarbures consistant à faire passer de la vapeur d'eau et le mélange d'hydrocarbures à travers au moins un tube de craquage chauffé, procédé caractérisé en ce que le procédé est contrôlé (a) en analysant le mélange d'hydrocarbures alimentant le tube de craquage à l'aide d'un spectrophotomètre infrarouge pour déterminer n absorbances à n longueurs d'onde allant de 0,8 à 2,6 microns, (b) en utilisant les résultats de n absorbances pour déterminer au moins une valeur V d'une des conditions de la réaction de vapocraquage, et (c) en opérant le vapocraquage à la valeur ou aux valeurs V ainsi déterminées, de façon à obtenir une valeur P désirée et fixée par avance de la productivité en un ou plusieurs produits de la réaction de vapocraquage.
  • L'un des caractères essentiels de la présente invention est d'effectuer pendant la réaction de vapocraquage des mesures d'absorbance sur le mélange d'hydrocarbures alimentant le tube de craquage à l'aide d'un spectrophotomètre infrarouge fonctionnant selon la technique de réflexion, ou la technique de transmission, ou bien encore une combinaison de ces deux techniques. L'absorbance est généralement définie, d'après la loi de BEER-LAMBERT, comme étant le logarithme décimal du rapport entre l'intensité Io du rayonnement émis par le spectrophotomètre infrarouge et l'intensité du rayonnement transmis et/ou réfléchi par le mélange d'hydrocarbures.
  • Plus particulièrement, il s'agit d'effectuer plusieurs fois pendant la réaction de vapocraquage une série de n mesures d'absorbance du mélange d'hydrocarbures, à n longueurs d'onde choisies dans le domaine du proche infrarouge, allant de 0,8 à 2,6 microns, de préférence de 1,0 à 2,5 microns, et plus particulièrement de 1,4 à 2,5 microns. Le nombre n des mesures d'absorbance est généralement de 2 à 20 environ, de préférence de 2 à 10. Le choix du nombre n des mesures d'absorbance est en partie lié à la précision avec laquelle on désire ensuite déterminer la valeur V d'au moins une des conditions de la réaction de vapocraquage: On peut, par exemple, choisir d'effectuer les mesures d'ab- sorbance à des longueurs d'onde choisies parmi les suivantes, exprimées en micron, ou des longueurs d'onde sensiblement voisines :
    • 2,141 - 2,166 - 2,181 - 2,278 - 2,308 - 2,347 - 2,375 - - 2,398 - 2,439 - 2,457 et 2,475.
  • Plus particulièrement, les mesures d'absorbance peuvent être effectuées aux 5 longueurs d'onde suivantes, exprimées en micron, ou à des longueurs d'onde sensiblement voisines : 2,278 -2,308 - 2,398 - 2,439 et 2,475.
  • Les longueurs d'onde à utiliser dans le procédé en vue d'obtenir une productivité désirée P en l'un ou plusieurs produits d'une réaction de vapocraquage peuvent être choisies par des méthodes statistiques mettant en oeuvre des analyses factorielles et des régressions multilinéaires, au cours d'une procédure d'étalonnage. Cette dernière peut consister notamment à faire varier la nature du mélange d'hydrocarbures à craquer et les conditions de la réaction, selon un plan d'expériences orthogonal, réalisé dans un tube de craquage d'une unité de production industrielle ou dans un tube de craquage de laboratoire, en particulier d'un micropyrolyseur, et à choisir les longueurs d'onde dans le proche infrarouge, de telle sorte qu'on puisse déterminer avec une précision optimale et suffisante pour réaliser le procédé une relation corrélative liant la productivité P aux n résultats Ri des n mesures d'absorbance et aux valeurs V des conditions de la réaction. Les longueurs d'onde généralement choisies sont celles dont l'amplitude d'absorbance varie beaucoup au cours de la procédure d'étalonnage. Une autre caractéristique essentielle de la présente invention est de fixer en un temps extrêmement court, en fonction des mesures d'absorbance, au moins une des conditions de la réaction de craquage de telle sorte que la productivité en un ou plusieurs produits de la réaction soit égale à une valeur désirée P. Les conditions de la réaction de vapocraquage sont celles habituellement connues pour ce type de réaction et peuvent être notamment choisies parmi les débits en vapeur d'eau et en mélange d'hydrocarbures alimentant le tube de craquage, la température de craquage en un point quelconque de ce tube, notamment à l'entrée ou a la sortie de la zone de radiation du four, la pression de craquage en un point quelconque de ce tube, notamment à la sortie de la zone de radiation du four, ainsi que le rapport pondéral entre la quantité mise en oeuvre du mélange d'hydrocarbures et celle de vapeur d'eau.
  • Par ailleurs, l'un des objets de la présente invention est de contrôler le procédé de vapocraquage en fixant par avance à une valeur P désirée la productivité d'un ou plusieurs produits issus de la réaction de craquage. En particulier on peut fixer la productivité en une oléfine telle que l'éthylène, le propylène ou le butène-1, la productivité en une dioléfine telle que le butadiène, ou encore la productivité en plusieurs produits de la réaction tels que la "gasoline de vapocraquage". La productivité en un ou plusieurs produits de la réaction peut être définie par le débit de production, correspondant à la quantité fabriquée du ou des produits par unité de temps. La productivité peut être également définie comme étant le rendement de la réaction de craquage en un ou plusieurs produits. Elle peut encore être définie par un rapport entre deux quantités de produits fabriquées, comme par exemple le rapport entre les quantités fabriquées d'éthylène et de propylène, ou le rapport entre les quantités fabriquées d'hydrocarbures ayant 3 atomes de carbone et d'hydrocarbures ayant 4 atomes de carbone. Dans ce cas ce rapport est une indication de la sélectivité de la réaction de craquage entre deux produits ou deux groupes de produits.
  • Le procédé de la présente invention consiste notamment à déterminer la valeur V d'une au moins des conditions de la réaction de vapocraquage directement en fonction des n résultats Ri issus de chaque série des n mesures d'absorbance, ainsi qu'en fonction d'au moins une valeur désirée P d'une productivité. Ainsi, chaque fois qu'on réalise une série des n mesures d'absorbance, l'une au moins des conditions de la réaction de craquage est fixée à une valeur V qui permet d'obtenir la productivité désirée. En pratique, on réalise plusieurs séries des n mesures d'absorbance et par conséquent on détermine la valeur V plusieurs fois pendant la réaction de vapocraquage, de préférence périodiquement au cours du temps, par exemple une fois par jour ou par heure, ou encore un fois toutes les 5 ou 15 minutes.
  • Par ailleurs, la valeur V d'une des conditions de la réaction de vapocraquage peut être avantageusement déterminée au moyen d'une relation corrélative liant la condition de la réaction à plusieurs variables. Ces variables sont constituées notamment par les n résultats Ri des n mesures d'absorbance, par au moins une valeur désirée P de la productivité et éventuellement par une ou plusieurs autres conditions de la réaction. La relation corrélative peut être préalablement établie au moyen d'une régression multivariée effectuée à partir des valeurs de productivité en produits obtenus dans des conditions de craquage différentes pour divers mélanges d'hydrocarbures. Elle peut être en particulier une fonction linéaire des n résultats Ri des n mesures d'absor- bance, d'une valeur P d'au moins une productivité et éventuellement d'une valeur V d'au moins une des conditions de la réaction. La relation corrélative peut être, par exemple, de la forme générale :
