EP0345120B1 - Washing machine or dryer with means for automatically determining the weight of the laundry - Google Patents

Washing machine or dryer with means for automatically determining the weight of the laundry Download PDF

Info

Publication number
EP0345120B1
EP0345120B1 EP89401403A EP89401403A EP0345120B1 EP 0345120 B1 EP0345120 B1 EP 0345120B1 EP 89401403 A EP89401403 A EP 89401403A EP 89401403 A EP89401403 A EP 89401403A EP 0345120 B1 EP0345120 B1 EP 0345120B1
Authority
EP
European Patent Office
Prior art keywords
drum
acceleration
motor
dryer
washing machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89401403A
Other languages
German (de)
French (fr)
Other versions
EP0345120A1 (en
Inventor
Jean-Luc Roux
Bernard Delhomme
François Garofalo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Industrielle dAppareils Menagers SA CIAPEM
Original Assignee
Compagnie Industrielle dAppareils Menagers SA CIAPEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8807216A external-priority patent/FR2631988B1/en
Application filed by Compagnie Industrielle dAppareils Menagers SA CIAPEM filed Critical Compagnie Industrielle dAppareils Menagers SA CIAPEM
Priority to AT89401403T priority Critical patent/ATE85370T1/en
Publication of EP0345120A1 publication Critical patent/EP0345120A1/en
Application granted granted Critical
Publication of EP0345120B1 publication Critical patent/EP0345120B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/50Control of washer-dryers characterised by the purpose or target of the control
    • D06F33/52Control of the operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/04Quantity, e.g. weight or variation of weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/24Spin speed; Drum movements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/44Current or voltage
    • D06F2103/46Current or voltage of the motor driving the drum
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/18Condition of the laundry, e.g. nature or weight

Definitions

  • the invention relates to a washing machine or dryer type laundry rotating drum which comprises means for automatically detecting the load of laundry introduced into the drum.
  • a household washing machine usually has a rotating drum in which the laundry is placed. This drum is perforated and is placed in a tank receiving the water or the mixture of water and detergent. The mixing of the linen is obtained for example by means of projections inside the drum.
  • the volume of water introduced into the machine the quantity of detergent and other parameters, such as the durations of the various phases of operation of the washing machine: prewash, wash, rinse, spin, depending of the load of laundry introduced into the machine.
  • the invention relates to an improvement in the washing machine described in this European patent 84 402090. It allows a more precise measurement. It also makes it possible, in one embodiment, to simplify the manufacture of the washing machine, in particular by doing without means for measuring the intensity of the electric current passing through the drive motor of the drum.
  • the washing machine or dryer comprises, for determining the load of laundry in the drum, a means of measuring the moment of inertia of the laundry relative to the axis of rotation of this drum, this measurement being obtained by rotating the drum at constant acceleration. It is characterized in that it comprises a processor, in particular a microprocessor, controlling the rotation of the drum successively according to two different values of acceleration, this processor determining the moment of inertia of the laundry from a difference between, of on the one hand, a measurement of a parameter as a function of the acceleration which is carried out during the first acceleration, and on the other hand, a measurement of the same parameter carried out during the second acceleration.
  • a processor in particular a microprocessor
  • the value ⁇ of the phase angle of a control with phase control of the speed of the drum is used, without involving the intensity of the electric current passing through the motor.
  • the moment of inertia is determined from a difference between a measurement of the intensity of the electric current passing through the motor produced during the first acceleration and a measurement of this intensity passing through the motor during the second acceleration .
  • the invention relates to a washing machine or dryer, characterized in that the universal drum drive motor being supplied with alternating current and its speed being determined by a phase control command by means of to a processor, in particular a microprocessor, this processor determines the moment of inertia from the value of the phase angle.
  • the washing machine (not shown as a whole) is of the domestic type with a washing drum with a perforated cylindrical wall rotating around a horizontal axis inside a tank.
  • the electric motor 10 (FIG. 1) for driving the drum is of the universal type. It is supplied with alternating current 11, for example at the frequency of 50 Hz from the network, by means of a controlled switch 12 such as a triac.
  • a microprocessor 13 is provided, connected to the triac control electrode 12 by means of an interface circuit 14.
  • the microprocessor 13 imposes on the motor 10 a set speed dependent on a program prerecorded in its memory. This microprocessor also constitutes the comparator for speed regulation. To this end, it has an input 13 to which the output signal of a tachometer generator 15 driven by the motor 10 is applied.
  • the microprocessor 13 controls the angle ⁇ (FIG. 2) of opening of the triac 12 at each alternation of the alternating signal 11, that is to say the duration during which this switch 12 is conductive during each period of this signal 11.
  • this phase angle ⁇ which is determined by the microprocessor 13, is used for measuring the moment of inertia L of the laundry in the drum, that is to say for measuring the load of laundry.
  • C is the engine torque
  • L the moment of inertia of the laundry with respect to the axis of the drum
  • J the moment of inertia of the drum with respect to its axis of rotation
  • d ⁇ / d t the acceleration (or decelaration) of the rotation of the drum
  • C R the resistant torque that opposes the drum.
  • K is a constant specific to the motor and I the intensity of the electric current which crosses it.
  • K ′ is a constant.
  • V S is the maximum amplitude of the voltage 11.
  • V S K1 ⁇ - K′ ⁇ R K (L + J) d ⁇ d t + R K VS R
  • V S , K1, K ′, R, K, J and C R are constants
  • is a datum introduced (thanks to the tachometric generator 15) at the input 13 of the microprocessor 13 and the data ⁇ and d ⁇ / d t are calculated by the microprocessor.
  • the microprocessor 13 can be programmed to calculate the moment of inertia L from the formula (9) above.
  • the microprocessor is programmed in such a way that before introducing water into the machine, the motor 10 is made to rotate at a speed V corresponding for example to 200 revolutions / minute for the drum, then from time t1 ( Figure 3) increasing this speed at constant acceleration to a speed V2, for example corresponding to a rotation speed of 400 revolutions / minute for the drum.
  • the duration of this ramp up is ⁇ t1, that is to say approximately 4 seconds in the example.
  • the microprocessor periodically determines, every twenty milliseconds (that is to say at the frequency of 50 Hz) in the example, the value of the angle ⁇ 1 of control of the triac 12 and this angle is stored; the microprocessor also determines the sum, noted ⁇ 1, of all these angles ⁇ 1.
  • the value of the phase control angle ⁇ 2 of the triac 12 is determined every 80 milliseconds (four times twenty milliseconds) and, as for the first ramp, the sum ⁇ 2 of all is carried out. these angles that we put in memory.
  • This difference D is proportional to L + J, that is to say represents the load of laundry in the drum. Indeed :
  • V S K1 ⁇ 1 - K′V i R K (L + J) d w d t 1 + R K VS R
  • V S K1 ⁇ 2 - K′V i R K (L + J) d w 2 d t + R K VS R
  • the sampling period is the same during the second ramp, that is to say that in the example the number of samples is four times greater for the second ramp than for the first.
  • the sampling period during the second ramp must be ⁇ times greater than during the first ramp, ⁇ being the ratio between the first and second acceleration. If the sampling period is the same for the two ramps, it will then be necessary to assign to the sum of the angles ⁇ for the second ramp a division factor equal to this same ratio ⁇ between the first and the second acceleration.
  • the washing machine according to the invention is of a particularly simple embodiment since it does not require any particular means of measuring the intensity of the electric current passing through the motor 10.
  • the indication of load of linen is more precise than with the provisions described in said European patent mentioned above because the calculation carried out makes it possible to eliminate the factor C R in all rigor.
  • FIGS. 4 and 5 another embodiment of the invention which also allows a more precise measurement of the laundry load thanks to the elimination of the factor C R. It differs from the embodiment previously described by the fact that the measurement involves the intensity of the electric current passing through the motor instead of the phase angle.
  • I is measurable, for example by placing a resistor in series with the motor and by determining the voltage across this resistor, J and K are constants, ⁇ is measurable, for example, using a tachometer generator and d ⁇ d t is calculated from ⁇ . The calculation is carried out in the example using a microprocessor.
  • the drum drive motor Before introducing water into the machine, the drum drive motor is rotated at a speed V corresponding for example to 200 revolutions / minute for the drum, then from the instant t1 (FIG. 4) we increases this speed at constant acceleration to a speed V2, for example corresponding to a rotation speed of about 400 revolutions / minute for the drum.
  • the duration of this ramp up is ⁇ t1, between the instants t1 and t2, that is to say approximately 4 seconds in the example.
  • the intensity I of the current passing through the motor and these intensities are stored in memory.
  • the microprocessor also determines the sum, noted ⁇ I1, of all these intensities I1.
  • the intensity I2 of the current passing through the motor is determined every 80 milliseconds (four times twenty milliseconds) and, as for the first ramp, the sum ⁇ I2 of all these intensities is taken we put in memory.
  • the sampling period is the same during the second ramp, that is to say that in the example the number of samples is four times higher for the second ramp than for the first.
  • the sampling period during the second ramp must be ⁇ times greater than during the first ramp, ⁇ being the ratio between the first and second acceleration. If the sampling period is the same for the two ramps, then it will be necessary to assign to the sum of the intensities I for the second ramp a division factor equal to this same ratio between the first and the second acceleration.
  • the laundry load can be determined not only before any water is introduced into the washing machine, but also at other times during machine operation.
  • the invention also applies to a dryer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Description

