EP0335879A1 - Feuerbeständige rohrkupplung - Google Patents

Feuerbeständige rohrkupplung

Info

Publication number
EP0335879A1
EP0335879A1 EP19870907804 EP87907804A EP0335879A1 EP 0335879 A1 EP0335879 A1 EP 0335879A1 EP 19870907804 EP19870907804 EP 19870907804 EP 87907804 A EP87907804 A EP 87907804A EP 0335879 A1 EP0335879 A1 EP 0335879A1
Authority
EP
European Patent Office
Prior art keywords
coupling
pipe
fire
flexible gasket
resistant material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19870907804
Other languages
English (en)
French (fr)
Inventor
Peter Daniel Cox
Bryan Raymond Millard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEORGE FISCHER CASTINGS Ltd
Original Assignee
GEORGE FISCHER CASTINGS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEORGE FISCHER CASTINGS Ltd filed Critical GEORGE FISCHER CASTINGS Ltd
Publication of EP0335879A1 publication Critical patent/EP0335879A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L19/00Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on, or into, one of the joint parts
    • F16L19/08Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on, or into, one of the joint parts with metal rings which bite into the wall of the pipe
    • F16L19/10Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on, or into, one of the joint parts with metal rings which bite into the wall of the pipe the profile of the ring being altered
    • F16L19/12Joints in which sealing surfaces are pressed together by means of a member, e.g. a swivel nut, screwed on, or into, one of the joint parts with metal rings which bite into the wall of the pipe the profile of the ring being altered with additional sealing means

