EP0340957B1 - Procédé de fabrication de métal composite promouvant l'infiltration d'une matrice métallique par des fines particules d'un troisième matériau - Google Patents

Procédé de fabrication de métal composite promouvant l'infiltration d'une matrice métallique par des fines particules d'un troisième matériau Download PDF

Info

Publication number
EP0340957B1
EP0340957B1 EP19890304076 EP89304076A EP0340957B1 EP 0340957 B1 EP0340957 B1 EP 0340957B1 EP 19890304076 EP19890304076 EP 19890304076 EP 89304076 A EP89304076 A EP 89304076A EP 0340957 B1 EP0340957 B1 EP 0340957B1
Authority
EP
European Patent Office
Prior art keywords
metal
preform
fine pieces
metal oxide
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19890304076
Other languages
German (de)
English (en)
Other versions
EP0340957A3 (en
EP0340957A2 (fr
Inventor
Masahiro Kubo
Tetsuya Suganuma
Takashi Morikawa
Atsuo Tanaka
Yoshiaki Kajikawa
Tetsuya Nukami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP63108165A external-priority patent/JPH07100834B2/ja
Priority claimed from JP63108166A external-priority patent/JP2576186B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of EP0340957A2 publication Critical patent/EP0340957A2/fr
Publication of EP0340957A3 publication Critical patent/EP0340957A3/en
Application granted granted Critical
Publication of EP0340957B1 publication Critical patent/EP0340957B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/08Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a composite material, and more particularly, to a method of producing a metal base composite material comprising short fibers, whisker or particles as a reinforcing material and an aluminum alloy or the like as a matrix material.
  • melt forging method high pressure casting method
  • the melt forging method it is required that a molten mass of matrix metal is pressurized to a very high pressure, and therefore a large scale production equipment is required, resulting in a high production cost of the composite materials, and thus presenting a principal obstacle for the practical use of this method.
  • the reinforcing fibers are continuous fibers which are generally disposed in a common direction, the capillary action is available to infiltrate a molten matrix metal into the interstices among the continuous fibers, and therefore the methods proposed in the above-mentioned publications are effective.
  • the reinforcing fibers are short fibers or a whisker
  • the infiltration of the molten matrix metal by the capillary action is not available. Therefore, the infiltration of the molten matrix metal into the short fibers or the whisker is not improved by the method of increasing the affinity as applied to the continuous fibers as described in, for example, Japanese Patent Laying-open Publication 59-205464.
  • the present invention provides a method of producing a metal base composite material comprising a first process of producing a porous preform from a reinforcing material selected from a group consisting of ceramic short fibers, ceramic whisker, ceramic particles and mixtures thereof, and a second process of infiltrating a molten matrix metal selected from Al, AI alloys, Mg and Mg alloys into interstices of said porous preform, characterized in that fine pieces of metal or metal oxide are mixed in said porous preform in said first process, and that in said second process a molten mass of the matrix metal which would not substantially infiltrate into the interstices of said porous preform with no substantial pressure being applied thereto without said metal or metal oxide infiltrates substantially into the interstices of said porous preform with no substantial pressure being applied thereto due to the presence of said metal or metal oxide.
  • the metal or metal oxide for said fine pieces may be a metal or metals selected from a group consisting of Ni, Fe, Co, Cr, Mn, Cu, Ag, Si, Mg, Al, Zn, Sn, Ti and an alloy or alloys including any one of these metals as a principal component when the matrix metal is AI or an AI alloy.
  • the metal or metal oxide for said fine pieces may be a metal or metals selected from a group consisting of Ni, Cr, Ag, Al, Zn, Sn, Pb and an alloy or alloys including any one of these metals as a principal component when the matrix metal is Mg or an Mg alloy.
  • the material for said fine pieces may be an oxide or oxides of a metal or metals selected from a group consisting of W, Mo, Pb, Bi, V, Cu, Ni, Co, Sn, Mn, B, Cr, Mg and AI and mixtures thereof.
  • the method of the present invention it is not necessary to pressurize the molten matrix metal or to preheat the reinforcing material, and therefore no large scale equipment for pressurizing the molten matrix metal or for preheating the reinforcing material is required. Therefore, according to the present invention it is possible to produce a composite material including a matrix material well infiltrated in a reinforcing material at high efficiency and low cost.
  • the molten matrix metal infiltrates easily into the preform according to the method of the present invention, if the preform including a reinforcing material and fine pieces of the metal or metal oxide is prepared to have a predetermined shape and dimensions, the whole body of the preform can be uniformly infiltrated with the molten matrix metal by a part of the preform being brought into contact with a molten mass of the matrix metal so as immediately to provide a composite material having substantially the predetermined shape and dimensions.
  • a composite material having substantially a predetermined shape and dimensions can be produced at high efficiency and low cost with very high yielding rate.
  • the matrix metal is AI or an AI alloy
  • the fine pieces of a determinate metal or metals are incorporated into the preform at a ratio more than 150% by weight relative to the amount of the reinforcing fibers.