L'invention est relative à une machine à laver ou sécher le linge de type à tambour tournant qui comporte des moyens de détection automatique de la charge de linge introduite dans ce tambour.The invention relates to a washing machine or dryer type laundry rotating drum which comprises means for automatically detecting the load of laundry introduced into the drum.

Un lave-linge domestique comporte habituellement un tambour tournant dans lequel est disposé le linge. Ce tambour est perforé et est disposé dans une cuve recevant l'eau ou le mélange d'eau et de produit lessiviel. Le brassage du linge est obtenu par exemple grâce à des saillies à l'intérieur du tambour.A household washing machine usually has a rotating drum in which the laundry is placed. This drum is perforated and is placed in a tank receiving the water or the mixture of water and detergent. The mixing of the linen is obtained for example by means of projections inside the drum.

Il est en général préférable que le volume d'eau introduit dans la machine, la quantité de produit lessiviel et d'autres paramètres, tels que les durées des diverses phases de fonctionnement du linge-linge : prélavage, lavage, rinçage, essorage, dépendant de la charge de linge introduite dans la machine.It is generally preferable that the volume of water introduced into the machine, the quantity of detergent and other parameters, such as the durations of the various phases of operation of the washing machine: prewash, wash, rinse, spin, depending of the load of laundry introduced into the machine.

Dans le brevet européen n° 84 402090 au nom de la Société ESSWEIN on a proposé un lave-linge dans lequel la charge de linge est mesurée par le moment d'inertie L du linge autour de l'axe de rotation du tambour. Ce moment d'inertie est déterminé par le couple d'entraînement. du tambour à accélération déterminée non nulle, de préférence constante. Quand le tambour est entraîné par un moteur électrique du type universel le couple est mesuré par l'intensité du courant électrique traversant le moteur. Mais cette détermination fait intervenir une estimation du couple résistant (CR) qu'oppose le tambour. Cette estimation confère une imprécision à la mesure de la charge de linge.In European patent n ° 84 402090 in the name of the company ESSWEIN, a washing machine has been proposed in which the load of laundry is measured by the moment of inertia L of the laundry around the axis of rotation of the drum. This moment of inertia is determined by the drive torque. drum with non-zero determined acceleration, preferably constant. When the drum is driven by an electric motor of the universal type the torque is measured by the intensity of the electric current passing through the motor. However, this determination involves an estimate of the resistant torque (C R ) opposed by the drum. This estimate gives an inaccuracy to the measurement of the load of linen.

Dans la demande de brevet britannique GB-A-2 202 332 publiée après les dates de priorité de la présente demande, on a décrit un système de détection du poids du linge dans la machine afin de contrôler la quantité d'eau de rinçage. Le système décrit utilise un microprocesseur.In British patent application GB-A-2 202 332 published after the priority dates of this application, it was describes a system for detecting the weight of the laundry in the machine in order to monitor the amount of rinse water. The system described uses a microprocessor.

En fait, l'invention se rapporte à un perfectionnement au lave-linge décrit dans ce brevet européen 84 402090. Elle permet une mesure plus précise. Elle permet aussi, dans une réalisation, de simplifier la fabrication du lave-linge, notamment en se passant d'un moyen de mesure de l'intensité du courant électrique traversant le moteur d'entraînement du tambour.In fact, the invention relates to an improvement in the washing machine described in this European patent 84 402090. It allows a more precise measurement. It also makes it possible, in one embodiment, to simplify the manufacture of the washing machine, in particular by doing without means for measuring the intensity of the electric current passing through the drive motor of the drum.

Le lave-linge ou sèche-linge selon l'invention comprend, pour déterminer la charge de linge dans le tambour, un moyen de mesure du moment d'inertie du linge par rapport à l'axe de rotation de ce tambour, cette mesure étant obtenue en faisant tourner le tambour à accélération constante. Il est caractérisé en ce qu'il comporte un processeur, notamment un microprocesseur, commandant la rotation du tambour successivement suivant deux valeurs différentes d'accélération, ce processeur déterminant le moment d'inertie du linge à partir d'une différence entre, d'une part, une mesure d'un paramètre fonction de l'accélération qui est réalisée lors de la première accélération, et d'autre part, une mesure du même paramètre réalisée lors de la seconde accélération.The washing machine or dryer according to the invention comprises, for determining the load of laundry in the drum, a means of measuring the moment of inertia of the laundry relative to the axis of rotation of this drum, this measurement being obtained by rotating the drum at constant acceleration. It is characterized in that it comprises a processor, in particular a microprocessor, controlling the rotation of the drum successively according to two different values of acceleration, this processor determining the moment of inertia of the laundry from a difference between, of on the one hand, a measurement of a parameter as a function of the acceleration which is carried out during the first acceleration, and on the other hand, a measurement of the same parameter carried out during the second acceleration.

De cette manière on élimine le paramètre CR du calcul.In this way we eliminate the parameter C R from the calculation.

Dans une première réalisation de l'invention on utilise la valeur ϑ de l'angle de phase d'une commande à contrôle de phase de la vitesse du tambour, sans faire intervenir l'intensité du courant électrique traversant le moteur.In a first embodiment of the invention, the value ϑ of the phase angle of a control with phase control of the speed of the drum is used, without involving the intensity of the electric current passing through the motor.

Dans une seconde réalisation le moment d'inertie est déterminé à partir d'une différence entre une mesure de l'intensité du courant électrique traversant le moteur réalisé lors de la première accélération et une mesure de cette intensité traversant le moteur lors de la seconde accélération.In a second embodiment, the moment of inertia is determined from a difference between a measurement of the intensity of the electric current passing through the motor produced during the first acceleration and a measurement of this intensity passing through the motor during the second acceleration .