    Figure imgb0001
    forme dans laquelle P représente une valeur de la productivité en l'un des produits de la réaction, Ri représente une des valeurs des n mesures d'absor- bance avec i variant de 1 à n, Vm représente une des valeurs des conditions de la réaction, m représente le nombre des conditions de la réaction contrôlées et a,bi et cm représentent des coefficients numériques, négatifs ou positifs, entiers ou décimaux. La relation corrélative peut également être une fonction algébrique de ces mêmes variables et peut contenir des produits ou des quotients de ces variables, par exemple, sous l'une des formes générales suivantes :
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    formes dans lesquelles les variables et les paramètres ont les mêmes définitions que précédemment, V1 représente l'une des valeurs Vm des conditions de la réaction, kij représente un coefficient numérique, négatif ou positif, entier ou décimal, Rj représente une des valeurs des n mesures d'absor- bance avec j étant différent de i et variant de 1 à n, et P et P' représentent des valeurs de la productivité en deux produits de la réaction. Cette relation corrélative dépend du type de spectrophotomètre infrarouge utilisé, des conditions dans lesquelles on l'utilise, des n des longueurs d'onde choisies, ainsi que du ou des produits de la réaction de craquage dont on veut fixer par avance la productivité. Lorsque le procédé consiste, en particulier, à contrôler le procédé en fixant deux ou plusieurs conditions de la réaction de craquage, il convient de déterminer une valeur V appropriée pour chacune de ces conditions, en particulier à l'aide de relations corrélatives telles que définies précédemment. La détermination de la valeur V peut être avantageusement réalisée au moyen d'un calculateur. Ce dernier a pour fonction de calculer la valeur V à partir des variables dont elle dépend, en particulier des n résultats R, des n mesures d'absorbance et d'au moins une valeur désirée P. Lorsque le calculateur est relié directement au spectrophotomètre infrarouge, l'acquisition des n résultats R; par le calcultateur est pratiquement instantanée, et la détermination complète de la valeur V peut durer quelques minutes, généralement moins de 2 minutes.
  • Lorsque la valeur V d'une condition de la réaction de craquage est ainsi déterminée, le procédé est contrôlé en opérant et en conduisant la réaction à cette valeur par des moyens connus en eux-mêmes, en particulier à l'aide d'un ordinateur de procédé relié de préférence à des moyens de régulation capables de maintenir la condition à la valeur V déterminée, jusqu'au moment où une nouvelle série de n mesures d'absorbance est réalisée. Si la nature et/ou la composition du mélange d'hydrocarbures à craquer ont changé dans l'intervalle entre deux séries successives de n mesures d'absorbance, une nouvelle valeur V sera alors déterminée à partir de la dernière série de mesures effectuée et la condition de la réaction de craquage sera immédiatement corrigée et fixée à cette nouvelle valeur, afin de maintenir la productivité en un ou plusieurs produits de la réaction à la valeur désirée P, fixée par avance.
  • L'un des principaux avantages du procédé de la présente invention est de pouvoir maintenir à une valeur constante la productivité en un ou plusieurs produits de la réaction de craquage, quelles que soient les fluctuations de la nature ou de la composition du mélange d'hydrocarbures alimentant le tube de craquage. En particulier, il est tout à fait remarquable de constater que, grâce à ce procédé, les corrections des conditions de la réaction de craquage sont apportées en un temps extrêmement court, ce qui permet d'éviter toute dérive, même momentanée, de la réaction, vers la fabrication de produits indésirables ou de produits obtenus avec des productivités insatisfaisantes. Ce résultat est obtenu en particulier grâce au fait que le procédé ne comporte aucune étape consistant dans la recherche ou la détermination des caractéristiques physiques et/ou chimiques du mélange d'hydrocarbures à craquer. Les résultats des mesures d'absorbance peuvent être directement utilisés sous forme de données numériques dans les relations corrélatives liants ceux-ci à la productivité désirée P et aux valeurs V des conditions de la réaction de vapocraquage. Il est notamment surprenant de constater qu'il est maintenant possible de contrôler un procédé de vapocraquage à un niveau de productivité donné et qu'il peut tolérer de grandes variations de la qualité des hydrocarbures alimentant le tube de craquage, par exemple aussi bien des hydrocarbures liquides comportant environ de 5 à 15 atomes de carbone, tels que le naphta, les essences légères et le gas-oil, que des hydrocarbures gazeux tels que des alcanes comportant de 2 à 4 atomes de carbone, éventuellement en mélange avec des alcènes comportant de 2 à 6 atomes de carbone, ou avec du méthane et des alcanes comportant de 5 à 6 atomes de carbone, en particulier le gaz naturel, le gaz de pétrole liquéfié, encore appelé LPG, l'éthane, le propane, le butane, ou des produits secondaires légers provenant du vapocraquage d'hydrocarbures liquides.
  • En fonction de la nature et de la composition du mélange d'hydrocarbures à craquer, les conditions de la réaction de craquage peuvent être corrigées instantanément et fixées à des valeurs V comprises dans des limites connues. En particulier, la température du mélange réactionnel à l'entrée de la zone de radiation du four peut être d'environ 400° C à 700° C, la température du mélange réactionnel à la sortie de cette zone peut être d'environ 720° C à 800° C, la pression dans le tube de craquage à la sortie de cette zone peut être de 120 kPa à 240 kPa, le rapport pondéral de la quantité mise en oeuvre du mélange d'hydrocarbures à celle de vapeur d'eau peut être de 1 à 6 environ.
  • Par ailleurs, la température du mélange réactionnel circulant dans le tube de craquage peut augmenter depuis l'entrée jusqu'à la sortie de la zone de radiation du four selon un profil tel que celui décrit dans les demandes de brevet européen n° 252 355 et n° 252 356.
