EP0340264B1 - Process for manufacturing semi-finished products from sintered refractory metal alloys - Google Patents

Process for manufacturing semi-finished products from sintered refractory metal alloys Download PDF

Info

Publication number
EP0340264B1
EP0340264B1 EP88909073A EP88909073A EP0340264B1 EP 0340264 B1 EP0340264 B1 EP 0340264B1 EP 88909073 A EP88909073 A EP 88909073A EP 88909073 A EP88909073 A EP 88909073A EP 0340264 B1 EP0340264 B1 EP 0340264B1
Authority
EP
European Patent Office
Prior art keywords
sintered
annealing
intermediate annealing
refractory metal
finished products
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88909073A
Other languages
German (de)
French (fr)
Other versions
EP0340264A1 (en
Inventor
Ralf Eck
Gerhard Leichtfried
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metallwerk Plansee GmbH
Original Assignee
Metallwerk Plansee GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallwerk Plansee GmbH filed Critical Metallwerk Plansee GmbH
Publication of EP0340264A1 publication Critical patent/EP0340264A1/en
Application granted granted Critical
Publication of EP0340264B1 publication Critical patent/EP0340264B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles

Definitions

  • the invention relates to a process for the production of semi-finished products from sintered refractory metal alloys with a stacked structure, in which the sintered material is brought to a degree of deformation of at least 85% by mechanical forming in several forming steps and then subjected to a recrystallization annealing.
  • a refractory base metal is doped with certain elements and subjected to high mechanical deformations with a degree of deformation of at least 85% in the course of production.
  • the material is subjected to a recrystallization annealing.
  • stack structure which is characterized by elongated structure grains, the ratio of length to width of which is at least 2: 1.
  • refractory metal alloys of this type are e.g. Tungsten and molybdenum alloys that are doped with small amounts of aluminum, silicon and potassium, or with silicon and potassium.
  • the sintered starting material is heated to temperatures of approximately 1350 ° C. to approximately 1450 ° C. and by mechanical shaping, for example rolling or round hammers and Drawing, formed in several forming steps to a final degree of forming of at least 85%.
  • the degree of deformation is a measure of the plastic deformation and thus material compression achieved and is calculated in percent A a - A e A a x 100 where A a is the cross-sectional area of the sintered starting material and A e is the cross-sectional area of the finished end product.
  • the material is subjected to a recrystallization annealing.
  • the recrystallization temperature depends on the type of alloy and the specific degree of deformation. The higher the degree of deformation, the higher the temperature required for recrystallization for this type of alloy.
  • a disadvantage of this process for the production of refractory metal alloys with a stacked structure is that only semi-finished products of relatively small dimensions, e.g. for sheets, sheet thicknesses of a maximum of about 2 mm and for wires with a maximum diameter of about 1.7 mm. In the case of semi-finished products that exceed these dimensions, the formation of a satisfactory stack structure is generally no longer achievable.
  • EU A1 119 438 describes special molybdenum alloys with a stacked structure in which the molybdenum is doped with about 0.005 to 0.75% by weight of at least one of the elements aluminum, silicon and potassium.
  • This prior publication also mentions that by additionally doping this alloy with 0.3 to 3% by weight of at least one compound selected from the group of Oxides, carbides, borides and nitrides of the elements La, Ce, Dy, Y, Th, Ti, Zr, Nb, Ta, Hf, V, Cr, Mo, W and Mg the high temperature properties of the alloy can be further improved.
  • the sintered starting material is formed with a degree of deformation of at least 85%, preferably of 95% and more.
  • a first recrystallization annealing is recommended there after reaching a degree of deformation between 45% and 85%.
  • further shaping to the predetermined degree of deformation and a final recrystallization annealing.
  • no special regulations regarding the successive degrees of deformation are mentioned.
  • This special manufacturing process results in a certain improvement in the creep resistance and the thermal behavior of these alloys compared to alloys that are produced without this intermediate recrystallization annealing.
  • the object of the present invention is to provide a method for producing semifinished products from sintered refractory metal alloys with a stacked structure, according to which the semifinished product can also be produced with comparatively large dimensions, or according to which, when producing semifinished products, a dimension that is comparatively the same mentioned prior art significantly improved stack structure is achieved.
  • the sintered material which has been formed to at least 85%, is subjected to intermediate annealing prior to recrystallization annealing for at least 20 minutes at a minimum temperature of 700 ° C. and a maximum temperature at which just no recrystallization occurs, and subsequently to the intermediate annealing deformed by a further 3% to 30% when heated.
  • sheet thicknesses of up to approx. 10 mm and bar diameters of up to approx. 50 mm can be achieved in the production of sheet metal, while at the same time forming a satisfactory stack structure.
  • the intermediate annealing according to the invention and the subsequent shaping can be repeated one or more times, it being possible to carry out repetitions both before and after or after a first recrystallization annealing. Only the first intermediate annealing and the subsequent forming must be carried out before a first recrystallization annealing. It is also important that intermediate annealing and forming are only carried out in combination with one another as long as the material has not yet undergone a first recrystallization annealing.
  • the method according to the invention is particularly suitable for refractory metal alloys made of molybdenum, tungsten, chromium and alloys of these metals with one another which are used to achieve the stack structure with aluminum, potassium and silicon or also with compounds and / or mixed phases from the group of oxides, nitrides, carbides , Borides, silicates or aluminates with a melting point above 1500 ° C.
  • Potassium silicate solutions were sprayed into molybdenum oxide, which was then reduced to molybdenum metal powder in a first stage at about 650 ° C in H2 countercurrent to MoO2 and in a second stage at about 1100 ° C.
  • the amount sprayed in was so dimensioned that the metal powder contained 0.175% by weight of silicon and 0.152% by weight of potassium.
  • the molybdenum powder with an average grain size of approx. 5 ⁇ m was then pressed on a die press with 3 MN to form sheets with the dimensions 550 mm x 200 mm x 70 mm.
  • the plates were then sintered under H2 protective gas with a heating time of 3 hours and a holding time of 5 hours at 1800 ° C.
  • the sintered plates starting at a forming temperature of approx. 1400 ° C, were rolled out in steps of approximately 10% to form sheet of 5.6 mm thickness. After annealing under H2 protective gas at 1100 ° C for 5 hours, the sheet was finish-rolled at 800 ° C in one step to 5 mm thickness. After the final recrystallization annealing at 1900 ° C for 15 minutes, the sheet metal structure showed a stacked structure. The creep speed of this sheet was 6. 10 ⁇ 5 m / m H at 1800 ° C and 10 N / mm2 load. A further improvement of the stack structure was achieved in that the 5 mm thick sheet was annealed again for 5 hours at 1100 ° C.
  • molybdenum powder with an average particle size of approximately 5 ⁇ m was mixed with 1.2% by weight of La (OH) 3 powder with an average particle size of 0.4 ⁇ m in a compulsory mixer and on a die press pressed with 3 MN into sheets with the dimensions 170 mm x 400 mm x 54 mm. Then the plates were sintered under H2 protective gas with a heating time of 3 hours and a holding time of 4 hours at 2000 ° C. The sintered plates were rolled at a forming temperature of approx. 1400 ° C, with gradations of around 10% each, to sheet 2.2 mm thick.
  • the sheet After annealing under H2 protective gas at 1100 ° C for 5 hours, the sheet was finish-rolled to 700 mm in one step to 2 mm. After a final recrystallization annealing at 2300 ° C for 15 minutes, the sheet metal structure showed a stack structure, the structure grains having an average length to width ratio of 5: 1 exhibited. The sheet creep speed was 1.5. 10 ⁇ 4 m / m H at 1800 ° C and 10 N / mm2 load.
  • Blue tungsten oxide powder was mixed with potassium silicate and aluminum chloride solutions and under H2 protective gas at a temperature of about 1000 ° C to doped metal powder with an average grain size of 5 microns with 0.16 wt.% Potassium, 0.19 % By weight silicon and 0.027% by weight aluminum reduced.
  • the powder was washed with hydrofluoric acid and cold isostatically pressed with 3 MN to square bars with a cross section of 2 cm x 2 cm. Then the rods were sintered under H2 protective gas after a heating time of 5 hours at 2600 ° C for 5 hours.
  • the sintered bars were hammered into bars with a diameter of 7 mm, starting with forming temperatures of 1600 ° C., in increments of approximately 10% each, and then drawn into wires with a diameter of 5.15 mm. After annealing under H2 protective gas at 1250 ° C for 3 hours, the wires were pulled to a diameter of 5 mm in one step.
  • the stacked structure was formed during a recrystallizing annealing at 2300 ° C. for 15 minutes.
  • a potassium silicate solution was added to molybdenum oxide powder in such a way that a mixture of molybdenum with 0.20% by weight potassium and 0.315% by weight silicon was present after the reduction.
  • This doped molybdenum powder was mixed with the same amount of chromium powder and pressed on a die press with 3 MN to form plates with the dimensions 400 mm ⁇ 170 mm ⁇ 40 mm.
  • the plates were then sintered under H2 protective gas with a heating time of 3 hours and a holding time of 7 hours at 1700 ° C.
  • the sintered plates were rolled at a forming temperature of approx. 1200 ° C, with gradations of approximately 10% in each case to sheet metal of 3.3 mm thickness. After annealing in vacuo at 880 ° C for 5 hours, the sheet was finish-rolled at 700 ° C to 3 mm. With a final recrystallization annealing at 1700 ° C for 15 minutes, the stack structure was formed.
  • the manufacture of semi-finished products of the same dimensions is compared once according to the prior art and once according to the method according to the invention. It can be seen that the creeping speed of the semifinished product produced according to the invention is comparatively significantly lower and, consequently, the stack structure is formed, while the semifinished product which was manufactured according to the prior art has no stack structure.
  • a potassium silicate solution was added to molybdenum oxide powder in such a way that 0.175% by weight of silicon and 0.152% by weight of potassium were contained in the reduced molybdenum metal powder.
  • the doped metal powder with an average grain size of approx. 5 ⁇ m was pressed on a die press with 3 MN to form plates with the dimensions 400 mm x 170 mm x 47 mm.
  • the plates were then sintered under H2 protective gas with a heating time of 3 hours and a holding time of 5 hours at 1700 ° C.
  • Some of these plates were rolled according to a state-of-the-art manufacturing process, starting at a forming temperature of approx. 1400 ° C., with gradations of approximately 10% in each case, into sheet metal of 2 mm thickness.
  • the sheet creep speed was 1.6. 10 ⁇ 2 m / m H at 1800 ° C and 10 N / mm2 load.
  • the remaining sintered plates were rolled according to the invention at a forming temperature of approximately 1400 ° C., with the same gradations of approximately 10% degree of deformation, into sheet metal of 2.2 m thickness.
  • the sheet was finish-rolled at about 700 ° C in one step to 2 mm.
  • the sheet had a good stack structure.
  • the sheet creep speed was 3.1. 10 ⁇ 4 m / m H at 1800 ° C and 10 N / mm2 load (compared to 1.6. 10 ⁇ 2 m / m H ) .