Selon un autre aspect, l'invention se rapporte à un lave-linge ou sèche-linge, caractérisé en ce que le moteur universel d'entraînement du tambour étant alimenté en courant alternatif et sa vitesse étant déterminée par une commande à contrôle de phase grâce à un processeur, notamment un microprocesseur, ce processeur détermine le moment d'inertie à partir de la valeur de l'angle de phase.According to another aspect, the invention relates to a washing machine or dryer, characterized in that the universal drum drive motor being supplied with alternating current and its speed being determined by a phase control command by means of to a processor, in particular a microprocessor, this processor determines the moment of inertia from the value of the phase angle.

On voit qu'ainsi c'est le processeur qui détermine le moment d'inertie sans qu'il soit besoin de prévoir un moyen particulier de mesure de l'intensité du courant électrique traversant le moteur.We see that this is how the processor determines the moment of inertia without the need to provide a particular means of measuring the intensity of the electric current. going through the engine.

D'autres caractéristiques et avantages de l'invention apparaîtront avec la description de certains de ses modes de réalisation, celle-ci étant effectuée en se référant aux dessins ci-annexés sur lesquels :

  • la figure 1 est un schéma montrant un moteur d'entraînement de tambour de lave-linge avec son circuit de commande,
  • les figures 2 et 3 sont des diagrammes illustrant une commande de lave-linge selon l'invention, et
  • les figures 4 et 5 sont d'autres diagrammes illustrant le fonctionnement d'un lave-linge pour une variante.
Other characteristics and advantages of the invention will appear with the description of some of its embodiments, this being carried out with reference to the attached drawings in which:
  • FIG. 1 is a diagram showing a washing machine drum drive motor with its control circuit,
  • FIGS. 2 and 3 are diagrams illustrating a washing machine control according to the invention, and
  • Figures 4 and 5 are other diagrams illustrating the operation of a washing machine for a variant.

Dans l'exemple le lave-linge (non montré dans son ensemble) est du type domestique avec un tambour à linge à paroi cylindrique perforée tournant autour d'un axe horizontal à l'intérieur d'une cuve.In the example the washing machine (not shown as a whole) is of the domestic type with a washing drum with a perforated cylindrical wall rotating around a horizontal axis inside a tank.

Le moteur électrique 10 (figure 1) d'entraînement du tambour est du type universel. Il est alimenté en courant alternatif 11, par exemple à la fréquence de 50 Hz du réseau, par l'intermédiaire d'un interrupteur commandé 12 tel qu'un triac.The electric motor 10 (FIG. 1) for driving the drum is of the universal type. It is supplied with alternating current 11, for example at the frequency of 50 Hz from the network, by means of a controlled switch 12 such as a triac.

Pour la commande de l'interrupteur 12 et donc du moteur 10 on prévoit un microprocesseur 13 relié à l'électrode de commande de triac 12 par l'intermédiaire d'un circuit interface 14.For the control of the switch 12 and therefore of the motor 10, a microprocessor 13 is provided, connected to the triac control electrode 12 by means of an interface circuit 14.

Le microprocesseur 13 impose au moteur 10 une vitesse de consigne dépendant d'un programme préenregistré dans sa mémoire. Ce microprocesseur constitue également le comparateur pour la régulation de vitesse. A cet effet, il présente une entrée 13 sur laquelle est appliqué le signal de sortie d'une génératrice tachymétrique 15 entraînée par le moteur 10.The microprocessor 13 imposes on the motor 10 a set speed dependent on a program prerecorded in its memory. This microprocessor also constitutes the comparator for speed regulation. To this end, it has an input 13 to which the output signal of a tachometer generator 15 driven by the motor 10 is applied.

Le microprocesseur 13 commande l'angle ϑ (figure 2) d'ouverture du triac 12 à chaque alternance du signal alternatif 11, c'est-à-dire la durée pendant laquelle cet interrupteur 12 est conducteur au cours de chaque période de ce signal 11.The microprocessor 13 controls the angle ϑ (FIG. 2) of opening of the triac 12 at each alternation of the alternating signal 11, that is to say the duration during which this switch 12 is conductive during each period of this signal 11.

Sur le diagramme de la figure 2 on a représenté en abscisses l'angle d'ouverture ϑ et en ordonnées le signal alternatif 11. Au cours d'une alternance du signal 11, c'est-à-dire pour des angles de phase ϑ compris entre 0 et π radians, le triac est ouvert, c'est-à-dire non conducteur, entre les angles 0 et ϑ et conducteur entre les angles ϑ et π. C'est le microprocesseur 13 qui fournit l'impulsion de commande de fermeture du triac 12.In the diagram of FIG. 2, we have represented in abscissa the opening angle ϑ and on the ordinate the alternating signal 11. During a alternation of the signal 11, that is to say for phase angles ϑ between 0 and π radians, the triac is open , that is to say non-conductive, between angles 0 and ϑ and conductive between angles ϑ and π. It is the microprocessor 13 which provides the closing control pulse for the triac 12.

Selon un aspect de l'invention cet angle de phase ϑ, qui est déterminé par le microprocesseur 13, est utilisé pour la mesure du moment d'inertie L du linge dans le tambour, c'est-à-dire pour la mesure de la charge de linge.According to one aspect of the invention, this phase angle ϑ, which is determined by the microprocessor 13, is used for measuring the moment of inertia L of the laundry in the drum, that is to say for measuring the load of laundry.

En effet on part de la formule suivante : C = (L + J) d ω d t + C R

Figure imgb0001
Indeed we start from the following formula: C = (L + J) d ω d t + C R
Figure imgb0001

Dans cette formule C est le couple moteur, L le moment d'inertie du linge par rapport à l'axe du tambour, J le moment d'inertie du tambour par rapport à son axe de rotation, dω/dt l'accélération (ou décélaration) de la rotation du tambour et CR le couple résistant qu'oppose le tambour.In this formula C is the engine torque, L the moment of inertia of the laundry with respect to the axis of the drum, J the moment of inertia of the drum with respect to its axis of rotation, d ω / d t the acceleration (or decelaration) of the rotation of the drum and C R the resistant torque that opposes the drum.

Pour un moteur universel le couple moteur est proportionnel à l'intensité du courant électrique qui le traverse, c'est-à-dire : C = KI

Figure imgb0002
For a universal motor, the motor torque is proportional to the intensity of the electric current flowing through it, that is to say: C = KI
Figure imgb0002

Dans cette formule K est une constante propre au moteur et I l'intensité du courant électrique qui le traverse.In this formula K is a constant specific to the motor and I the intensity of the electric current which crosses it.

De plus on sait que la force contre-électromotrice E du moteur universel est proportionnelle à sa vitesse de rotation; on peut donc écrire : E = K′ ω

Figure imgb0003
In addition, we know that the counter-electromotive force E of the universal motor is proportional to its speed of rotation; we can therefore write: E = K ′ ω
Figure imgb0003

Dans cette formule K′ est une constante.In this formula K ′ is a constant.