  • the infiltration of the molten matrix metal into the preform can be improved by incorporating fine pieces of a determinate metal oxide or metal oxides in any optional amount.
  • the molten matrix metal can infiltrate into the reinforcing material in good condition when the fine pieces of a determinate metal oxide or metal oxides are included in the reinforcing material at a ratio of more than 7.5% by weight, particularly more than 10% by weight, still more particularly more than 15% by weight, relative to the amount of the reinforcing material.
  • the fine pieces of a determinate metal oxide or metal oxides are incorporated into the preform at a ratio more than 7.5% by weight, particularly more than 10% by weight, still more particularly more than 15% by weight, relative to the amount of the reinforcing fibers.
  • the metal to form the fine pieces of a certain determinate metal or metals is selected from a group consisting of Ni, Fe, Co, Cu, Si, Zn, Sn, Ti and an alloy including one of these metals as a principal component when the matrix metal is AI or an AI alloy.
  • the metal or metals which form said certain metal oxide or metal oxides provided in the form of fine pieces are any one of W, Mo, Pb, Bi, Cu, Ni, Co, Sn, Mn, Cr or an alloy including one of these metals as a principal component, particularly when the metal or the metals which form said certain metal oxide or metal oxides provided in the form of fine pieces are any one of W, No, Pb, Co, Mn or an alloy including one of these metals as a principal component, the molten matrix metal can infiltrate into the preform in good condition.
  • the metal or metals to form the fine pieces of a certain determinate metal oxide or metal oxides is selected from a group consisting of W, Mo, Pb, Bi, Cu, Ni, Co, Sn, Mn, Cr or an alloy including one of these metals as a principal component, particularly a group consisting of W, Mo, Pb, Co, Mn or an alloy including one of these metals as a principal component.
  • the matrix metal when the matrix metal is an AI alloy, if the AI alloy includes at least one of Mg, Zr and Ca by an amount more than 0.5%, the molten matrix metal can more readily infiltrate into the preform. This composition is more effective to improve the affinity between the reinforcing material and the matrix metal when the preform is preheated. Therefore, according to another detailed feature of the present invention, the matrix metal is an AI alloy including at least one of Mg, Zr and Ca by an amount more than 0.5%.
  • the preform includes fine pieces of the above-mentioned determinate metal or metals, the infiltration of the molten matrix metal into the preform is improved. Particularly if the preform includes fine pieces of the above-mentioned determinate metal or metals by an amount more than 130% by weight relative to the reinforcing material, the molten matrix metal can infiltrate into the preform in good condition.
  • the matrix metal is Mg or a Mg alloy
  • the fine pieces of a certain determinate metal or metals is incorporated into the preform by an amount of more than 130% by weight relative to the reinforcing material in the preform.
  • the total volumetric ratio of the reinforcing material and the fine pieces of the determinate metal or metals in the preform is set to 5-90%, desirably 7.5-85%.
  • the total volumetric ratio of the reinforcing material and the fine pieces of the determinate metal oxide or metal oxides in the preform is set to 4-85%, desirably 5-80%.
  • the volumetric ratio of the fine pieces of the determinate metal or metals in the preform is desirably set to be less than 85%.
  • the volumetric ratio of the fine pieces of the determinate metal oxide or metal oxides in the preform is set to be less than 45%, desirably less than 40%.
  • the preform has a predetermined shape and dimensions, and only a part thereof is dipped into a bath of molten matrix metal. According to this method, a composite material having a predetermined shape and dimensions can be produced at high efficiency, low cost and very high yielding rate with no need of a casting mold for pressurizing the molten matrix metal for defining the predetermined shape of the product.
  • the preform may be preheated to a temperature which is lower than the conventional preheating temperature in order to further improve the affinity of the reinforcing material to the matrix metal.
  • a lower preheating temperature is desirable in order to avoid oxidization of the fine pieces of the determinate metal or metals.
  • the fine pieces of the determinate metal or metals according to the present invention may be in an optional shape such as short fibers, whisker or powder.
  • Fig. 1 shows such a preform 10 in a perspective view, wherein 12 indicates the reinforcing material and 14 indicates the metal fibers.
  • Two kinds of preforms were prepared by changing the mixing ratio of the reinforcing material and the metal fibers or the metal powder so that in the first type preform the volumetric ratio of the reinforcing material is 5%, the mass ratio of the metal fibers or the metal powder relative to the reinforcing material is 600%, and the overall volumetric ratio of the preform is 13-62%, and in a second type preform the volumetric ratio of the reinforcing material is 15%, the mass ratio of the metal fibers or the metal powder relative to the reinforcing material is 200%, and the overall volumetric ratio of the preform is 23-72%.
  • each preform was preheated to 200 ° C and was then placed into a vessel 16 as shown in Fig. 2. Then a molten aluminum alloy was poured to form a bath thereof, and then the molten aluminum alloy was solidified with no pressurization.
  • the aluminum alloy was prepared in seven different types which were JIS AC1A including 0.1% Mg, JIS AC4C including 0.3% Mg, JIS AC4D including 0.5% Mg, JIS AC8A including 1% Mg, JIS AC7B including 10% Mg, JIS AC4C added with 0.3% Ca, and JIS AC4C added with 0.3% Zr.