Definitions

  • the present invention relates to fire resistant pipe couplings.
  • Coupled any coupling, junction, joint or fitting which can be fitted around a pipe, whether smooth or threaded, for the purpose of providing a fluid-tight connection between the pipe and some other piece of equipment such as one or more other pipes, meters, vessels, valves and the like.
  • a flexible gasket such as a rubber '0' ring
  • clamping bolts compression nuts, tensioned metal bands, and the like.
  • the flexible gasket which is generally made of an organic polymeric material, first softens, then shrinks and finally breaks down both chemically and structurally.
  • the effect of shrinkage and break down in the seal is almost invariably to cause it to fail seriously, and even softening of the gasket can result in significant fluid leakage because of the tendency of the softened gasket to flow under the compressive forces that are encountered in such coupling seals.
  • a fire resistant coupling for a pipe comprising a coupling body having an opening therein for receiving the pipe, a flexible gasket for sealing the gap between the coupling body and the pipe, and means for urging the flexible gasket into the gap, wherein the coupling includes a quantity of a fire-resistant material which, when heated to a temperature substantially above that encountered in the normal use of the coupling, expands sufficiently to seal the said gap independently of the flexible gasket.
  • the fire resistant material can take a variety of forms, depending on the size and type of coupling used.
  • the material can be used in the form of a paste which can be smeared or extruded from a gun around the gasket during assembly of the coupling.
  • this form of material a degree of uncertainty and inconsistency about the thickness of the material at points around the pipe in the completed coupling, since it will depend entirely upon the care with which the operative applies the material and joins the parts of the coupling together.
  • a preferred form of material is therefore a pre-formed semi-rigid sheet which can be cut into sections, or stamped out in the form of a washer, and fitted in the gap between the pipe and the coupling body during assembly of the coupling. '
  • a backing layer of a similarly fire-resistant material such as fibre glass is needed.
  • the fire-resistant material tak-ing the form of an extra separate component in the pipe coupling
  • it can, of course, be incorporated into one of the conventional components of the coupling.
  • the coupling body could be manufactured with a layer of the material of a uniform thickness already bonded to its inner surface which will be sealed by the gasket against the pipe. Again a backing layer can be included if found useful during the manufacturing process.
  • the fire-resistant material is disposed in a layer on a pressure washer for transmitting the urging of the urging means to the flexible gasket, optionally the material being disposed so as to transmit the urging of the urging means to the flexible gasket.
  • the coupling body When in the form of a compression joint, the coupling body is adapted to receive a relatively smooth pipe and its opening is desirably defined by inwardly tapering surface for receiving the flexible gasket, the gasket preferably being a rubber '0' ring.
  • a locking member such as a pipe gripping ring
  • the coupling body is threaded and the urging means comprises a correspondingly threaded compression nut having an opening therein for receiving the pipe, this opening being similarly defined by inwardly tapering surfaces for receiving the gripping ring.
  • the material of which the pipe and coupling body are made are not critical to the present invention, provided of course that such material can itself resist the effects of a fire without allowing the fluid it is carrying to leak appreciably.
  • suitable materials are steel, bronze, malleable cast iron, ductile cast iron and a ide variety of non-ferrous metals.
  • the pipe may be coated with paint or the like or uncoated.
  • the pipe is of steel and the coupling body is of malleable cast iron.
  • the fire-resistant material is preferably intumescent and substantially inert with respect to the fluid normally passing through the pipe.
  • the fire-resistant material is selected so as to start to expand at a temperature belo that at which the material of the flexible gasket start to degrade, and more preferably below that at which th material of the flexible gasket starts to soften.
  • suitable fire-resistant material comprises mixture of a vermiculite and graphite.
  • Figure 1 is a sectional elevational view of a portion of a rotationally symmetrical pipe coupling of the present invention of the compression type in its partially assembled state
  • Figure 2 is a sectional elevational view of the same portion of the pipe coupling of Figure 1, but in its fully assembled state.
  • a smooth round pipe 1 carries loosely on it a cylindrical coupling body 2 and an engaging compression nut 3, both of malleable cast iron.
  • the body 2 is externally threaded at 4, whilst the nut 3 is correspondingly internally threaded at 5, Figure 1 showing the nut 3 partially screwed onto the body 2.
  • the pipe 1 carries along its length a rubber '0' ring 6, a flat steel pressure washer 7 and a steel locking ring 8. On one face of the washer 7 is bonded a layer . of an intumescent fire-resistant material 14 as described more fully later.
  • the end face 9 of the body 2 is provided with an inward taper 10 to its pipe opening, against which taper the '0' ring 6 is urged by the face of the flat washer 7 on which the intumescent layer 14 is bonded when the nut 3 is screwed onto the body 2.
  • the inner shoulder 11 of the pipe opening of the nut 3 is provided with an inward taper 12 against which the locking ring 8 is urged by the other, bare, face of the washer 7 when the nut 3 is screwed onto the body 2.
  • the sizes and orientations of the tapers 10 and 12 relative to the *0' ring 6 and locking ring 8, respectively, are such that the greater the tightening of the nut 3 onto the body 2 the harder will the '0' ring 6 and locking ring 8 be urged against the pipe 1.
  • the lengths of the tapers 10 and 12 are chosen so that the coupling can fit around pipes having diameters which can vary across a relative large range.