Abstract

In a process for manufacturing semi-finished products from sintered refractory metal alloys with a stacked microstructure, the sinter feed formed at least at 85 % is subjected prior to subcritical annealing to an intermediate annealing for at least 20 minutes at a temperature not less than 700°C and not greater than that at which no further recrystallization occurs. Following this intermediate annealing, the hot feed is deformed by a further 3 % to 30 %. The process makes it possible to manufacture semi-finished products with a good stacked microstructure and of substantially greater dimensions or of the same dimensions and a substantially better stacked microstructure than can be obtained with known manufacturing processes.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Halbzeug aus gesinterten Refraktärmetall-Legierungen mit Stapelgefügestruktur, bei dem das gesinterte Gut durch mechanische Umformung in mehreren Umformschritten auf einen Umformgrad von mindestens 85 % gebracht und anschließend einer Rekristallisiationsglühung unterzogen wird.The invention relates to a process for the production of semi-finished products from sintered refractory metal alloys with a stacked structure, in which the sintered material is brought to a degree of deformation of at least 85% by mechanical forming in several forming steps and then subjected to a recrystallization annealing.

Um bei den Refraktärmetallen die Warmfestigkeits- und Kriechfestigkeitseigenschaften bei hohen Temperaturen zu verbessern, wurden in der Vergangenheit verschiedene Arten des Legierens von Refraktärmetallen entwickelt.In order to improve the heat resistance and creep resistance properties at high temperatures in the case of refractory metals, various types of alloying of refractory metals have been developed in the past.