  • the composite material portion 20 corresponding to the portion of the preform was cut out from the solidified body, and the reinforcing material was cut along a phantom plane 22, and the cut section was polished and investigated by the naked eye and a microscope to evaluate the quality of composite structure.
  • metal fibers or metal powder other than those shown in Table 1 and consisting of an alloy including the above-mentioned determinate metal as a principal component provides a good composite quality, and when the matrix metal includes more than 0.5% Ca or Zr, the composite quality is further improved.
  • alumina short fibers as used in Embodiment 1 preforms were prepared to include only the alumina short fibers at 5%, 15% and 30% by volume.
  • silicon carbide whisker as used in Embodiment 1 preforms were prepared to include only the silicon carbide whisker at 5%, 15% and 40% by volume.
  • silicon nitride particles as used in Embodiment 1 preforms were prepared to include only the silicon nitride particles at 5%, 15% and 50% by volume.
  • Alumina short fibers having 3 microns mean fiber diameter and 1 mm mean fiber length (“Safil RF", (Registered Trade Mark) product of ICI, 96-97% A1 2 0 3 , 3-4% Si0 2 ), silicon nitride whisker having 0.1-0.6 micron mean fiber diameter and 20-200 microns mean fiber length (product of Tateho Kagaku Kogyo Kabushiki Kaisha) and tungsten carbide particles having 10 microns mean particle diameter (product of Kojundo Kagaku Kabushiki Kaisha) were prepared. Further, the metal fibers and the metal powder shown in Table 1 were prepared as the metal fibers and the metal powder herein referred to. Then in the same manner as Embodiment 1 the above-mentioned reinforcing materials and the metal fibers or the metal powder were mixed, and preforms having 20 x 20 x 40 mm dimensions were prepared by compression forming.
  • two types of preforms were prepared so that in a first type preform the volumetric ratio of the reinforcing material is 5%, the mass ratio of the metal fibers or the metal powder relative to the reinforcing material is 500%, and the overall volumetric ratio of the preform is 12-53%, and in a second type preform the volumetric ratio of the reinforcing material is 15%, the mass ratio of the metal fibers or the metal powder relative to the reinforcing material is 150%, and the overall volumetric ratio of the preform is 21-58%.
  • the matrix metal is a magnesium alloy
  • the preform includes the metal fibers or the metal powder made of Ni, Cr, Ag, Zn, Sn, Pb or an alloy including one of these metals as a principal component.
  • the preform includes the metal fibers or the metal powder made of other alloys including one of Ni, Cr, Ag, Zn, Sn and Pb, or Al.
  • Embodiment 2 preforms By the same aluminum short fibers as used in Embodiment 2 preforms were prepared to include only the aluminum short fibers at 5%, 15% and 40% by volume. Further, by the same silicon nitride whisker as used in Embodiment 2 preforms were prepared to include only the silicon nitride whisker at 5%, 15% and 40% by volume. Still further, by the same silicon carbide particles as used in Embodiment 2 preforms were prepared to include only the silicon carbide particles at 5%, 15% and 40% by volume. By using these preforms it was tried to produce composite materials in the same manner and under the same conditions as adopted in Embodiment 2. No good composite material was obtained from these preforms.
  • the preform includes the determinate metal fibers or powder. Therefore, investigations were conducted to determine what amount of the metal fibers or the metal powder is appropriate.
  • the reinforcing materials shown in Tables 8 and 9, and the matrix metals, the metal fibers and the metal powder shown in Table 10 and 11 were prepared. By using these materials composite materials were produced in the same manner as in Embodiments 1 and 2 with no preheating of the preforms. The composite materials thus obtained were evaluated about the composite conditions in the same manner as in Embodiments 1 and 2. The metal fibers and the metal powder were the same as those shown in Table 1. The mass ratio of the metal fibers or the metal powder relative to the reinforcing material was set to 0%, 50%, 100%, 150%, 200%, 250% and 300%. The results of evaluation are shown in Tables 10 and 11.
  • the mass ratio of the metal fibers or the metal powder relative to the reinforcing material should desirably be more than 150%, particularly more than 200%, when the matrix metal is an aluminum alloy, and more than 130%, particularly 180%, when the matrix metal is a magnesium alloy.
  • cylindrical preforms such as 24 shown in Fig. 4 having 40 mm outer diameter, 30 mm inner diameter and 50 mm length were prepared in the same manner as in Embodiment 1 so that the volumetric ratio of the reinforcing material and the mass ratio of the metal fibers or the metal powder relative to the reinforcing material are the same as in the first type preform and the second type preform in Embodiment 1.
  • 26 indicates the reinforcing material
  • 28 indicates the metal fibers.
  • the matrix metal the same seven kinds of molten aluminum alloys as those used in Embodiment 1 were prepared.
  • each preform was preheated to the same temperature as in Embodiment 1, and then each preform 24 was held at a top portion thereof by a pincette-shaped holder 30 as shown in Fig. 5, and a bottom end portion of each preform was brought into contact with a bath of the molten aluminum alloy at 700 ° C contained in a vessel 32. Then the molten aluminum alloy infiltrated into the whole body of each preform from the lower end to the upper end thereof in 3-10 seconds. After the molten aluminum alloy has completely infiltrated into the whole body of the preform, the preform was removed from the bath of the molten aluminum alloy as shown in Fig. 6 and was held in that condition until the molten aluminum alloy solidified. During this process the molten aluminum alloy was maintained in the preform as attached thereto under the surface tension.