  • the locking ring 8 is generally *C f shaped in cross-section with the ridges 13 formed by the points of the 'C being inwardly directed so as to dig into and grip the pipe 1 when urged thereagainst.
  • the outer lateral faces of the *C' shaped locking ring are indented so as to provide sharper ridges 13 than would be the case if the faces were fully rounded.
  • the locking ring 8 is radially expandable and contractible by being in the form of an incomplete circle, only extending about 325° around the pipe.
  • This construction of locking ring in combination ith the taper 12 of the nut 3, allows the coupling not only to grip pipes of varying diameters but also to provide a considerable degree of rigidity to the final joint. Variations in the construction and operation of the locking ring 8 are described in U -A-1530205 and EP-B-0073050.
  • a uniform layer of the intumescent fire-resistant material 14 On the side of the washer 7 facing the 'O 1 ring 6 and transmitting the compressive forces thereto, is a uniform layer of the intumescent fire-resistant material 14.
  • This material 14 is in the form of a plastically deformable solid which is bonded, via a backing sheet of glass fibre arranged as a fleece, concentrically to one face of the washer 7.
  • a further layer can be bonded to the other face of the washer 7, i.e. that facing the locking ring 8, in order to increase the protection against leakage, but this is generally found not to be necessary, provided that the total amount of the material 14 on the one face of the washer 7 is sufficient, in relation to the size of the gap between the pipe 1 and the coupling body 2, to provide an effective seal in the event of a gasket-destroying fire.
  • the material 14 is of uniform thickness and extends across the whole face of the washer 7.
  • One particularly suitable material that is currently available is that supplied for fire doors and windows under the trade name "PYROSTRIP BSL”.
  • This commercial fire seal material is at present available in two grades, "500” and "750", the differences being, that the former is nominally 1.8 mm thick whilst the latter is nominally 2.5 mm thick.
  • Both are a mixture of treated activated graphite and vermiculite bonded with a neoprene rubber to a glass fibre fleece backing sheet. Both are water and chemical resistant and are therefore especially useful in pipe couplings for natural gas and water services. The latter -grade is preferred since it is capable of generating a higher positive pressure on.expansion.
  • the effect of screwing the compression nut 3 tightly onto the coupling body 2 is firstly to force the r 0' ring 6 down the body opening taper 10 and into sealing engagement with the pipe 1 and the coupling body 2. Because the intumescent material 14 acts as a force transmitter and because it is plastically deformable, it is squeezed partially into the voids around the '0' ring and around the coupling end face 9. It will be noted that the thickness of the material 14 is such as to prevent any direct contact between the washer 7 and the '
  • the locking ring 8 is forced down nut opening taper 12. As it is so forced it contracts against the pipe 1 and its ridges 13 dig into and thereby grip the pipe 1. It will be noted that even when the nut 3 is fully tightened its internal shoulder 11 does not contact the washer 7. By maintaining such a gap all of the compressive force of the nut 3 is exerted through ⁇ locking ring 8 and thereby ensures that maximum possible gripping of the pipe occurs. Similarly it will be noted that even when the nut 3 is fully tightened the washer 7 does not contact the coupling body end face 9. If contact were made it would reduce the force exerted on the 'O 1 ring 6 which holds it in sealing engagement with the pipe 1 and the coupling body 2.
  • the standard '0' ring is a synthetic rubber designated “EPDM”, whilst for gas pipes a nitrile rubber is used designated “NBR”. Both of these rubbers soften at about 130°C and progressively deteriorate above about 200°C.
  • EPDM ethylene glycol dimethacrylate
  • NBR nitrile rubber
  • Both of these rubbers soften at about 130°C and progressively deteriorate above about 200°C.
  • the intumescent material “PYROSTRIP BSL 750” starts to expand at 120°C and reaches full expansion by about 300°C. Being mainly graphite and vermiculite, the melting point of this material is extremely high.
  • the positive pressure generated by this material is also sufficient to maintain the rigidity of the joint and thereby prevent any bending or twisting of the pipe relative to the coupling resulting from the effects of a fire, which with prior art couplings can cause fluid leakage.
  • the illustrated coupling can be fitted onto a pipe by simply pushing the coupling in a loosely assembled state onto the pipe and tightening the nut 3 relative to the body 2 up to the required torque.
  • An important advantage of this coupling is however its ability to accommodate relatively large manufacturing tolerances and some degree of misalignment between coupling and pipe centre lines. Because of manufacturing tolerances, similar components will vary in size, the four main ones being pipe diameter, '0' ring wall thickness, coupling body opening diameter and taper angle of the body opening.
  • the plastic deformation of the intumescent material will large and the contact face between the 'O 1 ring and the material will be well away from the end face of the body inside the body.
  • the plastic deformation of the intumescent material will be small and the contact face between the *0' ring and the material will lie close to the end face of the body and only just inside.
  • a substantially equal stress can be applied to the '0' ring for a given nut-tightening torque despite variations in manufacturing tolerances.
  • the locking ring being radially expandable, will grip pipes equally despite variations in pipe diameter tolerances.
  • the design of the illustrated coupling provides very good sealing in normal use and an acceptable level of sealing both during and after a fire at relatively low manufacturing and installations costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gasket Seals (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Thermal Insulation (AREA)
EP19870907804 1986-12-05 1987-12-03 Feuerbeständige rohrkupplung Withdrawn EP0335879A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB868629178A GB8629178D0 (en) 1986-12-05 1986-12-05 Fire resistant pipe couplings
GB8629178 1986-12-05