  • La présente invention a également pour objet un appareillage spécialement conçu pour pouvoir mettre en oeuvre le procédé décrit précédemment. L'appareillage comprend, d'une part, un four de vapocraquage d'hydrocarbures comportant essentiellement une enceinte thermique munie de moyens de chauffe et traversée par au moins un tube de craquage, et, d'autre part, un spectrophotomètre infrarouge apte à fonctionner dans au moins une zone du domaine du proche infrarouge allant de 0,8 à 2,6 microns environ et destiné à effectuer des mesures d'absorbance du mélange d'hydrocarbures alimentant le tube de craquage. Les moyens de chauffe de l'enceinte thermique du four de craquage sont généralement constitués par des brûleurs dont la disposition dans l'enceinte, la taille et le réglage peuvent être choisis ou adaptés à volonté, de telle sorte que la puissance thermique appliquée le long du tube de craquage est répartie d'une façon plus ou moins homogène, en particulier telle que décrite dans les demandes de brevet européen n° 252 355 et n° 252 356. Le tube de craquage peut être disposé horizontalement ou verticalement à travers l'enceinte thermique, notamment dans la zone de radiation du four. Il peut comporter un volume réactionnel qui est constant ou qui varie entre la première et la deuxième moitiés de la longueur du tube de craquage, depuis l'entrée jusqu'à la sortie de la zone de radiation du four, comme décrit dans les demandes de brevet européen n° 252 355 et n° 252 356.
  • Les mesures d'absorbance du mélange d'hydrocarbures alimentant le tube de craquage sont effectuées à l'aide du spectrophotomètre infrarouge décrit précédemment. Ce dernier peut être du type spectrophotomètre infrarouge à transformée de Fourier. Il peut être, en outre, avantageusement combiné à un calculateur destiné à déterminer la valeur V d'au moins une des conditions de la réaction de craquage, grâce à un programme de calcul contenant l'une au moins des relations corrélatives liant cette condition aux variables dont elle dépend.
  • Le four de vapocraque peut être par ailleurs combiné à un ordinateur de procédé et à des systèmes de régulation qui permettent de fixer et de régler automatiquement ces conditions aux valeurs V déterminées. D'une manière avantageuse, l'ordinateur de procédé peut également comprendre le programme du calculateur permettant de calculer la valeur V.
  • Le spectrophotomètre infrarouge peut être disposé à proximité de la conduite d'alimentation du four en mélange d'hydrocarbures ou de l'enceinte de stockage de ce mélange, ou bien à une distance plus ou moins éloignée de ceux-ci. Il peut être équipé de moyens de transmission d'informations tels que des fibres optiques adaptées à ce type particulier d'analyse. Dans ce cas, ces mesures sont avantageusement effectuées directement en temps réel, c'est-à-dire en ligne sur la conduite d'alimentation du four en mélange d'hydrocarbures, ou sur l'enceinte de stockage de ce mélange. On peut également installer un système de prise d'échantillons du mélange d'hydrocarbures à craquer, comprenant soit un dispositif manuel essentiellement constitué d'un sas muni de robinets, soit un dispositif automatique commandé par un automate programmable. Ce système peut être, dans ce cas, disposé sur la conduite d'alimentation du four en mélange d'hydrocarbures, ou sur l'enceinte de stockage de ce mélange. Les mesures d'absor- bance peuvent être aussi réalisées en temps non réel, c'est-à-dire en temps différé.
  • La présente invention s'avère particulièrement utile dans des installations industrielles de vapocraquage ayant une taille et une capacité de production considérables. En effet, grâce à ce procédé, tout écart de productivité engendré par des fluctuations de la nature et de la composition du mélange d'hydrocarbures à craquer est notablement réduit, sinon supprimé, évitant ainsi la fabrication soit de produits indésirables, soit de produits obtenus avec une productivité insatisfaisante.
  • Les exemples suivants, non limitatifs, illustrent la présente invention.
  • Exemple 1 Fabrication d'éthylène par réaction de vapocraquage d'un naphta de composition variable avec un rendement en éthylène fixé à 22 %.
  • Une réaction de vapocraquage d'un naphta est réalisée dans un four comprenant essentiellement une enceinte thermique de radiation en briquetage, constituée d'un parallélépipède rectangle ayant une longueur interne de 9,75 m, une largeur interne de 1,70 m et une hauteur interne de 4,85 m. Dans cette enceinte thermique est disposé un tube de craquage en acier réfractaire à base de nickel et de chrome ayant une longueur totale de 80 m, un diamètre interne de 108 mm et une épaisseur de 8 mm. Le tube de craquage a la forme d'un serpentin comprenant 8 sections droites horizontales, d'égale longueur chacune, reliées entre elles par des coudes.
  • L'enceinte thermique de radiation du four est munie de brûleurs disposés sur les murs de l'enceinte, suivant 5 rangées horizontales, situées à égale distance les unes des autres. La puissance thermique de l'ensemble de ces brûleurs est répartie d'une façon homogène entre ces 5 rangées. Le tube de craquage est alimenté, d'une part, en vapeur d'eau suivant un débit constant de 900 kg/h et, d'autre part, en un naphta de composition variable au cours du temps, suivant un débit constant de 2800 kg/h. En une période de 24 h, la composition du naphta utilisé varie de telle sorte que sa teneur pondérale en paraffines passe de 72 % à 68 %, sa teneur pondérale en composés naphténiques de 20 % à 23 %, sa teneur pondérale en composés aromatiques de 8 % à 9 0/o, et sa densité de 0,713 à 0,719.
  • La pression du mélange réactionnel à la sortie de la zone de radiation du four est d'environ 165 kPa. La température de craquage T à la sortie de cette zone est variable au cours de cette fabrication et est déterminée de telle sorte que le rendement en éthylène soit constamment égal à 22 %. La température de craquage à l'entrée de la zone de radiation du four, initialement voisine de 550° C, subit au cours du temps de légères variations du fait de celles de la température T de sortie.
  • Une fois toutes les 15 minutes, un échantillon de naphta alimentant le tube de craquage est analysé au moyen d'un spectrophotomètre infrarouge "IN-FRAALYZER 500" 0, vendu par BRAN-LUEBBE (Etats-Unis d'Amérique). A chaque analyse, une série de 5 mesures d'absorbance est réalisée selon une technique combinant la transmission et la réflexion et correspondant à la loi d'absorption de BEER-LAMBERT, aux 5 longueurs d'onde suivantes, exprimées en micron :
    • 2,278 - 2,308 - 2,398 - 2,439 et 2,475. Les résultats de ces 5 mesures sont respectivement notés R1, R2, R3, R4 et R5.
  • Ces résultats sont transmis à un ordinateur de procédé "SOLAR 16/65" ®vendu par BULL (France), directement relié au spectrophotomètre infrarouge. L'ordinateur de procédé est, en particulier, muni d'un programme permettant de calculer la valeur de la température de craquage T à la sortie de la zone de radiation du four en fonction des résultats Ri, R2, R3, R4 et R5 des 5 mesures d'absorbance, du rendement en éthylène, RE, désiré et fixé par avance à 22%, par application de la relation corrélative suivante :
    Figure imgb0008
    avec T exprimé en degré Celsius. Lorsque la valeur de la température de craquage T est ainsi déterminée, l'ordinateur de procédé fixe aussitôt la température de craquage à la sortie de la zone de radiation du four à cette valeur.