  • the dimensions of the composite material cylindrical body were measured.
  • the outer diameter, the inner diameter and the length were 39-41 mm, 28-30 mm and 48-50 mm, respectively. It was confirmed that the composite material cylindrical body had substantially the same shape and dimensions as the preform.
  • Each composite material cylindrical body was cut for the inspection of the composite condition. It was confirmed that in all of the composite material cylindrical bodies the aluminum alloy has sufficiently infiltrated up to all surfaces of the preform.
  • cylindrical preforms having 80 mm outer diameter, 70 mm inner diameter and 40 mm length were prepared in the same manner as in Embodiment 2 so that the volumetric ratio of the reinforcing material and the mass ratio of the metal fibers or the metal powder relative to the reinforcing material are the same as in the first type preform and the second type preform in Embodiment 2.
  • the matrix metal the same three kinds of molten magnesium alloys as those used in Embodiment 2 were prepared.
  • each preform was preheated to the same temperature as in Embodiment 2, and then each preform 24 was brought into contact with a bath of the molten magnesium alloy at 700 ° C contained in a vessel in the same manner as in Embodiment 4. Then the molten magnesium alloy infiltrated into the whole body of each preform from the lower end to the upper end thereof in 3-8 seconds. After the molten aluminum alloy has completely infiltrated into the whole body of the preform, the preform was removed from the bath of the molten aluminum alloy and was held in that condition until the molten magnesium alloy solidified. During this process the molten magnesium alloy was maintained in the preform as attached thereto under the surface tension.
  • the dimensions of the composite material cylindrical body were measured.
  • the outer diameter, the inner diameter and the length were 79.5-80.5 mm, 69-70 mm and 39-40 mm, respectively. It was confirmed that the composite material cylindrical body had substantially the same shape and dimensions as the preform.
  • Each composite material cylindrical body was cut for the inspection of the composite condition. It was confirmed that in all of the composite material cylindrical bodies the aluminum alloy has sufficiently infiltrated up to all surfaces of the preform.
  • the above-mentioned reinforcing material was mixed with a sol of oxides (A1 2 0 3 , Zr0 2 , Fe 2 0 3 , Ce0 2 , Si0 2 ) (product of Nissan Kagaku Kabushiki Kaisha) and the mixture was formed under pressure and dried, thereby producing a first type preform including the above-mentioned reinforcing material and fine pieces of the above-mentioned oxides.
  • a sol of oxides A1 2 0 3 , Zr0 2 , Fe 2 0 3 , Ce0 2 , Si0 2
  • the above-mentioned reinforcing material was mixed in a water solution including polyvinyl alcohol, and the well agitated mixture was formed to a body by suction and dried, and the formed body was soaked in a water solution dissolving Cr 2 0 3 (product of Nippon Denko Kabushiki Kaisha), H 3 BO 3 (product of Kenei Seiyaku Kabushiki Kaisha) and para-ammonium molybdate (product of Nihon Shinkinzoku Kabushiki Kaisha), and the water solution was heated in the atmosphere to 500 ° C for an hour, so that fine pieces of oxides of Cr, B and Mo are generated while water and polyvinyl alcohol were evaporated, thereby producing a fourth type preform including the above-mentioned reinforcing material and fine pieces of the above-mentioned oxides.
  • a composite material 20 was cut out from the solidified body prepared in the above-mentioned manner corresponding to the portion occupied by the preform, and then the composite material was cut also along a phantom plane 22 at a central portion thereof in Fig. 3. Then the cutout section was polished and investigated by the naked eye and a microscope for evaluation of the composite quality.
  • alumina short fibers as used in Embodiment 6 preforms were prepared to include only the alumina short fibers at 5%, 15% and 30% by volume.
  • silicon carbide whisker as used in Embodiment 6 preforms were prepared to include only the silicon carbide whisker at 5%, 15% and 40% by volume.
  • silicon nitride particles as used in Embodiment 6 preforms were prepared to include only the silicon nitride particles at 5%, 15% and 50% by volume.
  • the mass ratio of the fine pieces of the metal oxide relative to the reinforcing material should be more than 7.5%, particularly more than 10%, and still more particularly more than 15%.
  • each preform was preheated to the same temperature as in Embodiment 6, and then each preform 24 was held at a top portion thereof by a pincette-shaped holder 30 also as shown in Fig. 5, and a bottom end portion of each preform was brought into contact with a bath 34 of the molten matrix metal at 700 °C contained in the vessel 32. Then the molten matrix metal infiltrated into the whole body of each preform from the lower end to the upper end thereof in 10-30 seconds. After the molten matrix metal had completely infiltrated into the whole body of the preform, the preform was removed from the bath of the molten matrix metal also as shown in Fig. 6 and was held in that condition until the molten matrix metal solidified. During this process the molten matrix metal was maintained in the preform as attached thereto under the surface tension.
  • the composite material can be produced in high quality in which the matrix metal is sufficiently infiltrated into the interstices of the reinforcing material at high efficiency and low cost with no need of pressurization of the molten matrix metal so that a composite material product having a predetermined shape and dimensions is directly produced at very high efficiency and yielding rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Claims (24)