On sait aussi que la tension U aux bornes du moteur est liée à la force contre-électromotrice E, à la résistance électrique R présentée par ce moteur et à l'intensité I par la relation suivante : U = E + RI

Figure imgb0004
We also know that the voltage U across the motor is related to the counter-electromotive force E, the electrical resistance R presented by this motor and the intensity I by the following relationship: U = E + RI
Figure imgb0004

De cette formule on déduit : U = E + RI = K′ω + RI = K′ω + RC K

Figure imgb0005
From this formula we deduce: U = E + RI = K′ω + RI = K′ω + RC K
Figure imgb0005

Or, la tension U fournie au moteur est (figure 2) fonction de l'angle ϑ, c'est-à-dire : U = V f(ϑ)

Figure imgb0006
However, the voltage U supplied to the motor is (FIG. 2) a function of the angle ϑ, that is to say: U = V f (ϑ)
Figure imgb0006

Dans cette formule VS est l'amplitude maximum de la tension 11.In this formula V S is the maximum amplitude of the voltage 11.

Des formules (5) et (6) ci-dessus on déduit : V S f(ϑ) - K′ω = RC K = R K (L + J) d ω d t + R K C R

Figure imgb0007
From formulas (5) and (6) above we deduce: V S f (ϑ) - K′ω = RC K = R K (L + J) d ω d t + R K VS R
Figure imgb0007

Selon un aspect de l'invention pour le calcul de L (le moment d'inertie du linge) on fait l'approximation suivante : on considère que f(ϑ) est proportionnel à ϑ, c'est-à-dire qu'on peut écrire : f(ϑ) = K₁ϑ,

Figure imgb0008
According to one aspect of the invention for the calculation of L (the moment of inertia of the laundry) we make the following approximation: we consider that f (ϑ) is proportional to ϑ, that is to say that can write: f (ϑ) = K₁ϑ,
Figure imgb0008

K₁ étant une constante.K₁ being a constant.

Ainsi : V S K₁ϑ - K′ω = R K (L+J) d ω d t + R K C R

Figure imgb0009
So : V S K₁ϑ - K′ω = R K (L + J) d ω d t + R K VS R
Figure imgb0009

Dans la relation (9) ci-dessus VS, K₁, K′, R, K, J et CR sont des constantes, ω est une donnée introduite (grâce à la génératrice tachymétrique 15) à l'entrée 13 du microprocesseur 13 et les données ϑ et d ω /dt sont calculées par le microprocesseur. Il en résulte que le microprocesseur 13 peut être programmé pour calculer le moment d'inertie L à partir de la formule (9) ci-dessus.In relation (9) above V S , K₁, K ′, R, K, J and C R are constants, ω is a datum introduced (thanks to the tachometric generator 15) at the input 13 of the microprocessor 13 and the data ϑ and d ω / d t are calculated by the microprocessor. As a result, the microprocessor 13 can be programmed to calculate the moment of inertia L from the formula (9) above.

Toutefois pour simplifier le calcul, et pour que ce calcul ne dépende pas de la valeur du couple résistant CR qui peut varier avec la vitesse, on préfère procéder de la façon suivante :
   Le microprocesseur est programmé de façon telle qu'avant d'introduire de l'eau dans la machine on fait tourner le moteur 10 à une vitesse V correspondant par exemple à 200 tours/minute pour le tambour, puis à partir de l'instant t₁ (figure 3) on augmente cette vitesse à accélération constante jusqu'à une vitesse V₂ , par exemple correspondant à une vitesse de rotation de 400 tours/minute environ pour le tambour. La durée de cette rampe de montée en vitesse est Δt₁ c'est-à-dire 4 secondes environ dans l'exemple.
However, to simplify the calculation, and so that this calculation does not depend on the value of the resistive torque C R which can vary with speed, we prefer to proceed as follows:
The microprocessor is programmed in such a way that before introducing water into the machine, the motor 10 is made to rotate at a speed V corresponding for example to 200 revolutions / minute for the drum, then from time t₁ (Figure 3) increasing this speed at constant acceleration to a speed V₂, for example corresponding to a rotation speed of 400 revolutions / minute for the drum. The duration of this ramp up is Δt₁, that is to say approximately 4 seconds in the example.

Ensuite on ramène la vitesse de rotation du moteur à la valeur V₁ puis on recommence l'accélération du tambour avec une accélération différente, quatre fois plus petite dans l'exemple. On arrête cette seconde accélération lorsque la vitesse du moteur atteint la valeur V₂. La durée de cette rampe est Δt₂. Etant donné que l'accélération est quatre fois inférieure on peut écrire : Δt₁ = Δt₂ 4

Figure imgb0010
Then the motor speed is reduced to the value V₁ and then the acceleration of the drum is started again with a different acceleration, four times smaller in the example. This second acceleration is stopped when the motor speed reaches the value V₂. The duration of this ramp is Δt₂. Since the acceleration is four times lower we can write: Δt₁ = Δt₂ 4
Figure imgb0010

Au cours de la première période de durée Δt₁ le microprocesseur détermine périodiquement, tout les vingt millisecondes (c'est-à-dire à la fréquence de 50 Hz) dans l'exemple, la valeur de l'angle ϑ₁ de commande du triac 12 et cet angle est mis en mémoire; le microprocesseur détermine aussi la somme, notée Σϑ₁ , de tous ces angles ϑ₁.During the first period of duration Δt₁ the microprocessor periodically determines, every twenty milliseconds (that is to say at the frequency of 50 Hz) in the example, the value of the angle ϑ₁ of control of the triac 12 and this angle is stored; the microprocessor also determines the sum, noted Σϑ₁, of all these angles ϑ₁.

Au cours de la seconde rampe de durée t₂ on détermine toutes les 80 millisecondes (quatre fois vingt millisecondes) la valeur de l'angle ϑ₂ de commande de phase du triac 12 et, comme pour la première rampe, on effectue la somme Σϑ₂ de tous ces angles que l'on met en mémoire.During the second ramp of duration t₂, the value of the phase control angle ϑ₂ of the triac 12 is determined every 80 milliseconds (four times twenty milliseconds) and, as for the first ramp, the sum Σϑ₂ of all is carried out. these angles that we put in memory.

Ensuite on effectue la différence entre ces deux sommes soit : D = Σϑ₁ -Σϑ₂

Figure imgb0011
Then we make the difference between these two sums either: D = Σϑ₁ -Σϑ₂
Figure imgb0011

Cette différence D est proportionnelle à L + J, c'est-à-dire représente la charge de linge dans le tambour. En effet :This difference D is proportional to L + J, that is to say represents the load of laundry in the drum. Indeed :

Lorsque la vitesse de rotation du moteur a la valeur Vi au cours de la première rampe, la relation (9) ci-dessus s'écrit : V S K₁ϑ₁ - K′V i = R K (L+J) d w d t 1 + R K C R

Figure imgb0012
When the engine speed has the value V i during the first ramp, the above relation (9) is written: V S K₁ϑ₁ - K′V i = R K (L + J) d w d t 1 + R K VS R
Figure imgb0012

Dans cette formule : d ω d t 1 = V₂ - V₁ Δt₁

Figure imgb0013
In this formula: d ω d t 1 = V₂ - V₁ Δt₁
Figure imgb0013

Lorsque la vitesse de rotation du moteur a la même valeur Vi au cours de la seconde rampe, la relation (9) s'écrit encore : V S K₁ϑ₂ - K′V i = R K (L+J) d w 2 d t + R K C R

Figure imgb0014
When the engine speed has the same value V i during the second ramp, the relation (9) is still written: V S K₁ϑ₂ - K′V i = R K (L + J) d w 2 d t + R K VS R
Figure imgb0014

Dans cette formule : dω₂ d t = V₂ - V₁ Δt₂ = 1 4 d ω1 d t

Figure imgb0015
In this formula: from d t = V₂ - V₁ Δt₂ = 1 4 d ω1 d t
Figure imgb0015

Si on effectue la différence membre à membre entre les relations (12) et (14) ci-dessus on obtient :

Figure imgb0016
If we make the member-to-member difference between relations (12) and (14) above we obtain:
Figure imgb0016

On observera que dans les formules (12) et (14) les termes R K

Figure imgb0017
CR s'éliminent en toute rigueur car ces formules correspondent aux mêmes vitesses de rotation, donc aux mêmes valeurs de couple résistant CR.It will be observed that in the formulas (12) and (14) the terms R K
Figure imgb0017
C R are eliminated in all rigor because these formulas correspond to the same rotational speeds, therefore to the same values of resistant torque C R.

Le nombre n de mesures de l'angle ϑ ou nombre n d'échantillonnages, étant le même pour les deux rampes d'accélération on peut écrire :

Figure imgb0018
The number n of measurements of the angle ϑ or number n of samples, being the same for the two acceleration ramps, we can write:
Figure imgb0018

On voit donc que la différence D =Σϑ₁ -Σϑ₂ est bien proportionnelle à L + J.We therefore see that the difference D = Σϑ₁ -Σϑ₂ is indeed proportional to L + J.

En variante la période d'échantillonnage est la même au cours de la seconde rampe, c'est-à-dire que dans l'exemple le nombre d'échantillons est quatre fois supérieur pour la seconde rampe que pour la première . Dans ce cas il faut diviser la sommes des valeurs de ϑ₂ par quatre pour obtenir la grandeur D proportionnelle à L + J, c'est-à-dire que le microprocesseur calcule la grandeur D telle que : D = Σϑ₁ - 1 4 Σϑ₂

Figure imgb0019
As a variant, the sampling period is the same during the second ramp, that is to say that in the example the number of samples is four times greater for the second ramp than for the first. In this case it is necessary to divide the sum of the values of ϑ₂ by four to obtain the quantity D proportional to L + J, that is to say that the microprocessor calculates the quantity D such that: D = Σϑ₁ - 1 4 Σϑ₂
Figure imgb0019

De façon générale si on veut le même nombre n d'échantillons au cours des deux rampes il faut que la période d'échantillonnage au cours de la seconde rampe soit λ fois plus importante qu'au cours de la première rampe, λ étant le rapport entre la première et la seconde accélération. Si la période d'échantillonnage est la même pour les deux rampes il faudra alors affecter à la somme des angles ϑ pour la seconde rampe un facteur de division égal à ce même rapport λ entre la première et la seconde accélération.Generally if the same number n of samples is desired during the two ramps, the sampling period during the second ramp must be λ times greater than during the first ramp, λ being the ratio between the first and second acceleration. If the sampling period is the same for the two ramps, it will then be necessary to assign to the sum of the angles ϑ for the second ramp a division factor equal to this same ratio λ between the first and the second acceleration.

Quel que soit le mode de réalisation le lave-linge selon l'invention est d'une réalisation particulièrement simple car il ne nécessite pas de moyen particulier de mesure de l'intensité du courant électrique traversant le moteur 10. En outre l'indication de charge de linge est plus précise qu'avec les dispositions décrites dans ledit brevet européen mentionné ci-dessus car le calcul effectué permet d'éliminer le facteur CR en toute rigueur.Whatever the embodiment, the washing machine according to the invention is of a particularly simple embodiment since it does not require any particular means of measuring the intensity of the electric current passing through the motor 10. In addition, the indication of load of linen is more precise than with the provisions described in said European patent mentioned above because the calculation carried out makes it possible to eliminate the factor C R in all rigor.

Il n'est bien entendu pas indispensable que la seconde rampe 21 suive immédiatement la première rampe 20 comme représenté sur la figure 3; il est possible de séparer la fin de la première rampe du début de la seconde rampe.It is of course not essential that the second ramp 21 immediately follow the first ramp 20 as shown in Figure 3; it is possible to separate the end of the first ramp from the start of the second ramp.

On va maintenant décrire en relation avec les figures 4 et 5 un autre mode de réalisation de l'invention qui permet aussi une mesure plus précise de la charge de linge grâce à l'élimination du facteur CR. Il se distingue de la réalisation précédemment décrite par le fait que la mesure fait intervenir l'intensité du courant électrique traversant le moteur au lieu de l'angle de phase.We will now describe in relation to FIGS. 4 and 5 another embodiment of the invention which also allows a more precise measurement of the laundry load thanks to the elimination of the factor C R. It differs from the embodiment previously described by the fact that the measurement involves the intensity of the electric current passing through the motor instead of the phase angle.

Des formules (1) et (2) ci-dessus ont déduit : I = L + J K d ω d t + C K R

Figure imgb0020
Formulas (1) and (2) above deduced: I = L + J K d ω d t + VS K R
Figure imgb0020

Dans cette relation (20) ci-dessus I est mesurable, par exemple en disposant une résistance en série avec le moteur et en déterminant la tension aux bornes de cette résistance, J et K sont des constantes, ω est mesurable, par exemple, à l'aide d'une génératrice tachymétrique et d ω d t

Figure imgb0021
est calculé à partir de ω . Le calcul s'effectue dans l'exemple à l'aide d'un microprocesseur.In this relation (20) above I is measurable, for example by placing a resistor in series with the motor and by determining the voltage across this resistor, J and K are constants, ω is measurable, for example, using a tachometer generator and d ω d t
Figure imgb0021
is calculated from ω. The calculation is carried out in the example using a microprocessor.

Par contre, comme déjà indiqué, le couple résistant CR ne peut être aisément mesuré directement. C'est pourquoi on prévoit selon l'invention une commande qui permet d'éliminer ce paramètre CR. A cet effet :
   Avant d'introduire de l'eau dans la machine on fait tourner le moteur d'entraînement du tambour à une vitesse V correspondant par exemple à 200 tours/minute pour le tambour, puis à partir de l'instant t₁ (figure 4) on augmente cette vitesse à accélération constante jusqu'à une vitesse V₂ , par exemple correspondant à une vitesse de rotation de 400 tours/minute environ pour le tambour. La durée de cette rampe de montée en vitesse est Δ t₁ , entre les instants t₁ et t₂,c'est-à-dire 4 secondes environ dans l'exemple.
On the other hand, as already indicated, the resisting torque C R cannot be easily measured directly. This is why, according to the invention, provision is made for a command which makes it possible to eliminate this parameter C R. To this end:
Before introducing water into the machine, the drum drive motor is rotated at a speed V corresponding for example to 200 revolutions / minute for the drum, then from the instant t₁ (FIG. 4) we increases this speed at constant acceleration to a speed V₂, for example corresponding to a rotation speed of about 400 revolutions / minute for the drum. The duration of this ramp up is Δ t₁, between the instants t₁ and t₂, that is to say approximately 4 seconds in the example.

Ensuite on ramène la vitesse de rotation du moteur à la valeur V₁ puis on recommence, à l'instant t₃, l'accélération du tambour avec une accélération différente, quatre fois plus petite dans l'exemple. On arrête, à l'instant t₄, cette seconde accélération lorsque la vitesse du moteur atteint la valeur V₂. La durée de cette rampe est Δ t₂. Etant donné que l'accélération est quatre fois inférieure on peut écrire : Δt₁ = Δt₂ 4

Figure imgb0022
Then the motor speed is reduced to the value V₁ and then the acceleration of the drum is started again at time t avec with a different acceleration, four times smaller in the example. This second acceleration is stopped at time t₄ when the engine speed reaches the value V₂. The duration of this ramp is Δ t₂. Since the acceleration is four times lower we can write: Δt₁ = Δt₂ 4
Figure imgb0022

La variation de l'intensité I du courant traversant le moteur universel, entraînant le tambour est représentée sur la figure 5.The variation of the intensity I of the current passing through the universal motor, driving the drum is shown in FIG. 5.

Au cours de la première période de durée Δ t₁, on détermine, à l'aide dudit microprocesseur, périodiquement, toutes les vingt millisecondes (c'est-à-dire à la fréquence de 50 Hz) dans l'exemple, l'intensité I du courant traversant le moteur et ces intensités sont mises en mémoire. Le microprocesseur détermine aussi la somme, notéeΣ I₁, de toutes ces intensités I₁.During the first period of duration Δ t₁, using said microprocessor, periodically, every twenty milliseconds (that is to say at the frequency of 50 Hz) is determined in the example, the intensity I of the current passing through the motor and these intensities are stored in memory. The microprocessor also determines the sum, notedΣ I₁, of all these intensities I₁.

Au cours de la seconde rampe de durée Δ t₂ on détermine toutes les 80 millisecondes (quatre fois vingt millisecondes) l'intensité I₂ du courant traversant le moteur et, comme pour la première rampe, on effectue la somme Σ I₂ de toutes ces intensités que l'on met en mémoire.During the second ramp of duration Δ t₂, the intensity I₂ of the current passing through the motor is determined every 80 milliseconds (four times twenty milliseconds) and, as for the first ramp, the sum Σ I₂ of all these intensities is taken we put in memory.

Ensuite on effectue la différence entre ces deux sommes soit : D = ΣI₁ - ΣI₂

Figure imgb0023
Then we make the difference between these two sums either: D = ΣI₁ - ΣI₂
Figure imgb0023

Cette différence D est proportionnelle à L + J, c'est-à-dire représente la charge de linge dans la tambour. En effet :
   Lorsque la vitesse de rotation du moteur a la valeur Vi au cours de la première rampe, la relation (20) ci-dessus s'écrit : I 1i = L + J K d ω 1 d t + C K Ri

Figure imgb0024
This difference D is proportional to L + J, that is to say represents the load of laundry in the drum. Indeed :
When the speed of rotation of the motor has the value V i during the first ramp, the relation (20) above is written: I 1i = L + J K d ω 1 d t + VS K Ri
Figure imgb0024

Dans cette formule : d ω 1 d t = V₂ - V₁ Δt₁

Figure imgb0025
In this formula: d ω 1 d t = V₂ - V₁ Δt₁
Figure imgb0025

Lorsque la vitesse de rotation du moteur a la même valeur Vi au cours de la seconde rampe, la relation (20) s'écrit encore : I 2i = L + J K d ω 2 d t + C K Ri

Figure imgb0026
When the engine speed has the same value V i during the second ramp, the relation (20) is still written: I 2i = L + J K d ω 2 d t + VS K Ri
Figure imgb0026

Dans cette formule : d ω 2 d t = V₂ - V₁ Δt₂ = 1 4 d ω 1 d t

Figure imgb0027
In this formula: d ω 2 d t = V₂ - V₁ Δt₂ = 1 4 d ω 1 d t
Figure imgb0027

Si on effectue la différence membre à membre entre les relations (23) et (25) ci-dessus on obtient :

Figure imgb0028
If we make the member-to-member difference between relations (23) and (25) above we obtain:
Figure imgb0028

On observera que dans les formules (23) et (25) les termes C K

Figure imgb0029
Ri s'éliminent en toute rigueur car ces formules correspondent aux mêmes vitesses de rotation, donc aux mêmes valeurs CRi de couple résistant.It will be observed that in the formulas (23) and (25) the terms VS K
Figure imgb0029
Ri are eliminated in all rigor because these formulas correspond to the same rotational speeds, therefore to the same values C Ri of resisting torque.

Le nombre n de mesures de l'intensité I, ou nombre n d'échantillonnages, étant le même pour les deux rampes d'accélération on peut écrire :

Figure imgb0030
The number n of measurements of intensity I, or number n of samplings, being the same for the two acceleration ramps, we can write:
Figure imgb0030

On voit donc que la différence D = ΣI₁ - Σ I₂ est bien proportionnelle à L + J.We therefore see that the difference D = ΣI₁ - Σ I₂ is indeed proportional to L + J.

En variante la période d'échantillonnage est la même au cours de la seconde rampe, c'est-à-dire que dans l'exemple le nombre d'échantillons est quatre fois supérieur pour la seconde rampe que pour la première . Dans ce cas il faut diviser la somme des valeurs de I₂ par quatre pour obtenir la grandeur D proportionnelle à L + J, c'est-à-dire que le microprocesseur calcule la grandeur D telle que : D = Σ I₁ - 1 4 Σ I₂

Figure imgb0031
As a variant, the sampling period is the same during the second ramp, that is to say that in the example the number of samples is four times higher for the second ramp than for the first. In this case it is necessary to divide the sum of the values of I₂ by four to obtain the quantity D proportional to L + J, that is to say that the microprocessor calculates the quantity D such that: D = Σ I₁ - 1 4 Σ I₂
Figure imgb0031

De façon générale si on veut le même nombre n d'échantillons au cours des deux rampes il faut que la période d'échantillonnage au cours de la seconde rampe soit λ fois plus importante qu'au cours de la première rampe, λ étant le rapport entre la première et la seconde accélération. Si la période d'échantillonnage et la même pour les deux rampes il faudra alors affecter à la somme des intensités I pour la seconde rampe un facteur de division égal à ce même rapport entre la première et la seconde accélération.Generally, if the same number n of samples is desired during the two ramps, the sampling period during the second ramp must be λ times greater than during the first ramp, λ being the ratio between the first and second acceleration. If the sampling period is the same for the two ramps, then it will be necessary to assign to the sum of the intensities I for the second ramp a division factor equal to this same ratio between the first and the second acceleration.

La formule (27) ci-dessus montre qu'il n'est pas indispensable d'effectuer une somme d'échantillons au cours de chaque rampe. Il suffit de mesurer l'intensité du courant pour une vitesse Vi déterminée au cours de la première rampe, de mesurer l'intensité du courant au cours de la seconde rampe pour la même vitesse Vi et d'effectuer la différence entre ces deux intensités pour obtenir une grandeur proportionnelle à L + J.The formula (27) above shows that it is not essential to carry out a sum of samples during each ramp. It suffices to measure the intensity of the current for a speed V i determined during the first ramp, to measure the intensity of the current during the second ramp for the same speed V i and to make the difference between these two intensities to obtain a quantity proportional to L + J.

La charge de linge peut être déterminée non seulement avant toute introduction d'eau dans le lave-linge mais également à d'autres instants du fonctionnement de la machine.The laundry load can be determined not only before any water is introduced into the washing machine, but also at other times during machine operation.

L'invention s'applique aussi à un sèche-linge.The invention also applies to a dryer.

Claims (17)

  1. A washing machine or dryer comprising, in order to determine the load of washing in the drum, a means for determining the moment of inertia (L) of the washing as related to the axis of rotation of the drum, said measurement being obtained by causing rotation of the drum at a preferably constant acceleration, characterized in that it comprises a processor, more particularly a microprocessor (13) controlling the rotation of the drum in order to make it turn successively (20, 21) at two different acceleration values, said processor determining the moment of inertia of the washing on the basis of a difference between, on the one hand, a measurement of a parameter (C, I, Θ) which is a function of the acceleration which is performed during the first acceleration and, on the other hand, a measurement of the same parameter (C, I, Θ) performed during the second acceleration.
  2. The washing machine or dryer as claimed in claim 1, characterized in that, the motor (10) for driving the drum being of the universal type supplied with AC (11), its speed is determined by a phase control command from the processor (13) and in that the said parameter is the value (Θ) of the phase angle.
  3. The washing machine or dryer as claimed in claim 2, characterized in that the processor (13) causes the rotation of the drive motor (10) for driving the drum from a first speed (V₁) up to a second speed (V₂) with a first acceleration, determines periodically, during this first acceleration, the values (Θ₁) of the phase angle and produces the sum (ΣΘ₁) thereof, then causes a second acceleration ramp of the speed of the motor (10) between the first and second speeds, with a different acceleration, the phase angle (Θ₂) also being determined periodically and summated (ΣΘ₂), the microprocessor then determining the difference between the two sums which represents the moment of inertia of the washing in the drum.
  4. The washing machine or dryer as claimed in claim 3, characterized in that the period for the determination of the phase angles (Θ₂) during the course of the second acceleration is equal to the product of the period of determination of the phase angles (Θ₁) during the course of the first acceleration times the ratio (Δt₂/Δt₁) between the first and the second accelerations.
  5. The washing machine or dryer as claimed in claim 3, characterized in that the periods of determination of the phase angles (Θ₁, Θ₂) are the same during the course of the first and the second accelerations, and in that the load of washing is represented by the following magnitude: D = ΣΘ₁ - ΣΘ₂ λ
    Figure imgb0043
    λ being the ratio between the first and the second acceleration.
  6. The washing machine or dryer as claimed in any one of the claims 3 through 5, characterized in that the first speed (V₁) corresponds to a speed of rotation of the drum of the order of 200 rpm and the second speed (V₂) of rotation corresponds to a speed of rotation of the drum of the order of 400 rpm.
  7. The washing machine or dryer as claimed in any one of the claims 2 through 6, characterized in that it comprises a tachometer generator (15) driven by the universal motor (10), said tachometer generator being connected with one input (13₁) of the processor (13) in order to regulate the speed of the motor (10) as a function of the program in the memory of the processor.
  8. The washing machine or dryer as claimed in claim 7, characterized in that the processor (13) determines the moment of inertia (L) on the basis of the angle (Θ) in accordance with the following relationship: V S K₁Θ - K′ω = R K (L+J) dt + R K C R
    Figure imgb0044
    VS being the maximum amplitude of the alternating feed signal of the motor (10), K, K₁ and K′ being constants, R being the electrical resistance of the motor, CR being the resistant couple opposed by the drum, dΩ/dt being the acceleration of the drum and J being the moment of inertia of the drum in the strict sense.
  9. The washing machine or dryer as claimed in claim 1, characterized in that, the drum being driven by an electric universal motor, the drum is caused to rotate successively in accordance with two different acceleration values (dω₁/dt, dω₂/dt), preferably constant ones, and in that the moment of inertia is determined on the basis of a difference between, on the one hand, a measurement of the intensity of the current flowing through the motor perfomed at the time of the first acceleration, and on the other hand, a measurement of the intensity of the current flowing through the motor at the time of the second acceleration.
  10. The washing machine or dryer as claimed in claim 9, characterized in that the measurements made during the two accelerations are made at the same speed V₁ of rotation of the drum.
  11. The washing machine or dryer as claimed in claim 9 or in claim 10, characterized in that a processor periodically determines the intensity I₁ of the current flowing through the motor during the first acceleration and produces the sum thereof and in that during the second acceleration the intensity of the current I₂ flowing through the motor is also determined periodically, the said difference being the difference between the two sums.
  12. The washing machine or dryer as claimed in claim 11, characterized in that the period of determination of the current levels I₂ in the course of the second acceleration is equal to the product of the period of determination of the current levels I₁ in the course of the first acceleration multiplied by the ratio (Δt₂/Δt₁) between the first and the second acceleration.
  13. The washing machine or dryer as claimed in claim 11, characterized in that the periods of determination of the current levels (I₁, I₂) are the same in the course of the first and the second accelerations and in that the load of washing is represented by the following magnitude: D = ΣI₁ - Σ I₂ λ
    Figure imgb0045
    λ being the ratio between the first and the second acceleration.
  14. The washing machine or dryer as claimed in any one of the claims 9 through 13, characterized in that the first speed (V₁) is equal to a speed of rotation of the drum of the order of 200 rpm and the second speed (V₂) of rotation corresponds to a speed of rotation of the drum of the order of 400 rpm.
  15. A washing machine or dryer comprising, in order to determine the weight of the load of washing in the drum, a means for determining the moment of inertia (L) of the washing as related to the axis of rotation of the drum, the motor (10) for driving the drum being of the universal type, characterized in that, the universal motor (10) being supplied with alternating current (11) and its speed being determined using a processor, more particularly a microprocessor (13), said processor determines the said moment of inertia on the basis of the value (Θ) of the phase angle.
  16. The washing machine or dryer as claimed in claim 15, characterized in that it comprises a tachometer generator (15) driven by the universal motor (10), said tachometer generator being connected with an input (13₁) of the processor (13) in order to regulate the speed of the motor (10) as a function of the program in the memory of the processor.
  17. A washing machine or dryer as claimed in claim 16, characterized in that the processor (13) determines the moment of inertia (L) on the basis of the angle (Θ) in accordance with the following relationship: V S K₁Θ - K′ω = R K (L+J) dt + R K C R
    Figure imgb0046
    VS being the maximum amplitude of the alternating feed signal of the motor (10), K, K₁ and K′ being constants, R being the electrical resistance of the motor, CR being the resistant couple opposed by the drum, dω/dt being the acceleration of the drum and J being the moment of inertia of the drum in the strict sense.
EP89401403A 1988-05-31 1989-05-23 Washing machine or dryer with means for automatically determining the weight of the laundry Expired - Lifetime EP0345120B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89401403T ATE85370T1 (en) 1988-05-31 1989-05-23 WASHING MACHINE OR DRYER WITH AUTOMATIC MEASURING OF THE WEIGHT OF THE LAUNDRY.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8807216 1988-05-31
FR8807216A FR2631988B1 (en) 1988-05-31 1988-05-31 IMPROVEMENTS IN A WASHING MACHINE OR DRYER WITH AUTOMATIC DETERMINATION OF THE LOAD OF LAUNDRY INSERTED IN THE MACHINE
FR888811908A FR2636354B2 (en) 1988-05-31 1988-09-13 IMPROVEMENTS IN A WASHING MACHINE OR DRYER WITH AUTOMATIC DETERMINATION OF THE LOAD OF LAUNDRY INSERTED IN THE MACHINE
FR8811908 1988-09-13

Publications (2)

Publication Number Publication Date
EP0345120A1 EP0345120A1 (en) 1989-12-06
EP0345120B1 true EP0345120B1 (en) 1993-02-03

Family

ID=26226688

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89401403A Expired - Lifetime EP0345120B1 (en) 1988-05-31 1989-05-23 Washing machine or dryer with means for automatically determining the weight of the laundry

Country Status (3)

Country Link
EP (1) EP0345120B1 (en)
DE (1) DE68904699T2 (en)
FR (1) FR2636354B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080277B2 (en) 2011-12-22 2015-07-14 Whirlpool Corporation Apparatus and method for determining inertia of a laundry load
US9091012B2 (en) 2011-12-22 2015-07-28 Whirlpool Corporation Method and apparatus for determining an inertia of a laundry load in a laundry treating appliance

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ230489A (en) * 1989-08-30 1996-10-28 Fisher & Paykel Washing machine water level set by sensed loading
US5271116A (en) * 1989-08-30 1993-12-21 Fisher & Paykel Limited Laundry machines and/or methods of controlling the same
JP2752522B2 (en) * 1990-12-20 1998-05-18 富士通株式会社 Flow control method in broadband ISDN
US5161393A (en) * 1991-06-28 1992-11-10 General Electric Company Electronic washer control including automatic load size determination, fabric blend determination and adjustable washer means
US5301523A (en) * 1992-08-27 1994-04-12 General Electric Company Electronic washer control including automatic balance, spin and brake operations
DE4336349A1 (en) * 1993-10-25 1995-04-27 Bosch Siemens Hausgeraete Method for determining the mass of wet laundry in a laundry drum
DE4336350A1 (en) * 1993-10-25 1995-04-27 Bosch Siemens Hausgeraete Method for determining the amount of laundry in a laundry treatment machine
US5577283A (en) * 1995-03-20 1996-11-26 General Electric Company Energy efficient washer with inertia based method for determining load
US6029299A (en) * 1997-07-14 2000-02-29 Lg Electronics Inc. Method for detecting cloth amount in drum washing machine
US6122840A (en) * 1998-11-18 2000-09-26 General Electric Company Systems and methods for determining drying time for a clothes dryer
US6038724A (en) * 1998-11-27 2000-03-21 General Electric Company Clothes load estimation method and washing machine
KR100550545B1 (en) * 2003-09-04 2006-02-10 엘지전자 주식회사 Clothes amount sensing method of washing machine
EP2107151B1 (en) * 2008-03-31 2014-06-11 Electrolux Home Products Corporation N.V. Method for estimating the moment of inertia of the rotating unit of a washing machine, and washing machine implementing said method
DE102009001112A1 (en) * 2009-02-24 2010-08-26 BSH Bosch und Siemens Hausgeräte GmbH Method for monitoring a loading of a laundry drum and / or a degree of drying of laundry items and corresponding circuit arrangement
IT1394427B1 (en) * 2009-06-17 2012-06-15 Grandimpianti Ile Ali S P A PROCESS FOR WEIGHING OF LINEN TO WASH WITHIN A WASHING MACHINE, PARTICULARLY FOR INDUSTRIAL WASHING MACHINES
ITBO20100377A1 (en) * 2010-06-14 2011-12-15 Askoll Holding Srl METHOD OF MEASUREMENT OF THE DENTAL TIME "INERTIA OF A BASKET OF A MACHINE WASHING MACHINE AND MACHINE PREPARED FOR THE" IMPLEMENTATION OF THIS METHOD
US9945060B2 (en) 2012-01-19 2018-04-17 Whirlpool Corporation Method to determine fabric type in a laundry treating appliance using motor current signature during agitation
KR101504686B1 (en) * 2012-10-09 2015-03-20 엘지전자 주식회사 Laundry treatment machine and the method for operating the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU525345B2 (en) * 1978-04-04 1982-11-04 Tokyo Shibaura Denki Kabushiki Kaisha Automatic washer
JPS5675199A (en) * 1979-11-26 1981-06-22 Tokyo Shibaura Electric Co Full automatic washing machine
FR2553881B1 (en) * 1983-10-25 1987-11-20 Esswein Sa METHOD FOR DETERMINING A LAUNDRY LOAD IN A ROTATING DRUM, AND WASHING AND / OR DRYING MACHINE USING THE SAME
FR2559796B1 (en) * 1984-02-17 1986-11-21 Esswein Sa WASHING MACHINE WITH AUTOMATIC DETERMINATION OF THE TYPE OF LAUNDRY INSERTED IN THIS MACHINE
JPS63226395A (en) * 1987-03-14 1988-09-21 株式会社東芝 Detector for quantity of clothing of washing machine combining dehydration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080277B2 (en) 2011-12-22 2015-07-14 Whirlpool Corporation Apparatus and method for determining inertia of a laundry load
US9091012B2 (en) 2011-12-22 2015-07-28 Whirlpool Corporation Method and apparatus for determining an inertia of a laundry load in a laundry treating appliance

Also Published As

Publication number Publication date
FR2636354A2 (en) 1990-03-16
DE68904699T2 (en) 1993-05-27
EP0345120A1 (en) 1989-12-06
DE68904699D1 (en) 1993-03-18
FR2636354B2 (en) 1991-07-05

Similar Documents

Publication Publication Date Title
EP0345120B1 (en) Washing machine or dryer with means for automatically determining the weight of the laundry
JP3737170B2 (en) A washing machine that automatically measures the weight of laundry
JP3297073B2 (en) Washing machine
EP0802606B1 (en) Method to regulate the exciting current of an automotive vehicle generator using digital processing and regulator device for carrying out this method
EP0410827B1 (en) Washing machine or dryer with means for automatically determining the weight of the laundry
EP0159202B1 (en) Washing machine with automatic detection of the load and the kind of laundry
EP1142099B1 (en) Method for digital control of a universal motor, in particular for electrical household appliance
FR2560237A1 (en) WASHING MACHINE AND METHOD OF DRIVING
EP0802464B1 (en) Method to regulate the exciting current of a automotive vehicle generator using digital processing and regulator device for carrying out this method
EP0575911B1 (en) Speed control device of an electric motor and method of operation
EP0091336B1 (en) Clothes washing machine with means for detecting vibrations due to unbalance
JPH05277289A (en) Washing machine
EP0335790B1 (en) Balance detection means in the washing machines
FR2631988A1 (en) Improvements to a washing machine or dryer having automatic determination of the washing load introduced into the machine
FR2635539A1 (en) Washing machine and/or laundry drier
FR2692286A3 (en) Washing machine or dishwasher.
EP0219387B1 (en) Method for controlling the liquid level in a tub of a washing machine, and washing machine carrying out the method
EP0090716B1 (en) Clothes washer with a reduced-power motor for driving the drum
EP0225813B1 (en) Driving motor control device for a washer drum
EP0253710B1 (en) Programmer for control of washing machine with a microprocessor and electromechanical componant
EP0252817B1 (en) Control apparatus for a washing machine or a laundry dryer using automatic detection of the weight of laundry
FR2766991A1 (en) Regulation of vehicle alternator by digital control
FR2687696A3 (en) WASHING MACHINE CONTROLLED BY PROGRAM.
FR2601471A1 (en) MICROPROCESSOR LAUNDRY CONTROL PROGRAMMER AND ELECTROMECHANICAL COMPONENT
EP0219422A1 (en) Washing machine or dryer with detection of the closing state of the washing drum

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES IT NL SE

17P Request for examination filed

Effective date: 19891222

17Q First examination report despatched

Effective date: 19910529

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930203

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930203

Ref country code: AT

Effective date: 19930203

Ref country code: NL

Effective date: 19930203

Ref country code: SE

Effective date: 19930203

REF Corresponds to:

Ref document number: 85370

Country of ref document: AT

Date of ref document: 19930215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68904699

Country of ref document: DE

Date of ref document: 19930318

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940201