  • Durant la période de 24 h où la composition du naphta a varié comme indiqué ci-dessus, on observe que la température de craquage T a elle-même varié dans une gamme allant de 788° C à 806° C. Pendant cette même période, on constate que la production d'éthylène est restée constamment à 616 kg/h et que par conséquent le rendement en éthylène a été maintenu à 22 o/o, malgré les variations de la composition du naphta.
  • Exemple 2 Fabrication d'éthylène et de propylène par réaction de vapocraquage d'un naphta de composition variable, avec un rapport entre le rendement en propylène et celui en éthylène fixé à 0,6.
  • La réaction de craquage est réalisée dans un four identique à celui décrit à l'exemple 1.
  • Le tube de craquage est alimenté, d'une part, en vapeur d'eau suivant un débit constant de 964 kg/h et, d'autre part, en un naphta de composition variable au cours du temps, suivant un débit constant de 3000 kg/h. En une période de 24 h, la composition du naphta utilisé varie de telle sorte que sa teneur pondérale en paraffines passe de 68 % à 76 %, sa teneur pondérale en composés naphténiques passe de 23 % à 19 %, sa teneur pondérale en composés aramatiques passe de 9 % à 5 % et sa densité de 0,719 à 0,697.
  • La pression du mélange réactionnel à la sortie de la zone de radiation du four est d'environ 165 kPa. La température de craquage T à la sortie de cette zone est variable au cours de cette fabrication et est déterminée de telle sorte que le rapport entre le rendement en propylène et celui en éthylène soit constamment égal à 0,6. La température de craquage à l'entrée de la zone de radiation du four, initialement voisine de 550°C, subit au cours du temps de légères variations du fait de celles de la température T de sortie.
  • Une fois toutes les 15 minutes, un échantillon de naphta alimentant le tube de craquage est analysé au moyen d'un spectrophotomètre infrarouge "IN-FRAALYZER 500" R, vendu par BRAN-LUEBBE (Etats-Unis d'Amérique). A chaque analyse, une série de 5 mesures d'absorbance est réalisée selon une technique combinant la transmission et la réflexion et correspondant à la loi d'absorption de BEER-LAMBERT, aux 5 longueurs d'onde suivantes, exprimées en micron :
    • 2,278 - 2,308 - 2,398 - 2,439 et 2,475. Les résultats de ces 5 mesures sont respectivement notés M1, M2, Ma, M4 et Ms.
  • Ces résultats sont transmis à un ordinateur de procédé "SOLAR 16/65"® vendu par BULL (France), directement relié au spectrophotomètre infrarouge. L'ordinateur de procédé est, en particulier, muni d'un programme permettant de calculer la valeur de la température de craquage T à la sortie de la zone de radiation du four en fonction des résultats M1, M2, Ma, M4 et Ms des 5 mesures d'absorbance, du rapport (RP/RE) entre le rendement en propylène et celui en éthylène, désiré et fixé par avance à 0,6, par application de la relation corrélative suivante : T = 994 - 357 RP/RE + 161 M1 - 222 M2 + 341 Ms - 342 M4 + 303 Ms avec T exprimé en degré Celsius. Lorsque la valeur de la température de craquage T est ainsi déterminée, l'ordinateur de procédé fixe aussitôt la température de craquage à la sortie de la zone de radiation du four à cette valeur.
  • Durant la période de 24 h où la composition du naphta a varié comme indiqué ci-dessus, on observe que la température de craquage T a elle-même varié dans une gamme allant de 800°C à 785°C. Pendant cette même période, on constate que le rapport entre le rendement en propylène et celui en éthylène est resté constamment à 0,6, malgré les variations de la composition du naphta.
  • Exemple 3 Fabrication d'éthylène selon un débit constant de 0,640 T/h et de propylène selon un débit constant de 0,370 T/h par réaction de vapocraquage d'un naphta de composition variable.
  • La réaction de craquage est réalisée dans un four identique à celui décrit à l'exemple 1. Le tube de craquage est alimenté en vapeur d'eau et en naphta de composition variable au cours du temps. En une période de 24 heures la composition du naphta utilisé varie de telle sorte que sa teneur pondérale en paraffines passe de 76 % à 72 %, sa teneur pondérale en composés naphténiques de 19 % à 20 %, sa teneur pondérale en composés aromatiques de 5 % à 8 % et sa densité de 0,697 à 0,713. La pression du mélange réactionnel à la sortie de la zone de radiation du four est d'environ 165 kPa. La température de craquage T à la sortie de la zone de radiation du four et le débit Q d'alimentation du tube en naphta sont variables au cours de cette fabrication et sont déterminés de telle sorte que les débits de production en éthylène et en propylène soient respectivement et constamment égaux à 0,640 T/h et 0,370 T/h. La température de craquage à l'entrée de la zone de radiation du four, initialement voisine de 550°C, subit au cours du temps de légères variations du fait de celles de la température T de sortie. Le débit d'alimentation en vapeur d'eau varie dans le temps de telle sorte que le rapport pondéral de la quantité mise en oeuvre du mélange d'hydrocarbures à celle de vapeur d'eau est constamment de 3.
  • Une fois toutes les 10 minutes un échantillon de naphta alimentant le tube de craquage est analysé au moyen d'un spectrophotomètre infrarouge "IN-FRAALYZER 500" (D vendu par BRAN-LUEBBE (Etats-Unis d'Amérique). A chaque analyse, une série de 5 mesures d'absorbance est réalisée selon une technique combinant la transmission et la réflexion et correspondant à la loi d'absorption de BEER-LAMBERT, aux 5 longueurs d'ondes suivantes, exprimées en micron = 2,278 - 2,308 - 2,398 - 2,439 et 2,475. Les résultats de ces 5 mesures sont respectivement notés L1, L2, L3, L4 et L5.
  • Ces résultats sont transmis à un ordinateur de procédé "SOLAR 16/65" ®vendu par BULL (France) directement relié au spectrophotomètre infrarouge. L'ordinateur de procédé est en particulier muni d'un programme permettant de calculer la valeur du débit Q d'alimentation en naphta du tube de craquage, et de la température de craquage T à la sortie de la zone de radiation du four en fonction des résultats L1, L2, L3, L4 et Ls du débit de production en éthylène QE fixé à 0,640 T/h et du débit de production en propylène Qp fixé à 0,370 T/h par application des deux relations corrélatives suivantes :
    Figure imgb0009
    Figure imgb0010
    avec T exprimé en dégré Celsius et les débits Q, QE, Qp en tonne/heure.
  • Lorsque les valeurs de la température de craquage T et le débit d'alimentation Q en naphta du tube de craquage sont ainsi déterminées, l'ordinateur de procédé fixe aussitôt la température de craquage à la sortie de la zone de radiation du four et le débit d'alimentation en naphta du tube de craquage à ces valeurs.
  • Durant la période de 24 heures pendant laquelle la composition du naphta a varié comme indiqué ci-dessus, on observe que la température de craquage T a elle même varié dans une gamme allant de 789° C à 795° C, tandis que le débit d'alimentation Q en naphta du tube de craquage a varié dans une gamme allant de 2,8 T/h à 2,9 T/h. Pendant cette même période, on constate que le débit de production en éthylène est resté constamment à 0,640 T/h et le débit de production en propylène est resté constamment à 0,370 T/h, malgré les variations de la composition du naphta.