1. Un procédé de production de matériau composite à base métallique comprenant un premièr procédé de réalisation d'une préforme poreuse à partir d'un matériau de renforcement choisi dans un groupe comprenant des fibres courtes céramique, whisker céramique, des particules céramique et leurs mélanges et une deuxième étape d'infiltration d'un métal matriciel fondu choisi dans le groupe comprenant l'aluminium, des alliages d'aluminium, le magnésium et des alliages de magnésium dans les interstices de ladite préforme poreuse, ce procédé étant caractérisé en ce que de fins morceaux de métal et d'oxyde métallique sont mélangées dans ladite préforme poreuse au cours de la première étape, et en ce que, dans ladite deuxième étape, une masse fondue de métal matriciel qui ne devrait pas sensiblement pénétrer par infiltration dans les interstices de ladite préforme poreuse sans que l'on applique sensiblement une pression au tout et sans métal ou oxyde métallique s'infiltre substantiellement dans les interstices de ladite préforme poreuse sans que l'on n'exerce une pression substantielle du fait de la présence dudit métal ou oxyde métallique.
2. Un procédé selon la revendication 1, caractérisé en ce que ledit métal ou oxyde d'un métal est un métal ou des métaux choisis dans un groupe comprenant Ni, Fe, Co, Cr, Mn, Cu, Ag, Si, Mg, AI, Zn, Sn, Ti et un ou plusieurs alliages incluant l'un quelconque des ces métaux en tant que constituant principal lorsque le métal matriciel est l'aluminium ou un alliage d'aluminium.
3. Un procédé selon la revendication 1, caractérisé en ce que ledit métal ou oxyde de métal est un ou des métaux qui peuvent être choisis dans un groupe comprenant Ni, Cr, Ag, AI, Zn, Sn, Pb et un ou des alliages incluant l'un quelconque des ces métaux en tant que constituant principal lorsque le métal matriciel est le magnésium ou un alliage de magnésium.
4. Un procédé selon la revendication 1, caractérisé en ce que un ou plusieurs oxydes d'un métal ou de métaux peuvent être choisis dans le groupe comprenant W, Mo, Pb, Bi, V, Cu, Ni, Co, Sn, Mn, B, Cr, Mg et AI et leurs mélanges.
5. Un procédé selon la revendication 2, caractérisé en ce que lesdits morceaux fins de métal ou d'oxyde métallique sont incorporés dans la préforme en une proportion supérieure à 150% en poids relativement à la quantité de matériau de renforcement.
6. Un procédé selon la revendication 4, caractérisé en ce que lesdits fins morceaux du métal ou de l'oxyde métallique sont incorporées dans la préforme en une proportion supérieure à 7,5% en poids.
7. Un procédé selon la revendication 4, caractérisé en ce que lesdites fines pièces du métal ou de l'oxyde métallique sont incorporés dans la préforme selon une proportion supérieure à 10% en poids.
8. Un procédé selon la revendication 4, caractérisé en ce que lesdits morceaux fins du métal ou de l'oxyde métallique sont incorporés dans la préforme selon une proportion supérieure à 15% en poids.
9. Un procédé selon la revendication 2, caractérisé en ce que ledit métal ou oxyde métallique est choisi plus particulièrement parmi Ni, Fe, Co, Cu, Si, Zn, Sn, Ti et un alliage incluant un de ces métaux en tant que constituant principal.
10. Un procédé selon la revendication 4, caractérisé en ce que ledit métal ou oxyde métallique est choisi plus particulièrement dans le groupe comprenant W, Mo, Pb, Bi, Cu, Ni, Co, Sn, Mn, Cr ou un alliage incluant un de ces métaux en tant que constituant principal.
11. Un procédé selon la revendication 4, caractérisé en ce que ledit métal ou oxyde métallique est choisi plus particulièrement dans le groupe comprenant W, Mo, Pb, Co, Mn ou un alliage incluant un de ces métaux en tant que constituant principal.
12. Un procédé selon la revendication 1, caractérisé en ce que le métal matriciel est un alliage d'aluminium comprenant au moins un métal parmi Mg, Zr et Ca en une quantité supérieure à 0,5%.
13. Un procédé selon la revendication 3, caractérisé en ce que lesdits morceaux fins dudit métal ou oxyde métallique sont incorporés dans la préforme en une quantité supérieure à 130% en poids relativement au matériau de renforcement contenu dans la préforme.
14. Un procédé selon la revendication 2, caractérisé en ce que le rapport volumétrique total matériau de renforcement aux morceaux fins dudit métal ou oxyde métallique est fixé à 5-90%.
15. Un procédé selon la revendication 3, caractérisé en ce que le rapport volumétrique total matériau de renforcement aux morceaux fins dudit métal ou oxyde métallique est fixé à 5-90%.
16. Un procédé selon la revendication 2, caractérisé en ce que le rapport volumétrique total matériau de renforcement aux morceaux fins dudit métal ou oxyde métallique est fixé à 7,5-85%.
17. Un procédé selon la revendication 3, caractérisé en ce que le rapport volumétrique total matériau de renforcement aux morceaux fins dudit métal ou oxyde métallique est fixé à 7,5-85%.
18. Un procédé selon la revendication 4, caractérisé en ce que le rapport volumétrique total matériau de renforcement aux morceaux fins dudit métal ou oxyde métallique est fixé à 4-85%.
19. Un procédé selon la revendication 4, caractérisé en ce que le rapport volumétrique total matériau de renforcement aux morceaux fins dudit métal ou oxyde métallique est fixé à 5-80%.
20. Un procédé selon la revendication 2, caractérisé en ce que le rapport volumétrique total matériau de renforcement aux morceaux fins dudit métal ou oxyde métallique est moindre que 85%.
21. Un procédé selon la revendication 3, caractérisé en ce que le rapport volumétrique total matériau de renforcement aux morceaux fins dudit métal ou oxyde métallique est moindre que 85%.
22. Un procédé selon la revendication 4, caractérisé en ce que le rapport volumétrique total matériau de renforcement aux morceaux fins dudit métal ou oxyde métallique est moindre que 45%.
23. Un procédé selon la revendication 4, caractérisé en ce que le rapport volumétrique total matériau de renforcement aux morceaux fins dudit métal ou oxyde métallique est moindre que 40%.
24. Un procédé selon la revendication 1, caractérisé en ce que la préforme présente une configuration et des dimensions prédéterminées et que seule une partie de cette préforme est plongée dans un bain de métal matriciel fondu.
EP19890304076 1988-04-30 1989-04-24 Procédé de fabrication de métal composite promouvant l'infiltration d'une matrice métallique par des fines particules d'un troisième matériau Expired - Lifetime EP0340957B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP108166/88 1988-04-30
JP108165/88 1988-04-30
JP63108165A JPH07100834B2 (ja) 1988-04-30 1988-04-30 金属基複合材料の製造方法
JP63108166A JP2576186B2 (ja) 1988-04-30 1988-04-30 金属基複合材料の製造方法