Nach einem bekannten, auf die Pulvermetallurgie beschränkten Verfahren, wird ein Refraktär-Grundmetall mit bestimmten Elementen dotiert und im Zuge der Herstellung hohen mechanischen Umformungen mit einem Umformgrad von mindestens 85 % unterzogen. Nach abgeschlossenem Umformprozeß wird das Material einer Rekristallisationsglühung unterzogen. Auf diese Weise kommt es zu einer ganz bestimmten Gefügeausbildung der Refraktärmetall-Legierung, der sogenannten Stapelgefügestruktur, die durch länglich geformte Gefügekörner gekennzeichnet ist, deren Verhältnis von Länge zu Breite mindestens 2 : 1 beträgt.According to a known method, which is limited to powder metallurgy, a refractory base metal is doped with certain elements and subjected to high mechanical deformations with a degree of deformation of at least 85% in the course of production. After the forming process has been completed, the material is subjected to a recrystallization annealing. This results in a very specific structure of the refractory metal alloy, the so-called stack structure, which is characterized by elongated structure grains, the ratio of length to width of which is at least 2: 1.

Bekannte Refraktärmetall-Legierungen dieser Art sind z.B. Wolfram- und Molybdän-Legierungen, die mit geringen Mengen an Aluminium, Silizium und Kalium, oder mit Silizium und Kalium dotiert sind.Known refractory metal alloys of this type are e.g. Tungsten and molybdenum alloys that are doped with small amounts of aluminum, silicon and potassium, or with silicon and potassium.

Bei der Herstellung dieser Legierungen wird das gesinterte Ausgangsmaterial auf Temperaturen von etwa 1350°C bis etwa 1450°C angewärmt und durch mechanische Umformung, z.B. Walzen oder Rundhämmern und Ziehen, in mehreren Umformschritten auf einen endgültigen Umformgrad von mindestens 85 % umgeformt. Der Umformgrad ist ein Maßstab für die erzielte plastische Verformung und damit Materialverdichtung und errechnet sich in Prozent aus A a - A e A a x 100

Figure imgb0001

wobei Aa die Querschnittsfläche des gesinterten Ausgangsmaterials und Ae die Querschnittsfläche des fertigen Endproduktes ist. Um die Umformung zu erleichtern und Risse im Material zu vermeiden ist es wichtig, daß die notwendige Umformtemperatur während des gesamten Umformprozesses aufrecht erhalten wird, so daß zwischen einzelnen Umformschritten in der Regel neu angewärmt werden muß. Nach abgeschlossenem Umformprozeß wird das Material einer Rekristallisationsglühung unterzogen. Die Rekristallisationstemperatur ist abhängig von der Art der Legierung und vom speziellen Umformgrad. Je höher der Umformgrad ist, desto höher ist für diesen Legierungstyp auch die für die Rekristallisation erforderliche Temperatur.In the production of these alloys, the sintered starting material is heated to temperatures of approximately 1350 ° C. to approximately 1450 ° C. and by mechanical shaping, for example rolling or round hammers and Drawing, formed in several forming steps to a final degree of forming of at least 85%. The degree of deformation is a measure of the plastic deformation and thus material compression achieved and is calculated in percent A a - A e A a x 100
Figure imgb0001

where A a is the cross-sectional area of the sintered starting material and A e is the cross-sectional area of the finished end product. In order to facilitate the forming and to avoid cracks in the material, it is important that the necessary forming temperature is maintained during the entire forming process, so that it is usually necessary to reheat between individual forming steps. After the forming process has been completed, the material is subjected to a recrystallization annealing. The recrystallization temperature depends on the type of alloy and the specific degree of deformation. The higher the degree of deformation, the higher the temperature required for recrystallization for this type of alloy.

Nachteilig bei diesem Verfahren zur Herstellung von Refraktärmetall-Legierungen mit Stapelgefügestruktur ist, daß nur Halbzeug relativ geringer Abmessungen, z.B. bei Blechen, Blechstärken von maximal etwa 2 mm und bei Drähten Durchmesser von maximal etwa 1,7 mm hergestellt werden können. Bei Halbzeug, das diese Abmessungen überschreitet, ist die Ausbildung einer befriedigenden Stapelgefügestruktur in der Regel nicht mehr erreichbar.A disadvantage of this process for the production of refractory metal alloys with a stacked structure is that only semi-finished products of relatively small dimensions, e.g. for sheets, sheet thicknesses of a maximum of about 2 mm and for wires with a maximum diameter of about 1.7 mm. In the case of semi-finished products that exceed these dimensions, the formation of a satisfactory stack structure is generally no longer achievable.

In der EU A1 119 438 sind spezielle Molybdän-Legierungen mit Stapelgefügestruktur beschrieben, bei der das Molybdän mit etwa 0,005 bis 0,75 Gew.% mindestens eines der Elemente Aluminium, Silizium und Kalium dotiert wird. In dieser Vorveröffentlichung wird weiters erwähnt, daß durch eine zusätzliche Dotierung dieser Legierung mit 0,3 bis 3 Gew.% wenigstens einer Verbindung, ausgewählt aus der Gruppe der Oxide, Karbide, Boride und Nitride der Elemente La, Ce, Dy, Y, Th, Ti, Zr, Nb, Ta, Hf, V, Cr, Mo, W und Mg die Hochtemperatureigenschaften der Legierung noch weiter verbessert werden können.
Bei der Herstellung dieser speziellen Molybdän-Legierungen wird das gesinterte Ausgangsmaterial mit einem Umformgrad von mindestens 85 %, vorzugsweise von 95 % und mehr, umgeformt. Als besonders vorteilhafte Maßnahme wird dort nach Erreichen eines Umformgrades zwischen 45 % und 85 % eine erste Rekristallisationsglühung empfohlen. Danach erfolgt die Weiterverformung auf den vorbestimmten Umformgrad und eine abschließende Rekristallisationsglühung. Bei der Weiterverformung auf den gewünschten Umformgrad sind keine speziellen Vorschriften hinsichtlich der aufeinanderfolgenden Umformgrade erwähnt. Dieses spezielle Herstellungsverfahren bewirkt eine gewisse Verbesserung der Kriechfestigkeit und des Wärmeverhaltens dieser Legierungen gegenüber Legierungen die ohne diese zwischengeschaltete Rekristalisationsglühung hergestellt werden. Jedoch auch nach diesem Herstellungsverfahren läßt sich kein Halbzeug aus Molybdän-Legierungen mit Stapelgefügestruktur herstellen, welche größere Abmessungen in der Blechstärke oder im Drahtdurchmesser aufweisen als eingangs angeführt.
EU A1 119 438 describes special molybdenum alloys with a stacked structure in which the molybdenum is doped with about 0.005 to 0.75% by weight of at least one of the elements aluminum, silicon and potassium. This prior publication also mentions that by additionally doping this alloy with 0.3 to 3% by weight of at least one compound selected from the group of Oxides, carbides, borides and nitrides of the elements La, Ce, Dy, Y, Th, Ti, Zr, Nb, Ta, Hf, V, Cr, Mo, W and Mg the high temperature properties of the alloy can be further improved.
In the production of these special molybdenum alloys, the sintered starting material is formed with a degree of deformation of at least 85%, preferably of 95% and more. As a particularly advantageous measure, a first recrystallization annealing is recommended there after reaching a degree of deformation between 45% and 85%. This is followed by further shaping to the predetermined degree of deformation and a final recrystallization annealing. When further shaping to the desired degree of deformation, no special regulations regarding the successive degrees of deformation are mentioned. This special manufacturing process results in a certain improvement in the creep resistance and the thermal behavior of these alloys compared to alloys that are produced without this intermediate recrystallization annealing. However, even using this manufacturing process, it is not possible to manufacture a semi-finished product from molybdenum alloys with a stacked structure which have larger dimensions in the sheet thickness or in the wire diameter than mentioned at the beginning.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung von Halbzeug aus gesinterten Refraktärmetall-Legierungen mit Stapelgefügestruktur zu schaffen, nach dem das Halbzeug auch mit vergleichsweise großen Abmessungen hergestellt werden kann, bzw. nach dem bei Herstellung von Halbzeug vergleichsweise gleicher Abmessung eine gegenüber dem genannten Stand der Technik wesentlich verbesserte Stapelgefügestruktur erreicht wird.The object of the present invention is to provide a method for producing semifinished products from sintered refractory metal alloys with a stacked structure, according to which the semifinished product can also be produced with comparatively large dimensions, or according to which, when producing semifinished products, a dimension that is comparatively the same mentioned prior art significantly improved stack structure is achieved.

Erfindungsgemäß wird dies dadurch erreicht, daß das zu mindestens 85 % umgeformte Sintergut vor der Rekristallisationsglühung während mindestens 20 Minuten bei einer Mindesttemperatur von 700°C und einer Höchsttemperatur bei der gerade noch keine Rekristallisation auftritt, einer Zwischenglühung unterzogen und anschließend an die Zwischenglühung in angewärmten Zustand um weiter 3 % bis 30 %, verformt wird.According to the invention, this is achieved in that the sintered material, which has been formed to at least 85%, is subjected to intermediate annealing prior to recrystallization annealing for at least 20 minutes at a minimum temperature of 700 ° C. and a maximum temperature at which just no recrystallization occurs, and subsequently to the intermediate annealing deformed by a further 3% to 30% when heated.

Durch die Kombination der speziellen Zwischenglühung des auf mindestens 85 % umgeformten Ausgangsmateriales mit einer anschließenden Umformung innerhalb eines ganz speziellen Umformbereiches wird auf völlig überraschende Weise erreicht, daß Halbzeug aus gesinterten Refraktärmetall-Legierungen im Vergleich zu Halbzeug, das nach bekannten Verfahren hergestellt wird, unter Ausbildung einer guten Stapelgefügestruktur mit wesentlich größeren Abmessungen herstellbar ist bzw. bei gleichen Abmessungen eine wesentlich bessere Stapelgefügestruktur aufweist als nach dem beschriebenen Stand der Technik.By combining the special intermediate annealing of the starting material, which has been formed to at least 85%, with a subsequent forming within a very special forming area, it is achieved in a completely surprising way that semifinished products made of sintered refractory metal alloys compared to semifinished products which are produced by known processes, with training a good stacked structure can be produced with significantly larger dimensions or has a much better stacked structure with the same dimensions than according to the described prior art.

So sind mit den erfindungsgemäßen Verfahren bei der Herstellung von Blechen Blechstärken bis ca. 10 mm und bei der Herstellung von Stäben Stabdurchmesser bis ca. 50 mm erreichbar, bei gleichzeitiger Ausbildung eines zufriedenstellenden Stapelgefüges.Thus, with the methods according to the invention, sheet thicknesses of up to approx. 10 mm and bar diameters of up to approx. 50 mm can be achieved in the production of sheet metal, while at the same time forming a satisfactory stack structure.

Die erfindungsgemäße Zwischenglühung und die anschließende Umformung können ein oder mehrmals wiederholt werden, wobei sich Wiederholungen sowohl vor als auch nach der, bzw. einer ersten Rekristallisationsglühung durchführen lassen. Lediglich die erste Zwischenglühung und die daran anschließende Umformung müssen zwingend vor einer ersten Rekristallisationsglühung erfolgen. Wichtig ist auch, daß Zwischenglühungen und Umformungen jeweils nur in Kombination miteinander erfolgen, solange das Gut noch nicht einer ersten Rekristallisationsglühung unterzogen worden ist.The intermediate annealing according to the invention and the subsequent shaping can be repeated one or more times, it being possible to carry out repetitions both before and after or after a first recrystallization annealing. Only the first intermediate annealing and the subsequent forming must be carried out before a first recrystallization annealing. It is also important that intermediate annealing and forming are only carried out in combination with one another as long as the material has not yet undergone a first recrystallization annealing.

Zusätzliche Rekristallisationsglühungen im Anschluß an einen Wiederholungszyklus Zwischenglühungen und Umformungen können eine zusätzliche Verbesserung der Stapelgefügestruktur gegenüber nur einmal zwecks rekristallisationsgeglühtem Gut bewirken.Additional recrystallization annealing following a repetition cycle Intermediate annealing and forming can bring about an additional improvement in the stack structure compared to only once for the purpose of recrystallization annealing.

Bei einem Wiederholungszyklus beziehen sich die weiteren Umformungen von 3 % bis 30 % dabei jeweils auf den Querschnitt des Gutes bei der vorhergehenden Glühung.In the case of a repetition cycle, the further transformations from 3% to 30% each relate to the cross section of the material during the previous annealing.

Das erfindungsgemäße Verfahren ist besonders für Refraktärmetall-Legierungen aus Molybdän, Wolfram, Chrom sowie Legierungen dieser Metalle untereinander geeignet, die zur Erzielung des Stapelgefüges mit Aluminium, Kalium und Silizium oder auch mit Verbindungen und/oder Mischphasen aus der Gruppe der Oxide, Nitride, Karbide, Boride, Silikate oder Aluminate mit einem Schmelzpunkt über 1500°C dotiert sind.The method according to the invention is particularly suitable for refractory metal alloys made of molybdenum, tungsten, chromium and alloys of these metals with one another which are used to achieve the stack structure with aluminum, potassium and silicon or also with compounds and / or mixed phases from the group of oxides, nitrides, carbides , Borides, silicates or aluminates with a melting point above 1500 ° C.