Claims (8)

1. Procédé de vapocraquage d'un mélange d'hydrocarbures consistant à faire passer de la vapeur d'eau et le mélange d'hydrocarbures à travers au moins un tube de craquage chauffé, procédé caractérisé en ce que le procédé est contrôlé (a) en analysant le mélange d'hydrocarbures alimentant le tube de craquage à l'aide d'un spectrophotomètre infrarouge pour déterminer n absorbances à n longueurs d'onde allant de 0,8 à 2,6 microns, (b) en utilisant les résultats des n absorbances pour déterminer au moins une valeur V d'une des conditions de la réaction de vapocraquage, et (c) en opérant le vapocraquage à la valeur ou aux valeurs ainsi déterminées, de façon à obtenir une valeur P désirée et fixée par avance de la productivité en un ou plusieurs produits de la réaction de vapocraquage.
2. Procédé selon la revendication 1, caractérisé en ce que la condition de la réaction de vapocraquage est choisie parmi les débits en vapeur d'eau et en mélange d'hydrocarbures alimentant le tube de craquage, la température de craquage ou la pression de craquage en un point quelconque de ce tube, ainsi que le rapport pondéral entre la quantité mise en oeuvre du mélange d'hydrocarbures et celle de vapeur d'eau.
3. Procédé selon la revendication 1, caractérisé en ce que la productivité en un ou plusieurs produits de la réaction est définie par un rendement, par un débit ou par un rapport entre deux quantités de produits ou de groupes de produits fabriqués.
4. Procédé selon la revendication 1, caractérisé en ce que le nombre n d'absorbances est de 2 à 20.
5. Procédé selon la revendication 1, caractérisé en ce que les absorbances sont effectuées à des longueurs d'onde exprimées en micron, ou des longueurs d'onde sensiblement voisines, choisies parmi 2,141 - 2,166 - 2,181 - 2,278 - 2,308 - 2,347 - 2,-375 - 2,398 -2,439 - 2,457 et 2,475.
6. Procédé selon la revendication 1, caractérisé en ce que la valeur V est déterminée au moyen d'une relation corrélative linéaire ou algébrique, liant la condition de la réaction de craquage aux n résultats R; des n mesures d'absorbance, à au moins une valeur désirée P d'une productivité en un ou plusieurs produits de la réaction et éventuellement à une ou plusieurs autres conditions de la réaction.
7. Appareillage pour la mise en oeuvre du procédé selon la revendication 1, caractérisé en ce qu'il comprend, d'une part, un four de vapocraquage d'hydrocarbures comportant essentiellement une enceinte thermique munie de moyens de chauffe et traversée par au moins un tube de craquage, et, d'autre part, un spectrophotomètre infrarouge apte à fonctionner dans au moins une zone du domaine du proche infrarouge allant de 0,8 à 2,6 microns et destiné à effectuer des mesures d'absorbance du mélange d'hydrocarbures alimentant le tube de craquage.
8. Appareillage selon la revendication 7, caractérisé en ce que le spectrophotomètre infrarouge est combiné à un calculateur destiné à déterminer la valeur V d'une au moins des conditions de la réaction de craquage, grâce à un programme de calcul contenant une relation corrélative linéaire ou algébrique liant la condition de la réaction aux n résultats Ri des n mesures d'absorbance, à au moins une valeur désirée P d'une productivité en un ou plusieurs produits de la réaction, et éventuellement à une ou plusieurs autres conditions de la réaction.
EP89430014A 1988-05-30 1989-05-19 Procédé et appareillage de fabrication d'oléfines et de dioléfines par réaction de vapocraquage d'hydrocarbures contrôlée à l'aide d'un système comprenant un spectrophotomètre infrarouge Expired - Lifetime EP0345182B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89430014T ATE69254T1 (de) 1988-05-30 1989-05-19 Verfahren und einrichtung zur erzeugung von olefinen und diolefinen durch dampfkracken von kohlenwasserstoffen mit kontrolle durch ein infrarot-spektrophotometer enthaltendes system.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8807322A FR2631957B1 (fr) 1988-05-30 1988-05-30 Procede et appareillage de fabrication d'olefines et de diolefines par reaction de vapocraquage d'hydrocarbures controlee a l'aide d'un systeme comprenant un spectrophotometre infrarouge
FR8807322 1988-05-30