Publications (3)

Publication Number Publication Date
EP0340957A2 EP0340957A2 (fr) 1989-11-08
EP0340957A3 EP0340957A3 (en) 1990-06-06
EP0340957B1 true EP0340957B1 (fr) 1994-03-16

Family

ID=26448107

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890304076 Expired - Lifetime EP0340957B1 (fr) 1988-04-30 1989-04-24 Procédé de fabrication de métal composite promouvant l'infiltration d'une matrice métallique par des fines particules d'un troisième matériau

Country Status (4)

Country Link
EP (1) EP0340957B1 (fr)
AU (1) AU620862B2 (fr)
CA (1) CA1340883C (fr)
DE (1) DE68913800T2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928541A (zh) * 2015-07-06 2015-09-23 苏州科茂电子材料科技有限公司 一种用于电缆的铝合金材料及其制备方法
CN109913774A (zh) * 2017-12-12 2019-06-21 江苏赛尔亚环保科技有限公司 同步带轮材料

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007475A (en) * 1988-11-10 1991-04-16 Lanxide Technology Company, Lp Method for forming metal matrix composite bodies containing three-dimensionally interconnected co-matrices and products produced thereby
US5040588A (en) * 1988-11-10 1991-08-20 Lanxide Technology Company, Lp Methods for forming macrocomposite bodies and macrocomposite bodies produced thereby
US5518061A (en) * 1988-11-10 1996-05-21 Lanxide Technology Company, Lp Method of modifying the properties of a metal matrix composite body
US5287911A (en) * 1988-11-10 1994-02-22 Lanxide Technology Company, Lp Method for forming metal matrix composites having variable filler loadings and products produced thereby
US5267601A (en) * 1988-11-10 1993-12-07 Lanxide Technology Company, Lp Method for forming a metal matrix composite body by an outside-in spontaneous infiltration process, and products produced thereby
US5007476A (en) * 1988-11-10 1991-04-16 Lanxide Technology Company, Lp Method of forming metal matrix composite bodies by utilizing a crushed polycrystalline oxidation reaction product as a filler, and products produced thereby
US5005631A (en) * 1988-11-10 1991-04-09 Lanxide Technology Company, Lp Method for forming a metal matrix composite body by an outside-in spontaneous infiltration process, and products produced thereby
US5197528A (en) * 1988-11-10 1993-03-30 Lanxide Technology Company, Lp Investment casting technique for the formation of metal matrix composite bodies and products produced thereby
US5163499A (en) * 1988-11-10 1992-11-17 Lanxide Technology Company, Lp Method of forming electronic packages
US5000246A (en) * 1988-11-10 1991-03-19 Lanxide Technology Company, Lp Flotation process for the formation of metal matrix composite bodies
US5172747A (en) * 1988-11-10 1992-12-22 Lanxide Technology Company, Lp Method of forming a metal matrix composite body by a spontaneous infiltration technique
US5238045A (en) * 1988-11-10 1993-08-24 Lanxide Technology Company, Lp Method of surface bonding materials together by use of a metal matrix composite, and products produced thereby
US5000249A (en) * 1988-11-10 1991-03-19 Lanxide Technology Company, Lp Method of forming metal matrix composites by use of an immersion casting technique and product produced thereby
US5004034A (en) * 1988-11-10 1991-04-02 Lanxide Technology Company, Lp Method of surface bonding materials together by use of a metal matrix composite, and products produced thereby
IE74680B1 (en) * 1988-11-10 1997-07-30 Lanxide Technology Co Ltd Methods of forming metal matrix composite bodies by a spontaneous infiltration process
US5016703A (en) * 1988-11-10 1991-05-21 Lanxide Technology Company, Lp Method of forming a metal matrix composite body by a spontaneous infiltration technique
US5007474A (en) * 1988-11-10 1991-04-16 Lanxide Technology Company, Lp Method of providing a gating means, and products produced thereby
US5301738A (en) * 1988-11-10 1994-04-12 Lanxide Technology Company, Lp Method of modifying the properties of a metal matrix composite body
US5240062A (en) * 1988-11-10 1993-08-31 Lanxide Technology Company, Lp Method of providing a gating means, and products thereby
US5000247A (en) * 1988-11-10 1991-03-19 Lanxide Technology Company, Lp Method for forming metal matrix composite bodies with a dispersion casting technique and products produced thereby
US5150747A (en) * 1988-11-10 1992-09-29 Lanxide Technology Company, Lp Method of forming metal matrix composites by use of an immersion casting technique and product produced thereby
US5119864A (en) * 1988-11-10 1992-06-09 Lanxide Technology Company, Lp Method of forming a metal matrix composite through the use of a gating means
US5004036A (en) * 1988-11-10 1991-04-02 Lanxide Technology Company, Lp Method for making metal matrix composites by the use of a negative alloy mold and products produced thereby
US5165463A (en) * 1988-11-10 1992-11-24 Lanxide Technology Company, Lp Directional solidification of metal matrix composites
US5303763A (en) * 1988-11-10 1994-04-19 Lanxide Technology Company, Lp Directional solidification of metal matrix composites
US5020583A (en) * 1988-11-10 1991-06-04 Lanxide Technology Company, Lp Directional solidification of metal matrix composites
US5526867A (en) * 1988-11-10 1996-06-18 Lanxide Technology Company, Lp Methods of forming electronic packages
US5020584A (en) * 1988-11-10 1991-06-04 Lanxide Technology Company, Lp Method for forming metal matrix composites having variable filler loadings and products produced thereby
US5000245A (en) * 1988-11-10 1991-03-19 Lanxide Technology Company, Lp Inverse shape replication method for forming metal matrix composite bodies and products produced therefrom