Publications (1)

Publication Number Publication Date
EP0335879A1 true EP0335879A1 (de) 1989-10-11

Family

ID=10608557

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870907804 Withdrawn EP0335879A1 (de) 1986-12-05 1987-12-03 Feuerbeständige rohrkupplung

Country Status (4)

Country Link
EP (1) EP0335879A1 (de)
AU (1) AU8321687A (de)
GB (1) GB8629178D0 (de)
WO (1) WO1988004385A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8718904D0 (en) * 1987-08-10 1987-09-16 Fischer Castings Ltd George Fire resistant pipe couplings
DE19811500C2 (de) * 1998-03-17 2000-01-27 Wildfang Dieter Gmbh Klemmringverbindung
US7066496B2 (en) 2001-02-06 2006-06-27 Swagelok Company Fitting with separable gripping device for pipe and tube
CN100380042C (zh) 2001-02-06 2008-04-09 斯瓦戈洛克公司 润滑的低温渗碳不锈钢部件
US7416225B2 (en) 2001-02-06 2008-08-26 Swagelok Company Fitting for metal pipe and tubing
US7407196B2 (en) 2003-08-06 2008-08-05 Swagelok Company Tube fitting with separable tube gripping device
KR20080091251A (ko) 2001-02-06 2008-10-09 스와겔로크 컴패니 내부 풀업 표시를 갖는 이음쇠
US10215315B2 (en) 2008-09-05 2019-02-26 Parker-Hannifin Corporation Tube compression fitting and flared fitting used with connection body and method of making same
EP3140580B1 (de) 2014-05-09 2020-03-25 Swagelok Company Leitungsverbindungsstück mit bauteilen zur leichteren montage
US9909610B2 (en) 2015-12-17 2018-03-06 Honeywell International Inc. Heat resistant fastening systems
WO2017165162A1 (en) 2016-03-23 2017-09-28 Swagelok Company Conduit fitting with stroke resisting features

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869132A (en) * 1973-07-18 1975-03-04 Pressure Science Inc Fire resistant sealing ring combination
EP0073050B1 (de) * 1981-08-25 1985-11-21 Georg Fischer Aktiengesellschaft Klemmverbindung für glatte Rundkörper, insbesondere Rohre und Stangen
DE3404221A1 (de) * 1984-02-07 1985-08-08 Lentia GmbH Chem. u. pharm. Erzeugnisse - Industriebedarf, 8000 München Verfahren zur im brandfall wirksamen abdichtung von oeffnungen in bauteilen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8804385A1 *

Also Published As

Publication number Publication date
WO1988004385A1 (en) 1988-06-16
AU8321687A (en) 1988-06-30
GB8629178D0 (en) 1987-01-14

Similar Documents

Publication Publication Date Title
US5564715A (en) Tandem seal device for flow line applications
US2423655A (en) Pipe coupling or joint
EP0371063B1 (de) Feuerwiderstandsfähige rohrkupplungen
EP0029338B1 (de) Flanschklammer und Abdichtungsverfahren
US3429587A (en) Pipe couplings
US3700268A (en) Positive locking terminal bushings for flexible pipe
JPH0362955B2 (de)
JPS61248991A (ja) ソケツト継手
EP0335879A1 (de) Feuerbeständige rohrkupplung
US4753461A (en) Coupling for coupling tubular members
US5553898A (en) Hot-tapping sleeve
EP0221658B1 (de) Rohrkupplung
US5083821A (en) Extreme temperature thread sealing method and apparatus
JPH09196261A (ja) 管継手構造
US4699405A (en) Coupling for coupling tubular members
JPH10122373A (ja) ガス管継手用複合ガスケット
US6237963B1 (en) Service riser
US20020185866A1 (en) Flexible metal hose termination fitting with adapter for termination plate
US3472537A (en) Pipe clamp having side outlet
US3610666A (en) Fluid coupling
US3408097A (en) Gasket ring and conduit coupling
JPH0854087A (ja) メカニカル形管継手
GB2080466A (en) Compression joints
JP4067065B2 (ja) 流体配管用ライザー管
JPH09217875A (ja) 免震管継手

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890531

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 19900605

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19901218