Publications (2)

Publication Number Publication Date
EP0345182A1 true EP0345182A1 (fr) 1989-12-06
EP0345182B1 EP0345182B1 (fr) 1991-11-06

Family

ID=9366848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89430014A Expired - Lifetime EP0345182B1 (fr) 1988-05-30 1989-05-19 Procédé et appareillage de fabrication d'oléfines et de dioléfines par réaction de vapocraquage d'hydrocarbures contrôlée à l'aide d'un système comprenant un spectrophotomètre infrarouge

Country Status (14)

Country Link
US (1) US5082985A (fr)
EP (1) EP0345182B1 (fr)
JP (1) JPH0774339B2 (fr)
KR (1) KR970007493B1 (fr)
AT (1) ATE69254T1 (fr)
CA (1) CA1332923C (fr)
DE (1) DE68900412D1 (fr)
ES (1) ES2027068T3 (fr)
FI (1) FI97973C (fr)
FR (1) FR2631957B1 (fr)
GR (1) GR3003560T3 (fr)
MY (1) MY111734A (fr)
NO (1) NO175008C (fr)
SG (1) SG125792G (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0801298A1 (fr) * 1996-04-09 1997-10-15 Bp Chemicals S.N.C. Procédé de commande de processus
EP0801299A1 (fr) * 1996-04-09 1997-10-15 Bp Chemicals S.N.C. Commande de processus
US5712797A (en) * 1994-10-07 1998-01-27 Bp Chemicals Limited Property determination
US5740073A (en) * 1994-10-07 1998-04-14 Bp Chemicals Limited Lubricant property determination
US5861228A (en) * 1994-10-07 1999-01-19 Bp Chemicals Limited Cracking property determination
CN103483124A (zh) * 2012-06-08 2014-01-01 中国石油化工股份有限公司 一种丁二烯的制备方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2095205T3 (es) * 1987-08-18 1997-02-16 Bp Oil Int Metodo para la determinacion directa de propiedades fisicas de productos hidrocarbonados.
US5349188A (en) * 1990-04-09 1994-09-20 Ashland Oil, Inc. Near infrared analysis of piano constituents and octane number of hydrocarbons
US5404015A (en) * 1993-09-21 1995-04-04 Exxon Research & Engineering Co. Method and system for controlling and optimizing isomerization processes
US5424542A (en) * 1993-09-21 1995-06-13 Exxon Research And Engineering Company Method to optimize process to remove normal paraffins from kerosine
US5504331A (en) * 1993-10-15 1996-04-02 Atlantic Richfield Company Spectroscopic analyzer operating method
US5935863A (en) * 1994-10-07 1999-08-10 Bp Chemicals Limited Cracking property determination and process control
EP0706041A1 (fr) * 1994-10-07 1996-04-10 Bp Chemicals S.N.C. Détermination de propriété de produits chimiques
CA2168384C (fr) * 1995-02-08 2007-05-15 Bruce Nelson Perry Methode permettant de determiner les caracteristiques des charges utilisees dans un procede de craquage catalytique
US6512156B1 (en) * 1996-10-22 2003-01-28 The Dow Chemical Company Method and apparatus for controlling severity of cracking operations by near infrared analysis in the gas phase using fiber optics
US6072576A (en) 1996-12-31 2000-06-06 Exxon Chemical Patents Inc. On-line control of a chemical process plant
ID29093A (id) * 1998-10-16 2001-07-26 Lanisco Holdings Ltd Konversi mendalam yang menggabungkan demetalisasi dan konversi minyak mentah, residu atau minyak berat menjadi cairan ringan dengan senyawa-senyawa oksigenat murni atau tak murni
US6284196B1 (en) 1999-04-01 2001-09-04 Bp Corporation North America Inc. Apparatus for monitor and control of an ammoxidation reactor with a fourier transform infrared spectrometer
US7238847B2 (en) * 2002-12-23 2007-07-03 Shell Oil Company Apparatus and method for determining and controlling the hydrogen-to-carbon ratio of a pyrolysis product liquid fraction
JP5142986B2 (ja) * 2005-05-16 2013-02-13 ダウ グローバル テクノロジーズ エルエルシー 分解炉バーナのための過剰空気制御
US20070212790A1 (en) * 2006-03-13 2007-09-13 Marathon Petroleum Company Llc Method for monitoring feeds to catalytic cracking units by near-infrared spectroscopy
US20080078695A1 (en) * 2006-09-29 2008-04-03 Marathon Petroleum Company, Llc Method and apparatus for controlling catalytic cracking by near-infrared spectroscopy
US20080078693A1 (en) * 2006-09-29 2008-04-03 Marathon Petroleum Company Llc Method and apparatus for controlling FCC hydrotreating by near-infrared spectroscopy
US20080078694A1 (en) * 2006-09-29 2008-04-03 Marathon Petroleum Company Llc Method and apparatus for controlling FCC effluent with near-infrared spectroscopy
JP5654343B2 (ja) 2007-06-15 2015-01-14 ビーピー ケミカルズ リミテッドBp Chemicals Limited 気相プロセス流のオンライン分析方法
JP5814752B2 (ja) * 2011-11-11 2015-11-17 Jx日鉱日石エネルギー株式会社 1,3−ブタジエンおよびc6〜c8芳香族炭化水素の併産方法
CN104792725B (zh) * 2015-04-30 2018-01-23 西安近代化学研究所 乙醇胺脱水制备氮丙啶产物流的快速分析方法
US10696906B2 (en) 2017-09-29 2020-06-30 Marathon Petroleum Company Lp Tower bottoms coke catching device
US12000720B2 (en) 2018-09-10 2024-06-04 Marathon Petroleum Company Lp Product inventory monitoring
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
CA3109675A1 (fr) 2020-02-19 2021-08-19 Marathon Petroleum Company Lp Melanges de mazout a faible teneur en soufre pour l`amelioration de la stabilite et methodes connexes
US20220268694A1 (en) 2021-02-25 2022-08-25 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11702600B2 (en) 2021-02-25 2023-07-18 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers
US11692141B2 (en) 2021-10-10 2023-07-04 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
CA3188122A1 (fr) 2022-01-31 2023-07-31 Marathon Petroleum Company Lp Systemes et methodes de reduction des points d'ecoulement de gras fondus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2926253A (en) * 1954-12-22 1960-02-23 Distillers Co Yeast Ltd Radiation analysis
US3666932A (en) * 1970-12-30 1972-05-30 Texaco Inc Means and method for on-line determination of the aromatic, naphthene and paraffin contents of charge oil
US4257105A (en) * 1979-05-02 1981-03-17 Phillips Petroleum Company Control of a cracking furnace
FR2545938A1 (fr) * 1983-05-12 1984-11-16 Broken Hill Pty Co Ltd Procede et appareil d'evaluation des caracteristiques et de manipulation de substances a constituants multiples
EP0252356A1 (fr) * 1986-06-25 1988-01-13 Naphtachimie S.A. Procédé et four de vapocraquage d'hydrocarbures destines à la fabrication d'oléfines et de dioléfines