US5000248A (en) * 1988-11-10 1991-03-19 Lanxide Technology Company, Lp Method of modifying the properties of a metal matrix composite body
US5010945A (en) * 1988-11-10 1991-04-30 Lanxide Technology Company, Lp Investment casting technique for the formation of metal matrix composite bodies and products produced thereby
US5004035A (en) * 1988-11-10 1991-04-02 Lanxide Technology Company, Lp Method of thermo-forming a novel metal matrix composite body and products produced therefrom
US5236032A (en) * 1989-07-10 1993-08-17 Toyota Jidosha Kabushiki Kaisha Method of manufacture of metal composite material including intermetallic compounds with no micropores
AU626435B2 (en) * 1989-07-10 1992-07-30 Toyota Jidosha Kabushiki Kaisha Method of manufacture of metal matrix composite material including intermetallic compounds with no micropores
AT393652B (de) * 1989-12-14 1991-11-25 Austria Metall Vorrichtung und verfahren zur herstellung von metallmatrixverbundmaterial
WO1991017278A1 (fr) * 1990-05-09 1991-11-14 Lanxide Technology Company, Lp Materiaux de barrage servant a fabriquer des composites a matrice metallique
WO1991017129A1 (fr) * 1990-05-09 1991-11-14 Lanxide Technology Company, Lp Corps macrocomposites et procedes de production
US5851686A (en) * 1990-05-09 1998-12-22 Lanxide Technology Company, L.P. Gating mean for metal matrix composite manufacture
US5505248A (en) * 1990-05-09 1996-04-09 Lanxide Technology Company, Lp Barrier materials for making metal matrix composites
AU652573B2 (en) * 1990-05-09 1994-09-01 Lanxide Corporation Metal matrix composites
US5487420A (en) * 1990-05-09 1996-01-30 Lanxide Technology Company, Lp Method for forming metal matrix composite bodies by using a modified spontaneous infiltration process and products produced thereby
AU8305191A (en) * 1990-05-09 1991-11-27 Lanxide Technology Company, Lp Rigidized filler materials for metal matrix composites
US5529108A (en) * 1990-05-09 1996-06-25 Lanxide Technology Company, Lp Thin metal matrix composites and production methods
US5329984A (en) * 1990-05-09 1994-07-19 Lanxide Technology Company, Lp Method of forming a filler material for use in various metal matrix composite body formation processes
US5361824A (en) * 1990-05-10 1994-11-08 Lanxide Technology Company, Lp Method for making internal shapes in a metal matrix composite body
JPH04304333A (ja) * 1991-03-25 1992-10-27 Aluminum Co Of America <Alcoa> アルミニウムまたはアルミニウム合金をマトリクスとする複合材料およびその強化材とマトリクスとの濡れおよび結合を向上させる方法
FR2675063B1 (fr) * 1991-04-09 1996-01-12 Renault Procede d'elaboration de pieces metalliques composites a renforts metalliques.
US5652723A (en) * 1991-04-18 1997-07-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device
EP0575685B1 (fr) * 1992-06-23 1997-01-15 Sulzer Innotec Ag Moulage de précision ayant des surfaces d'usure
US5269989A (en) * 1992-09-01 1993-12-14 The Dow Chemical Company Cermet or ceramic/glass composites including self-reinforced β-Silicon nitride, and method of making same
US5284200A (en) * 1992-11-02 1994-02-08 Caterpillar Inc. Method of forming a bonded component
US5322109A (en) * 1993-05-10 1994-06-21 Massachusetts Institute Of Technology, A Massachusetts Corp. Method for pressure infiltration casting using a vent tube
US5848349A (en) * 1993-06-25 1998-12-08 Lanxide Technology Company, Lp Method of modifying the properties of a metal matrix composite body
DE69432546T2 (de) * 1993-09-16 2003-11-20 Sumitomo Electric Industries Metallgehäuse für Halbleiterbauelement und Verfahren zu seiner Herstellung
DE19750600A1 (de) * 1997-11-14 1999-05-20 Nils Claussen Metallverstärktes Konstruktionselement
US6148899A (en) 1998-01-29 2000-11-21 Metal Matrix Cast Composites, Inc. Methods of high throughput pressure infiltration casting
AU5144799A (en) * 1998-08-07 2000-02-28 Alcan International Limited Preparation of metal-matrix composite materials using ceramic particles with modified surfaces
SG126668A1 (en) 1998-12-29 2006-11-29 Bfr Holding Ltd Protective boot and sole structure
JP3690171B2 (ja) 1999-03-16 2005-08-31 株式会社日立製作所 複合材料とその製造方法及び用途
JP3547078B2 (ja) * 1999-06-11 2004-07-28 ニチアス株式会社 シリンダブロックの製造方法
JP4289775B2 (ja) * 2000-09-29 2009-07-01 日本碍子株式会社 多孔質金属基複合材料
DE10115477A1 (de) * 2001-03-29 2002-10-10 Trw Automotive Safety Sys Gmbh Kraftfahrzeugbauteil und Verfahren zu dessen Herstellung
EP1425254B1 (fr) 2001-08-29 2005-10-05 Dow Global Technologies Inc. Composite d'aluminium metal et de ceramique contenant du bore et procede de formation de ce composite
CN104388763A (zh) * 2014-11-04 2015-03-04 苏州经贸职业技术学院 一种铝合金材料及其制备方法
CN107686953B (zh) * 2017-08-23 2019-05-03 巩义市泛锐熠辉复合材料有限公司 一种碳/碳-铜复合材料的制备方法
CN112779480B (zh) * 2019-11-06 2022-03-22 南京航空航天大学 一种界面改性纤维增强金属基复合材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1037894A (fr) * 1951-05-30 1953-09-23 Metallurg Des Poudres Perfectionnement à la métallurgie des poudres
AU442221B2 (en) * 1969-10-13 1973-11-01 Norton Company Capacitor with fibered valve metal anode
US4327156A (en) * 1980-05-12 1982-04-27 Minnesota Mining And Manufacturing Company Infiltrated powdered metal composite article
US4341823A (en) * 1981-01-14 1982-07-27 Material Concepts, Inc. Method of fabricating a fiber reinforced metal composite
JPS60177102A (ja) * 1984-02-24 1985-09-11 Mazda Motor Corp 鉄系焼結合金への鉛含浸方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928541A (zh) * 2015-07-06 2015-09-23 苏州科茂电子材料科技有限公司 一种用于电缆的铝合金材料及其制备方法
CN109913774A (zh) * 2017-12-12 2019-06-21 江苏赛尔亚环保科技有限公司 同步带轮材料