Das erfindungsgemäße Herstellungsverfahren wird im folgenden durch Beispiele näher erläutert.The production process according to the invention is explained in more detail below by examples.

Beispiel 1example 1

Kalisilikatlösungen wurden in Molybdänoxid eingesprüht, welches darauf in einer ersten Stufe bei etwa 650°C im H₂-Gegenstrom zu MoO₂ und in einer zweiten Stufe bei ca. 1100°C zu Molybdän-Metallpulver reduziert wurde. Die eingesprühte Menge war dabei so bemessen, daß im Metallpulver 0,175 Gew.% Silizium und 0,152 Gew.% Kalium enthalten waren.
Das Molybdän-Pulver mit einer mittleren Korngröße von ca. 5µm wurde anschließend auf einer Matrizen-Presse mit 3 MN zu Platten mit den Abmessungen 550 mm x 200 mm x 70 mm verpreßt.
Danach wurden die Platten unter H₂-Schutzgas mit einer Aufheizzeit von 3 Stunden und einer Haltezeit von 5 Stunden bei 1800°C gesintert.
Die gesinterten Platten wurden, bei einer Umformtemperatur von ca. 1400°C beginnend, mit Abstufungen von jeweils etwa 10 % Umformgrad zu Blech von 5,6 mm Stärke ausgewalzt. Nach einer Glühung unter H₂-Schutzgas bei 1100°C während 5 Stunden wurde das Blech bei 800°C in einem Schritt auf 5 mm Stärke fertiggewalzt.
Nach abschließender Rekristallisationsglühung bei 1900°C während 15 Minuten zeigte das Blechgefüge Stapelstruktur. Die Kriechgeschwindigkeit dieses Bleches betrug 6 . 10⁻⁵ m/m h

Figure imgb0002
bei 1800°C und 10 N/mm² Belastung.
Eine weitere Verbesserung des Stapelgefüges wurde dadurch erreicht, daß das 5 mm starke Blech vor der abschließenden Rekristallisationsglühung bei 1100°C während 5 Stunden nochmals zwischengeglüht und anschließend in einem Schritt auf 4,5 mm Stärke fertiggewalzt wurde. Die Kriechgeschwindigkeit dieses Bleches betrug 2,5 . 10⁻⁵ m/m h
Figure imgb0003
bei 1800°C und 10 N/mm² Belastung.
Ebenso ist es möglich, das 5 mm Blech nach der Rekristallisationsglühung in einem Schritt auf 4,5 mm fertigzuwalzen.
In diesem Fall kann sowohl die nochmalige Zwischenglühung bei 1100°C als auch eine nochmalige abschließende Rekristallisationsglühung entfallen.Potassium silicate solutions were sprayed into molybdenum oxide, which was then reduced to molybdenum metal powder in a first stage at about 650 ° C in H₂ countercurrent to MoO₂ and in a second stage at about 1100 ° C. The amount sprayed in was so dimensioned that the metal powder contained 0.175% by weight of silicon and 0.152% by weight of potassium.
The molybdenum powder with an average grain size of approx. 5 µm was then pressed on a die press with 3 MN to form sheets with the dimensions 550 mm x 200 mm x 70 mm.
The plates were then sintered under H₂ protective gas with a heating time of 3 hours and a holding time of 5 hours at 1800 ° C.
The sintered plates, starting at a forming temperature of approx. 1400 ° C, were rolled out in steps of approximately 10% to form sheet of 5.6 mm thickness. After annealing under H₂ protective gas at 1100 ° C for 5 hours, the sheet was finish-rolled at 800 ° C in one step to 5 mm thickness.
After the final recrystallization annealing at 1900 ° C for 15 minutes, the sheet metal structure showed a stacked structure. The creep speed of this sheet was 6. 10⁻⁵ m / m H
Figure imgb0002
at 1800 ° C and 10 N / mm² load.
A further improvement of the stack structure was achieved in that the 5 mm thick sheet was annealed again for 5 hours at 1100 ° C. before the final recrystallization annealing and then finished rolled to 4.5 mm thickness in one step. The creep speed of this sheet was 2.5. 10⁻⁵ m / m H
Figure imgb0003
at 1800 ° C and 10 N / mm² load.
It is also possible to finish-roll the 5 mm sheet to 4.5 mm in one step after the recrystallization annealing.
In this case, the repeated intermediate annealing at 1100 ° C as well as another final recrystallization annealing can be omitted.

Beispiel 2Example 2

98,8 Gew.% Molybdän-Pulver mit einer mittleren Korngröße von ca. 5µm wurde mit 1,2 Gew.% La(OH)₃-Pulver mit einer mittleren Korngröße von 0,4µm in einem Zwangsmischer gemischt und auf einer Matrizen-Presse mit 3 MN zu Platten mit den Abmessungen 170 mm x 400 mm x 54 mm verpreßt.
Danach wurden die Platten unter H₂-Schutzgas mit einer Aufheizzeit von 3 Stunden und einer Haltezeit von 4 Stunden bei 2000°C gesintert.
Die gesinterten Platten wurden bei einer Umformtemperatur von ca. 1400°C beginnend, mit Abstufungen von jeweils etwa 10 % Umformgrad, zu Blech von 2,2 mm Stärke gewalzt.
Nach einer Glühung unter H₂-Schutzgas bei 1100°C während 5 Stunden wurde das Blech bei 700°C einem Schritt auf 2 mm fertiggewalzt. Nach einer abschließenden Rekristallisationsglühung bei 2300°C während 15 Minuten zeigte das Blechgefüge eine Stapelstruktur, wobei die Gefügekörner ein durchschnittliches Verhältnis Länge zu Breite von 5 : 1 aufwiesen. Die Kriechgeschwindigkeit des Bleches betrug 1,5 . 10⁻⁴ m/m h

Figure imgb0004
bei 1800°C und 10 N/mm² Belastung.98.8% by weight of molybdenum powder with an average particle size of approximately 5 µm was mixed with 1.2% by weight of La (OH) ₃ powder with an average particle size of 0.4 µm in a compulsory mixer and on a die press pressed with 3 MN into sheets with the dimensions 170 mm x 400 mm x 54 mm.
Then the plates were sintered under H₂ protective gas with a heating time of 3 hours and a holding time of 4 hours at 2000 ° C.
The sintered plates were rolled at a forming temperature of approx. 1400 ° C, with gradations of around 10% each, to sheet 2.2 mm thick.
After annealing under H₂ protective gas at 1100 ° C for 5 hours, the sheet was finish-rolled to 700 mm in one step to 2 mm. After a final recrystallization annealing at 2300 ° C for 15 minutes, the sheet metal structure showed a stack structure, the structure grains having an average length to width ratio of 5: 1 exhibited. The sheet creep speed was 1.5. 10⁻⁴ m / m H
Figure imgb0004
at 1800 ° C and 10 N / mm² load.

Beispiel 3Example 3

95,3 Gew.% Molybdän-Pulver mit einer mittleren Korngröße von ca. 5µm wurden mit 4,7 Gew.% La(OH)₃-Pulver mit einer mittleren Korngröße von 0,4µm unter den gleichen Bedingungen wie bei Beispiel 2 zu 2 mm Blech verarbeitet.
Die abschließende Rekristallisationsglühung erfolgte bei 2300°C während 15 Minuten. Bei dem danach ausgebildeten Stapelgefüge hatten die Gefügekörner ein durchschnittliches Verhältnis von Länge zu Breite von mehr als 10 : 1.
95.3% by weight of molybdenum powder with an average grain size of approx. 5 µm were mixed with 4.7% by weight of La (OH) ₃ powder with an average grain size of 0.4 µm under the same conditions as in Example 2 mm sheet metal processed.
The final recrystallization annealing was carried out at 2300 ° C for 15 minutes. In the stack structure formed afterwards, the structure grains had an average length to width ratio of more than 10: 1.

Beispiel 4Example 4

Blaues Wolframoxid-Pulver wurde mit Kalisilikat- und Aluminiumchlorid-Lösungen vermischt und unter H₂-Schutzgas bei einer Temperatur von ca. 1000°C zu dotiertem Metall-Pulver mit einer durchschnittlichen Korngröße von 5µm mit 0,16 Gew.% Kalium, 0,19 Gew.% Silizium und 0,027 Gew.% Aluminium reduziert.
Das Pulver wurde mit Flußsäure gewaschen und kaltisostatisch mit 3 MN zu quadratischen Stäben mit einem Querschnitt von 2 cm x 2 cm verpreßt. Danach wurden die Stäbe under H₂-Schutzgas nach einer Aufheizzeit von 5 Stunden bei 2600°C 5 Stunden gesintert. Die Sinterstäbe wurden, bei Umformtemperaturen von 1600°C beginnend, mit Abstufungen von jeweils etwa 10 % Umformgrad auf Stäbe mit einem Durchmesser von 7 mm gehämmert und sodann zu Drähten mit einem Durchmesser von 5,15 mm gezogen. Nach einer Glühung unter H₂-Schutzgas bei 1250°C während 3 Stunden wurden die Drähte in einem Schritt auf einen Durchmesser von 5 mm weitergezogen.
Während einer rekristallisierenden Glühung bei 2300°C während 15 Minuten bildete sich die Stapelgefügestruktur aus.
Blue tungsten oxide powder was mixed with potassium silicate and aluminum chloride solutions and under H₂ protective gas at a temperature of about 1000 ° C to doped metal powder with an average grain size of 5 microns with 0.16 wt.% Potassium, 0.19 % By weight silicon and 0.027% by weight aluminum reduced.
The powder was washed with hydrofluoric acid and cold isostatically pressed with 3 MN to square bars with a cross section of 2 cm x 2 cm. Then the rods were sintered under H₂ protective gas after a heating time of 5 hours at 2600 ° C for 5 hours. The sintered bars were hammered into bars with a diameter of 7 mm, starting with forming temperatures of 1600 ° C., in increments of approximately 10% each, and then drawn into wires with a diameter of 5.15 mm. After annealing under H₂ protective gas at 1250 ° C for 3 hours, the wires were pulled to a diameter of 5 mm in one step.
The stacked structure was formed during a recrystallizing annealing at 2300 ° C. for 15 minutes.

Beispiel 5Example 5

Molybdänoxid-Pulver wurde derart mit einer Kalisilikat-Lösung versetzt, daß nach der Reduktion eine Mischung von Molybdän mit 0,20 Gew.% Kalium und 0,315 Gew.% Silizium vorhanden war. Dieses dotierte Molybdän-Pulver wurde mit der gleichen Menge Chrom-Pulver vermischt und auf einer Matrizen-Presse mit 3 MN zu Platten mit den Abmessungen 400 mm x 170 mm x 40 mm verpreßt.
Danach wurden die Platten unter H₂-Schutzgas mit einer Aufheizzeit von 3 Stunden und einer Haltezeit von 7 Stunden bei 1700°C gesintert. Die gesinterten Platten wurden bei einer Umformtemperatur von ca. 1200°C beginnend, mit Abstufungen von jeweils etwa 10 % Umformgrad zu Blech von 3,3 mm Stärke gewalzt.
Nach einer Glühung im Vakuum bei 880°C während 5 Stunden wurde das Blech bei 700°C auf 3 mm fertiggewalzt.
Mit einer abschließenden Rekristallisationsglühung bei 1700°C während 15 Minuten bildete sich die Stapelgefügestruktur aus.
A potassium silicate solution was added to molybdenum oxide powder in such a way that a mixture of molybdenum with 0.20% by weight potassium and 0.315% by weight silicon was present after the reduction. This doped molybdenum powder was mixed with the same amount of chromium powder and pressed on a die press with 3 MN to form plates with the dimensions 400 mm × 170 mm × 40 mm.
The plates were then sintered under H₂ protective gas with a heating time of 3 hours and a holding time of 7 hours at 1700 ° C. The sintered plates were rolled at a forming temperature of approx. 1200 ° C, with gradations of approximately 10% in each case to sheet metal of 3.3 mm thickness.
After annealing in vacuo at 880 ° C for 5 hours, the sheet was finish-rolled at 700 ° C to 3 mm.
With a final recrystallization annealing at 1700 ° C for 15 minutes, the stack structure was formed.

Beispiel 6Example 6

In diesem Beispiel wird die Herstellung von Halbzeug gleicher Abmessung einmal nach dem Stand der Technik und einmal nach dem erfindungsgemäßen Verfahren gegenübergestellt.
Es ist zu erkennen, daß die Kriechgeschwindigkeit des erfindungsgemäß hergestellten Halbzeuges vergleichsweise wesentlich geringer ist und demzufolge das Stapelgefüge ausgebildet ist, während das Halbzeug das nach dem Stand der Technik hergestellt wurde, kein Stapelgefüge aufweist.
Molybdänoxid-Pulver wurde derart mit einer Kalisilikat-Lösung versetzt, daß im fertig reduzierten Molybdän-Metallpulver 0,175 Gew.% Silizium und 0,152 Gew.% Kalium enthalten waren. Das dotierte Metallpulver mit einer mittleren Korngröße von ca. 5µm wurde auf einer Matrizen-Presse mit 3 MN zu Platten mit den Abmessungen 400 mm x 170 mm x 47 mm verpreßt.
Danach wurden die Platten unter H₂-Schutzgas mit einer Aufheizzeit von 3 Stunden und einer Haltezeit von 5 Stunden bei 1700°C gesintert. Ein Teil dieser Platten wurden nach einem Herstellungsverfahren entsprechend dem Stand der Technik bei einer Umformtemperatur von ca. 1400°C beginnend, mit Abstufungen von jeweils etwa 10 % Umformgrad zu Blech von 2 mm Stärke gewalzt.
Mit einer abschließenden Rekristallisationsglühung bei 1900°C während 15 Minuten bildete sich keine Stapelgefügestruktur aus. Das Gefüge blieb im wesentlichen feinkörnig und war nicht längsgestreckt. Die Kriechgeschwindigkeit des Bleches betrug 1,6 . 10⁻ ² m/m h

Figure imgb0005
bei 1800°C und 10 N/mm² Belastung.
Die restlichen gesinterten Platten wurden erfindungsgemäß bei einer Umformtemperatur von ca. 1400°C beginnend, mit denselben Abstufungen von jeweils etwa 10 % Umformgrad, zu Blech von 2,2 m Stärke gewalzt.
Nach einer Glühung unter H₂-Schutzgas bei 1100°C während 5 Stunden wurde das Blech bei ca. 700°C in einem Schritt auf 2 mm fertiggewalzt. Bei einer abschließenden Rekristallisationsglühung bei 1900°C während 15 Minuten wies das Blech eine gute Stapelgefügestruktur auf. Die Kriechgeschwindigkeit des Bleches betrug 3,1 . 10⁻⁴ m/m h
Figure imgb0006
bei 1800°C und 10 N/mm² Belastung (gegenüber 1,6 . 10⁻² m/m h )
Figure imgb0007
.In this example, the manufacture of semi-finished products of the same dimensions is compared once according to the prior art and once according to the method according to the invention.
It can be seen that the creeping speed of the semifinished product produced according to the invention is comparatively significantly lower and, consequently, the stack structure is formed, while the semifinished product which was manufactured according to the prior art has no stack structure.
A potassium silicate solution was added to molybdenum oxide powder in such a way that 0.175% by weight of silicon and 0.152% by weight of potassium were contained in the reduced molybdenum metal powder. The doped metal powder with an average grain size of approx. 5 µm was pressed on a die press with 3 MN to form plates with the dimensions 400 mm x 170 mm x 47 mm.
The plates were then sintered under H₂ protective gas with a heating time of 3 hours and a holding time of 5 hours at 1700 ° C. Some of these plates were rolled according to a state-of-the-art manufacturing process, starting at a forming temperature of approx. 1400 ° C., with gradations of approximately 10% in each case, into sheet metal of 2 mm thickness.
With a final recrystallization annealing at 1900 ° C for 15 minutes, no stack structure was formed. The structure remained essentially fine-grained and was not elongated. The sheet creep speed was 1.6. 10⁻² m / m H
Figure imgb0005
at 1800 ° C and 10 N / mm² load.
The remaining sintered plates were rolled according to the invention at a forming temperature of approximately 1400 ° C., with the same gradations of approximately 10% degree of deformation, into sheet metal of 2.2 m thickness.
After annealing under H₂ protective gas at 1100 ° C for 5 hours, the sheet was finish-rolled at about 700 ° C in one step to 2 mm. During a final recrystallization annealing at 1900 ° C for 15 minutes, the sheet had a good stack structure. The sheet creep speed was 3.1. 10⁻⁴ m / m H
Figure imgb0006
at 1800 ° C and 10 N / mm² load (compared to 1.6. 10⁻² m / m H )
Figure imgb0007
.

Claims (4)

  1. A process for manufacturing semifinished products from sintered refractory metal alloys with elongated strain structure, in which a strain of at least 85 % is produced in the sintered material by mechanical deformation in several forming steps and the sintered material is then subjected to a recrystallization annealing,
    characterized in that
    the sintered material with a strain of at least 85 % is subjected before the recrystallization annealing for at least 20 minutes, at a minimum temperature of 700 °C and a maximum temperature of that at which recrystallization does not yet quite occur, to an intermediate annealing and following the intermediate annealing is deformed in a heated-up state by a further 3 % to 30 %.
  2. Process for manufacturing semifinished products from sintered molybdenum alloys with elongated strain structure according to Claim 1, characterized in that the intermediate annealing takes place for at least 20 minutes at a temperature between 950 °C and 1300 °C.
  3. Process for manufacturing semifinished products from sintered tungsten alloys with elongated strain structure according to Claim 1, characterized in that the intermediate annealing takes place for at least 20 minutes at a temperature between 1250 °C and 1700 °C.
  4. Process for manufacturing semifinished products according to one of Claims 1 to 3, characterized in that the deformation after the intermediate annealing takes place with a strain of 10 % relative to the sintered material deformed by at least 85 %.
EP88909073A 1987-11-09 1988-10-24 Process for manufacturing semi-finished products from sintered refractory metal alloys Expired - Lifetime EP0340264B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0294987A AT389326B (en) 1987-11-09 1987-11-09 METHOD FOR PRODUCING SEMI-FINISHED PRODUCTS FROM Sintered Refractory Metal Alloys
AT2949/87 1987-11-09

Publications (2)

Publication Number Publication Date
EP0340264A1 EP0340264A1 (en) 1989-11-08
EP0340264B1 true EP0340264B1 (en) 1992-10-21

Family

ID=3542910

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88909073A Expired - Lifetime EP0340264B1 (en) 1987-11-09 1988-10-24 Process for manufacturing semi-finished products from sintered refractory metal alloys

Country Status (6)

Country Link
US (1) US5102474A (en)
EP (1) EP0340264B1 (en)
JP (1) JP2743079B2 (en)
AT (1) AT389326B (en)
DE (1) DE3875478D1 (en)
WO (1) WO1989004380A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005021982A1 (en) * 2005-05-12 2006-11-16 Rheinmetall Waffe Munition Gmbh Process for the preparation of a penetrator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868876A (en) * 1996-05-17 1999-02-09 The United States Of America As Represented By The United States Department Of Energy High-strength, creep-resistant molybdenum alloy and process for producing the same
US6102979A (en) * 1998-08-28 2000-08-15 The United States Of America As Represented By The United States Department Of Energy Oxide strengthened molybdenum-rhenium alloy
US20060073063A1 (en) * 2002-09-04 2006-04-06 Osram Sylvania Inc. Method of forming non-sag molybdenum-lanthana alloys
CN1744961A (en) * 2003-01-31 2006-03-08 H.C.施塔克公司 Refractory metal annealing bands
JP5160660B2 (en) * 2011-03-25 2013-03-13 株式会社アライドマテリアル Molybdenum material

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2628926A (en) * 1949-06-21 1953-02-17 Westinghouse Electric Corp Manufacture of machinable molybdenum
DE1079844B (en) * 1951-03-20 1960-04-14 Westinghouse Electric Corp Process for improving the cold formability of molybdenum and molybdenum alloys
US2692216A (en) * 1951-10-10 1954-10-19 Westinghouse Electric Corp Method of manufacturing ductile molybdenum and alloys thereof
US3297496A (en) * 1963-06-07 1967-01-10 Winston H Chang Heat treatment of columbium and molybdenum base alloys
US3285736A (en) * 1964-08-27 1966-11-15 Gen Electric Powder metallurgical alloy
US3377211A (en) * 1964-12-07 1968-04-09 Cyclops Corp Tungsten base alloy treatment
US3457051A (en) * 1965-01-04 1969-07-22 Du Pont Metallic refractory compositions
US3676083A (en) * 1969-01-21 1972-07-11 Sylvania Electric Prod Molybdenum base alloys
GB1298944A (en) * 1969-08-26 1972-12-06 Int Nickel Ltd Powder-metallurgical products and the production thereof
JPS5831001A (en) * 1981-08-18 1983-02-23 Toshiba Corp Production of tungsten or molybdenum wire
EP0119438B1 (en) * 1983-02-10 1987-11-25 Kabushiki Kaisha Toshiba Molybdenum board and process of manufacturing the same
JPH0617557B2 (en) * 1983-02-10 1994-03-09 株式会社東芝 Method for manufacturing molybdenum jig for high temperature heat treatment
US4647317A (en) * 1984-08-01 1987-03-03 The United States Of America As Represented By The Department Of Energy Manufacturing process to reduce large grain growth in zirconium alloys
PL251589A1 (en) * 1985-01-18 1986-07-29 Zaklady Hutnicze Metali Wysoko Method of treating high quality tungsten wires
JPS62149802A (en) * 1985-12-25 1987-07-03 Toshiba Corp Manufacture of rolled plate of metal having high melting point
AT386612B (en) * 1987-01-28 1988-09-26 Plansee Metallwerk CRISP-RESISTANT ALLOY FROM MELTING-MELTING METAL AND METHOD FOR THEIR PRODUCTION

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005021982A1 (en) * 2005-05-12 2006-11-16 Rheinmetall Waffe Munition Gmbh Process for the preparation of a penetrator
DE102005021982B4 (en) * 2005-05-12 2007-04-05 Rheinmetall Waffe Munition Gmbh Process for the preparation of a penetrator

Also Published As

Publication number Publication date
EP0340264A1 (en) 1989-11-08
WO1989004380A1 (en) 1989-05-18
DE3875478D1 (en) 1992-11-26
JP2743079B2 (en) 1998-04-22
JPH02502030A (en) 1990-07-05
AT389326B (en) 1989-11-27
US5102474A (en) 1992-04-07
ATA294987A (en) 1989-04-15

Similar Documents

Publication Publication Date Title
EP1573075B8 (en) Method for producing a steel product
DE3621671C2 (en)
EP0299027B1 (en) Creep-resistant alloy of refractory metals and its production process
DE1458420A1 (en) Process for hot rolling high-strength and at the same time cold-tough structural steels with nitride precipitation
DE2435456B2 (en) LADDER IN AN ALUMINUM ALLOY
DE2655709C2 (en) Process for improving the high temperature strength of zirconium and its alloys
DE1458485A1 (en) Austenitic chrome-nickel steel
EP0340264B1 (en) Process for manufacturing semi-finished products from sintered refractory metal alloys
EP1918405B1 (en) Process for manufacturing steel flat products from silicon alloyed multi phase steel
EP0396185B1 (en) Process for preparing semi-finished creep resistant products from high melting metal
EP3077556B1 (en) Process for treatment a dispersion-hardened platinum composition
DE3914020A1 (en) ALUMINUM ROLLING PRODUCT AND METHOD FOR THE PRODUCTION THEREOF
DE2443187C2 (en) Process for the manufacture of flat rolled products from mechanically alloyed powders
EP0394816A1 (en) Rolled aluminium semi-finished product and process for its production
DE3609074A1 (en) METHOD FOR PRODUCING COMPOSITE COVER TUBES FOR NUCLEAR FUELS AND PRODUCTS OBTAINED THEREFORE
DE1533497B1 (en) Process to improve the mechanical properties of AlCuMg panels in their short transverse direction
DE3113733C2 (en) Process for the recovery of high quality materials
DE3224685A1 (en) Process for producing encapsulation tubes composed of zirconium-base alloy for nuclear reactor fuel rods
DE2739264C2 (en) Process for the manufacture of pipes from high-strength steel
DE1290727B (en) Process for the production of high strength niobium alloys
DE2537804A1 (en) ELECTRICAL CONDUCTORS MADE OF ALUMINUM MATERIALS AND PROCESS FOR THEIR PRODUCTION
DE60312012T2 (en) METHOD FOR THE PRODUCTION OF SAG-RESISTANT MOLYBDEN-LANTHANOXIDE ALLOYS
DE3530741C1 (en) Process for the manufacture of powder metallurgical objects
DE3901979C2 (en) Manufacture of gamma-titanium (TiAl) alloy objects by powder metallurgy
DE3021934A1 (en) ORDERED LONG-RANGE IRON-BASED ALLOYS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890531

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 19910624

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ECK, RALF

Inventor name: LEICHTFRIED, GERHARD

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3875478

Country of ref document: DE

Date of ref document: 19921126

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88909073.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20041011

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20041012

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20041117

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
BERE Be: lapsed

Owner name: METALLWERK *PLANSEE G.M.B.H.

Effective date: 20051031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071025

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071016

Year of fee payment: 20

Ref country code: GB

Payment date: 20071023

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20081023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081023