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB873863A (en) * 1959-05-08 1961-07-26 Exxon Research Engineering Co Testing feed for hydrocarbon conversion process
US3384573A (en) * 1966-01-14 1968-05-21 Mobil Oil Corp Control and characterization of catalytic cracking processes
US3824388A (en) * 1972-06-26 1974-07-16 J Cugini Hydrocarbon cracking system
US3972804A (en) * 1974-10-02 1976-08-03 Universal Oil Products Company Control of hydrogen/hydrocarbon mole ratio in hydrogen-consuming process
SU590329A1 (ru) * 1975-07-23 1978-01-30 Предприятие П/Я В-8296 Устройство дл автоматического управлени процессом пиролиза в трубчатой печи
US4318178A (en) * 1980-05-28 1982-03-02 Phillips Petroleum Co. Control of a cracking furnace
US4371944A (en) * 1981-01-16 1983-02-01 Phillips Petroleum Company Ethylene process control
US4628204A (en) * 1984-08-16 1986-12-09 S.A. Texaco Belgium N.V. Optical method to study the stability of colloidal systems
US4908121A (en) * 1986-05-12 1990-03-13 The M. W. Kellogg Company Flexible feed pyrolysis process
FR2611911B1 (fr) * 1987-02-27 1989-06-23 Bp France Procede de determination directe d'un indice d'octane
ES2095205T3 (es) * 1987-08-18 1997-02-16 Bp Oil Int Metodo para la determinacion directa de propiedades fisicas de productos hidrocarbonados.
ES2041801T3 (es) * 1987-08-18 1993-12-01 Bp Oil International Limited Metodo para la determinacion directa de propiedades fisicas de productos hidrocarbonados.
FR2625506B1 (fr) * 1987-12-31 1992-02-21 Bp Chimie Sa Procede et appareillage de fabrication de polymeres controlee a l'aide d'un systeme de regulation comprenant un spectrophotometre infrarouge
US4929335A (en) * 1988-07-22 1990-05-29 Mobil Oil Corporation Method for control of visbreaker severity
FR2638835B1 (fr) * 1988-11-07 1991-01-11 Bp France Analyseur continu pour zone de securite classee

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2926253A (en) * 1954-12-22 1960-02-23 Distillers Co Yeast Ltd Radiation analysis
US3666932A (en) * 1970-12-30 1972-05-30 Texaco Inc Means and method for on-line determination of the aromatic, naphthene and paraffin contents of charge oil
US4257105A (en) * 1979-05-02 1981-03-17 Phillips Petroleum Company Control of a cracking furnace
FR2545938A1 (fr) * 1983-05-12 1984-11-16 Broken Hill Pty Co Ltd Procede et appareil d'evaluation des caracteristiques et de manipulation de substances a constituants multiples
EP0252356A1 (fr) * 1986-06-25 1988-01-13 Naphtachimie S.A. Procédé et four de vapocraquage d'hydrocarbures destines à la fabrication d'oléfines et de dioléfines

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANALYTICAL CHEMISTRY, vol. 59, no. 9, 1 mai 1987, pages 624A-637A, American Chemical Society; J.B. CALLIS et al.: "Process analytical" *
APPLIED SPECTROSCOPY REVIEWS, vol. 21, no. 1 & 2, 1985, pages 1-43, Marcel Dekker, Inc., New York, US; L.G. WEYER: "Near-infrared spectroscopy of organic substances" *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712797A (en) * 1994-10-07 1998-01-27 Bp Chemicals Limited Property determination
US5740073A (en) * 1994-10-07 1998-04-14 Bp Chemicals Limited Lubricant property determination
US5861228A (en) * 1994-10-07 1999-01-19 Bp Chemicals Limited Cracking property determination
EP0801298A1 (fr) * 1996-04-09 1997-10-15 Bp Chemicals S.N.C. Procédé de commande de processus
EP0801299A1 (fr) * 1996-04-09 1997-10-15 Bp Chemicals S.N.C. Commande de processus
CN103483124A (zh) * 2012-06-08 2014-01-01 中国石油化工股份有限公司 一种丁二烯的制备方法
CN103483124B (zh) * 2012-06-08 2015-10-07 中国石油化工股份有限公司 一种丁二烯的制备方法

Also Published As

Publication number Publication date
JPH0774339B2 (ja) 1995-08-09
ES2027068T3 (es) 1992-05-16
NO892156D0 (no) 1989-05-29
NO892156L (no) 1989-12-01
FI97973B (fi) 1996-12-13
NO175008C (no) 1994-08-17
EP0345182B1 (fr) 1991-11-06
DE68900412D1 (de) 1991-12-12
KR890017339A (ko) 1989-12-15
FI97973C (fi) 1997-03-25
SG125792G (en) 1993-07-09
GR3003560T3 (fr) 1993-03-16
FI892605A0 (fi) 1989-05-29
KR970007493B1 (ko) 1997-05-09
FI892605A (fi) 1989-12-01
NO175008B (no) 1994-05-09
FR2631957B1 (fr) 1990-08-31
US5082985A (en) 1992-01-21
JPH0228293A (ja) 1990-01-30
CA1332923C (fr) 1994-11-08
FR2631957A1 (fr) 1989-12-01
ATE69254T1 (de) 1991-11-15
MY111734A (en) 2000-12-30

Similar Documents

Publication Publication Date Title
EP0345182B1 (fr) Procédé et appareillage de fabrication d'oléfines et de dioléfines par réaction de vapocraquage d'hydrocarbures contrôlée à l'aide d'un système comprenant un spectrophotomètre infrarouge
EP3155402B1 (fr) Procédé de préparation d'un produit cible certifié d'un mélange de constituants par analyse spectrale
US5861228A (en) Cracking property determination
FR2774768A1 (fr) Methode de determination d'au moins une propriete physicochimique d'une coupe petroliere
US20240124790A1 (en) Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (fcc) processes using spectroscopic analyzers
US8849582B2 (en) Offline analyzer system and method for multivariate characterization of properties in crude and heavy hydrocarbon oils
US8597484B2 (en) Application of visbreaker analysis tools to optimize performance
JPH07301599A (ja) 近赤外分光学分析法による炭化水素を分析するための方法
Da Silva et al. Determination of naphtha composition by near infrared spectroscopy and multivariate regression to control steam cracker processes
FR2820503A1 (fr) Methode et dispositif pour predire le seuil de floculation d'asphaltenes contenus dans des melanges d'hydrocarbures
EP1783480B1 (fr) Méthode de détermination de la teneur en diolefines conjuguees d'un echantillon a partir de son spectre proche infrarouge et application au controle d'unités
EP0252355B1 (fr) Procédé et four de vapocraquage d'hydrocarbures destinés à la fabrication d'oléfines et de dioléfines
EP1549931A1 (fr) Procede et dispositif pour la conduite en continu d'un processus de preparation d'un carburant, notamment pour moteur diesel, par melange en ligne de ses constituants
EP3019851B1 (fr) Procédé de transfert entre spectromètres
EP3881069B1 (fr) Procede de determination d'au moins un parametre representatif d'un changement d'un fluide par spectroscopie proche infrarouge multipoints
CA3190483A1 (fr) Assemblages et methodes pour ameliorer des procedes de craquage catalytique fluide pendant de tels procedes au moyen d'analyseurs spectroscopiques
CA3190467A1 (fr) Assemblages et methodes pour ameliorer le controle de l'hydrotraitement et des procedes de craquage catalytique fluide au moyen d'analyseurs spectroscopiques
CA3190475A1 (fr) Assemblages et methodes pour ameliorer le controle des procedes de craquage catalytique fluide au moyen d'analyseurs spectroscopiques
WO2023211706A1 (fr) Procédés de mélange de contaminats dans des flux d'essence
Tanaka et al. Rapid Analysis of Gas & Liquid Phase Using NR800 Near-infrared Analyzer
FR2632408A1 (fr) Procede de determination des proprietes d'un gazole obtenu a partir d'un melange complexe de bases petrolieres ou de constitution d'un produit fini du type gazole ayant des proprietes determinees par analyse spectrophotometrique proche infrarouge des constituants du melange
KR20030033860A (ko) 에틸렌 제조공정에 근적외선 분광분석 기술을 적용하는 방법
FR2619625A1 (fr) Procede de determination en ligne et en temps reel du degre d'insaturation olefinique de l'alimentation et des produits obtenus lors de l'hydrogenation de coupes petrolieres legeres par analyse spectrophotometrique proche infrarouge
FR2632409A1 (fr) Procede de determination des proprietes d'un fioul obtenu a partir d'un melange complexe de bases petrolieres ou de constitution d'un tel produit ayant des proprietes determinees par analyse spectrophotometrique proche infrarouge des constituants du melange
FR2619626A1 (fr) Procede de determination en ligne et en temps reel des caracteristiques de l'alimentation et des rendements en produits obtenus lors de l'hydrotraitement catalytique de coupes petrolieres par analyse spectrophotometrique proche infrarouge de l'alimentation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900108

17Q First examination report despatched

Effective date: 19910117

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 69254

Country of ref document: AT

Date of ref document: 19911115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68900412

Country of ref document: DE

Date of ref document: 19911212

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2027068

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3003560

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 89430014.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUEA

Owner name: NAPHTACHIMIE SOCIETE ANONYME

Free format text: BP CHEMICALS LIMITED#76 BUCKINGHAM PALACE ROAD#LONDON SW1W OSU (GB) $ NAPHTACHIMIE SOCIETE ANONYME#TOUR NEPTUNE, 20, PLACE DE SEINE#COURBEVOIE (FR) -TRANSFER TO- NAPHTACHIMIE SOCIETE ANONYME#TOUR NEPTUNE, 20, PLACE DE SEINE#COURBEVOIE (FR) $ O & D TRADING LIMITED#CHERTSEY ROAD#SUNBURY ON THAMES, MIDDLESEX TW16 7BP (GB)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: NAPHTACHIMIE SOCIETE ANONYME

Free format text: NAPHTACHIMIE SOCIETE ANONYME#TOUR NEPTUNE, 20, PLACE DE SEINE#COURBEVOIE (FR) $ O & D TRADING LIMITED#CHERTSEY ROAD#SUNBURY ON THAMES, MIDDLESEX TW16 7BP (GB) -TRANSFER TO- NAPHTACHIMIE SOCIETE ANONYME#TOUR NEPTUNE, 20, PLACE DE SEINE#COURBEVOIE (FR) $ INNOVENE EUROPE LIMITED#CHERTSEY ROAD#SUNBURY ON THAMES, MIDDLESEX TW16 7BP (GB)

Ref country code: CH

Ref legal event code: PFA

Owner name: NAPHTACHIMIE SOCIETE ANONYME

Free format text: NAPHTACHIMIE SOCIETE ANONYME#TOUR NEPTUNE, 20, PLACE DE SEINE#COURBEVOIE (FR) $ INNOVENE EUROPE LIMITED#CHERTSEY ROAD#SUNBURY ON THAMES, MIDDLESEX TW16 7BP (GB) -TRANSFER TO- NAPHTACHIMIE SOCIETE ANONYME#TOUR NEPTUNE, 20, PLACE DE SEINE#COURBEVOIE (FR) $ INNOVENE EUROPE LIMITED#COMPASS POINT 79-87 KINGSTON ROAD#STAINES, MIDDLESEX TW18 1DT (GB)

Ref country code: CH

Ref legal event code: PFA

Owner name: NAPHTACHIMIE SOCIETE ANONYME

Free format text: NAPHTACHIMIE SOCIETE ANONYME#TOUR NEPTUNE, 20, PLACE DE SEINE#COURBEVOIE (FR) $ INNOVENE EUROPE LIMITED#COMPASS POINT 79-87 KINGSTON ROAD#STAINES, MIDDLESEX TW18 1DT (GB) -TRANSFER TO- NAPHTACHIMIE SOCIETE ANONYME#TOUR NEPTUNE, 20, PLACE DE SEINE#COURBEVOIE (FR) $ INEOS EUROPE LIMITED#COMPASS POINT 79-87 KINGSTON ROAD#STAINES, MIDDLESEX TW18 1DT (GB)

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: NAPHTACHIMIE S.A.

Effective date: 20061206

Owner name: Q&D TRADING LIMITED

Effective date: 20061206

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: INNOVENE EUROPE LIMITED

Owner name: INEOS EUROPE LIMITED

Owner name: NAPHTACHIMIE S.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

BECA Be: change of holder's address

Owner name: *INEOS EUROPE LTDTOUR NEPTUNE LA D?FENSE 1 20 PLAC

Effective date: 20070118

Owner name: COMPASS POINT, 79-87 KINGSTON ROAD, STAINES, MIDDL

Effective date: 20070118

Owner name: S.A. *NAPHTACHIMIE

Effective date: 20070118

BECN Be: change of holder's name

Owner name: *INEOS EUROPE LTDTOUR NEPTUNE LA D?FENSE 1 20 PLAC

Effective date: 20070118

Owner name: COMPASS POINT, 79-87 KINGSTON ROAD, STAINES, MIDDL

Effective date: 20070118

Owner name: *INEOS EUROPE LTD

Effective date: 20070118

Owner name: S.A. *NAPHTACHIMIE

Effective date: 20070118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080522

Year of fee payment: 20

Ref country code: CH

Payment date: 20080515

Year of fee payment: 20

Ref country code: DE

Payment date: 20080514

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080417

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080617

Year of fee payment: 20

Ref country code: IT

Payment date: 20080520

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080418

Year of fee payment: 20

Ref country code: LU

Payment date: 20080704

Year of fee payment: 20

Ref country code: SE

Payment date: 20080418

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080506

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20080418

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BE20 Be: patent expired

Owner name: S.A. *NAPHTACHIMIE

Effective date: 20090519

Owner name: *INEOS EUROPE LTD

Effective date: 20090519

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090518

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090519

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20090519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090518