Also Published As

Publication number Publication date
AU3339989A (en) 1989-11-02
CA1340883C (fr) 2000-01-25
EP0340957A3 (en) 1990-06-06
DE68913800D1 (de) 1994-04-21
AU620862B2 (en) 1992-02-27
DE68913800T2 (de) 1994-07-14
EP0340957A2 (fr) 1989-11-08

Similar Documents

Publication Publication Date Title
EP0340957B1 (fr) Procédé de fabrication de métal composite promouvant l&#39;infiltration d&#39;une matrice métallique par des fines particules d&#39;un troisième matériau
EP1065020B1 (fr) Articles poreux métalliques, leur procédé de préparation ainsi que matériaux métalliques composites utilisant ces articles
EP0384045B1 (fr) Procédé pour obtenir un lien métallurgique entre un matériau métallique ou un matériau composite à matrice métallique et une coulée d&#39;un métal ou d&#39;un alliage
WO1999055470A1 (fr) Application de matiere de recharge sur un substrat
GB2396624A (en) Iron-based sintered body
US5791397A (en) Processes for producing Mg-based composite materials
KR0148356B1 (ko) 신규한 금속 기질 복합체를 제조하는 방법
US6103397A (en) Metallic porous product and composite product thereof and method of producing the same
US5385789A (en) Composite powders for thermal spray coating
US5236032A (en) Method of manufacture of metal composite material including intermetallic compounds with no micropores
US6517953B1 (en) Metal matrix composite body having a surface of increased machinability and decreased abrasiveness
EP0408257B1 (fr) Procédé de fabrication d&#39;un matériau composite à matrice métallique avec les composés intermétalliques et sans les micropores
JP2576188B2 (ja) 金属基複合材料の製造方法
JP2909546B2 (ja) 金属基複合材料の製造方法
Ashworth et al. Microstructure and property relationships in hipped Stellite powders
US7132156B2 (en) Preform for composite material and aluminum composite material having the preform for composite material and a manufacturing method of the same
JP2576186B2 (ja) 金属基複合材料の製造方法
JP2576187B2 (ja) 金属基複合材料の製造方法
JPH07119811A (ja) 高摩擦ローラおよびその製造方法
JPH07100834B2 (ja) 金属基複合材料の製造方法
JPH0645833B2 (ja) アルミニウム合金系複合材料の製造方法
JPH01279719A (ja) パワーチップ一体型集積回路
JPH0941115A (ja) 溶射皮膜とその形成方法
JP2002161378A (ja) 鉄系高剛性部材
JPH0636983B2 (ja) 部分的複合部材の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19901207

17Q First examination report despatched

Effective date: 19921111

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 68913800

Country of ref document: DE

Date of ref document: 19940421

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19970901

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020410

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020424

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020502

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST