EP0331587A1 - Disjoncteur électrique à autosoufflage par pistonnage ou expansion de gaz isolant - Google Patents

Disjoncteur électrique à autosoufflage par pistonnage ou expansion de gaz isolant Download PDF

Info

Publication number
EP0331587A1
EP0331587A1 EP89420037A EP89420037A EP0331587A1 EP 0331587 A1 EP0331587 A1 EP 0331587A1 EP 89420037 A EP89420037 A EP 89420037A EP 89420037 A EP89420037 A EP 89420037A EP 0331587 A1 EP0331587 A1 EP 0331587A1
Authority
EP
European Patent Office
Prior art keywords
arc
blowing
circuit breaker
self
electric circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP89420037A
Other languages
German (de)
English (en)
Inventor
Peter Malkin
Raymond Bresson
Paul Glenat
Jean-Claude Faye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merlin Gerin SA
Original Assignee
Merlin Gerin SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merlin Gerin SA filed Critical Merlin Gerin SA
Publication of EP0331587A1 publication Critical patent/EP0331587A1/fr
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/72Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid having stationary parts for directing the flow of arc-extinguishing fluid, e.g. arc-extinguishing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7076Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by the use of special materials

Definitions

  • the invention relates to a self-blowing electric circuit breaker comprising: - a sealed envelope filled with insulating gas with high dielectric strength, in particular sulfur hexafluoride, - a pair of separable contacts having a fixed or semi-fixed contact and a movable contact intended to be moved by a control member between a closed position and an open position, - a cut-off interval with an arc between the separate contacts, - And a blowing device capable of causing a flow of gas towards the cut-off interval to cool the arc by convection.
  • insulating gas with high dielectric strength in particular sulfur hexafluoride
  • the arc is cooled before zero current is achieved by convection by replacing a certain quantity of hot gas with cold gas. In the vicinity of zero current, the cooling of the arc takes place mainly by radial conduction.
  • convection and conduction are the two main modes of heat exchange.
  • the heat exchange by radiation is very low during the breaking of a low intensity arc current. During the period of a strong arc current, the heat exchange by radiation becomes important, and subjects the blowing nozzle to high heat stresses.
  • the opaque nozzle is generally made of polytetrafluoroethylene loaded with alumina. The manufacture of such a nozzle is carried out by machining.
  • the object of the invention is to improve the breaking performance of an SF6 self-blowing circuit breaker.
  • the circuit breaker according to the invention is characterized in that the blowing device comprises an insulating wall for confining the arc, made of a material transparent or translucent to the radiation of the arc.
  • the transparency of the arc confinement wall allows part of the arc energy to be dissipated by radiation. This results in a decrease in the heat action of the arc on the wall, and a rapid extinction of the arc.
  • the transparent material of the wall is formed by a mineral or plastic insulator compatible with SF6 gas.
  • the self-blowing circuit breaker is of the type with compression of the gas by ramming by means of a piston-cylinder assembly, and the blowing nozzle constitutes said confining wall of the arc which channels the gas flow towards the cutoff interval.
  • the nozzle is totally or partially made of a material transparent to the radiation of the arc.
  • the self-blowing circuit breaker is of the gas expansion type with or without rotation of the arc, and the enclosure for increasing the pressure of the gas under the action of the arc has a transparent wall leaving pass some of the energy of the arc by radiation.
  • the invention is applied to a circuit breaker or electric switch with self-blowing by gas pistonnection of the type described in French patent 2302581 of the applicant.
  • the circuit breaker can be used in a medium or high voltage network, and is housed in a cylindrical envelope 10 filled with insulating gas with high dielectric strength, in particular sulfur hexafluoride.
  • the elongated envelope 10 is divided into two compartments by a fixed transverse partition 12.
  • the piston 14 is provided with a blowing nozzle 20, having a convergent-divergent shape capable of guiding the gas flow establishing itself through openings 22 formed in the piston 14.
  • a fixed hollow contact 24 is axially aligned with the movable contact 16 and has orifices 26 communicating the interior of the hollow contact 24 with the arc extinguishing chamber.
  • a second series of orifices 30 connects the interior volume of the hollow movable contact 16 to the downstream compartment 32.
  • a solid insulating part 34 isolates the operating rod 36 from the movable contact 16 and an elastomer membrane 38 seals the compartment 32.
  • the movable contact 16 of the tulip type fits into the fixed contact 24 during the closing stroke.
  • the interlocking arrangement of the contacts 16,24 causes pre-compression of the blowing gas at the start of actuation of the rod 36 of the circuit breaker and before the separation of the contacts 24, 16.
  • a tubular sheath 42 of deformable plastic material covers the interstices 46 formed between the flexible fingers 40 of the movable contact 16.
  • the end face 48 of the sheath 42 is arranged axially set back from the transverse plane of trace XX ′ passing through the free ends of the fingers 40.
  • the fixed contact 24 can cooperate with a spring to be semi-fixed.
  • the blowing nozzle 20 is made wholly or partially from a material transparent to the radiations generated by the arc 49 in the cutting gap 50.
  • the material used can be a translucent mineral insulator, in particular based on ceramic or glass, or a transparent plastic insulator, for example a polycarbonate or polymethyl methacrylate.
  • a translucent mineral insulator in particular based on ceramic or glass
  • a transparent plastic insulator for example a polycarbonate or polymethyl methacrylate.
  • Other translucent materials compatible with SF6 gas are of course usable.
  • FIG. 2 shows a blowing nozzle 20 of composite material, having an opaque convergent 52 made of polytetrafluoroethylene charged with alumina, the remaining part comprising the neck 54 and the divergent 56 being made of translucent insulating material.
  • the contacts 16, 24 separate with the formation of an axial arc 49.
  • the heat energy developed by the arc is evacuated by self-compression blowing causing a flow of SF6 gas channeled through nozzle 20 and guided through the 16.24 hollow contacts. This results in cooling of the arc by forced convection allowing the replacement of a certain quantity of hot gas with cold gas. In the vicinity of zero current, the arc is cooled by radial thermal conductivity.
  • the blowing nozzle 20 is advantageously produced by molding.
  • Such a nozzle can also be used in the circuit breaker which is the subject of French patent n ° 2496334.
  • a pole of a circuit breaker or switch with autoexpansion and rotating arc comprises a sealed envelope 100 filled with SF6 at atmospheric pressure.
  • the envelope 100 is formed by a cylindrical side wall 102 of insulating material closed at its ends by two bottoms 104, 106 of conductive material constituting the current supply areas.
  • the upper bottom 104 carries a fixed fixed contact 108 assembly and coil 110 associated with an electrode 112 for rotating the arc.
  • the movable tubular contact 114 extends in axial alignment with the fixed contact inside a breaking chamber 116 confined by an internal enclosure 118 made of translucent insulating material.
  • the cutoff interval 117 is inside the chamber 116 and the movable contact 114 passes through the enclosure 118 with a clearance predetermined, and is mechanically coupled by the opposite end to a control rod 119, crossing the lower bottom 106.
  • the rod 119 is of course isolated from the movable contact 114.
  • the breaking chamber 116 communicates with the casing 100 by conduits flows formed by the tubular contacts 108, 114 fitted with orifices 120.
  • the arc 122 drawn in the breaking chamber 116 is rotated by the field of the coil 110, causing the SF6 gas to heat up and build up in pressure, which then escapes through the flow conduits of the contacts 108, 114 to an expansion chamber formed by the internal volume of the envelope 100.
  • the pneumatic blowing by autoexpansion causes cooling of the arc by convection.
  • the extinction of the arc is facilitated by the radiation effect due to a partial discharge of the arc energy through the wall of the translucent enclosure 118.
  • the light radiation emitted by the arc from the breaking chamber 116 remains enclosed inside the envelope 100.
  • the shape of the enclosure 118 can be arbitrary, for example cylindrical, spherical or ellipsoidal.
  • the coil 110 can be replaced by a permanent magnet.
  • the enclosure 118 may also be metallic and have an opening closed by a transparent screen at the cutoff interval 117.
  • the shape of the translucent enclosure 118 of revolution according to FIG. 4 can be asymmetrical to constitute a converging or diverging optical lens intended to increase the effect of radiation from the arc.
  • the invention can be applied to any other type of switch or circuit breaker for cooling the arc by convection having at least one wall for confining the arc, made of transparent material.

Landscapes

  • Circuit Breakers (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

Un disjoncteur à autosoufflage par pistonnage de SF6 comporte une paire de contacts (16,24) séparables avec formation d'un intervalle de coupure (50), un ensemble piston-cylindrique pour comprimer le gaz lors de l'actionnement en ouverture du contact mobile (16), et une buse de soufflage (20) destinée à canaliser l'écoulement gazeux vers l'intervalle de coupure (50) de manière à refroidir l'arc par convection forcée. La buse (20) est totalement ou partiellement en matériau isolant transparent ou translucide pour autoriser l'évacuation d'une partie de l'énergie d'arc par rayonnement.
Application: disjoncteur ou interrupteur pour réseau à moyenne et haute tension.

Description

  • L'invention est relative à un disjoncteur électrique à autosoufflage comprenant:
    - une enveloppe étanche remplie de gaz isolant à rigidité diélectrique élevée, notamment de l'hexafluorure de soufre,
    - une paire de contacts séparables ayant un contact fixe ou semi-­fixe et un contact mobile destiné à être déplacé par un organe de commande entre une position de fermeture et une position d'ouverture,
    - un intervalle de coupure avec formation d'un arc entre les contacts séparés,
    - et un dispositif de soufflage susceptible d'engendrer un écoulement de gaz vers l'intervalle de coupure pour refroidir l'arc par convection.
  • Dans les disjoncteurs connus à autocompression par pistonnage de SF6, le refroidissement de l'arc avant le zéro de courant s'effectue par convection en remplaçant une certaine quantité de gaz chaud par du gaz froid. Au voisinage du zéro de courant, le refroidissement de l'arc s'opère principalement par conduction radiale. On remarque que la convection et la conduction sont les deux principaux modes d'échange de chaleur. L'échange calorifique par rayonnement est très faible durant la coupure d'un courant d'arc de faible intensité. Pendant la période d'un fort courant d'arc, l'échange calorifique par rayonnement devient important, et soumet la buse de soufflage à des contraintes calorifiques élevées. La buse opaque est généralement réalisée en polytétrafluoréthylène chargée d'alumine. La fabrication d'une telle buse est réalisée par usinage.
  • L'objet de l'invention consiste à améliorer les performances de coupure d'un disjoncteur à autosoufflage à SF6.
  • Le disjoncteur selon l'invention est caractérisé en ce que le dispositif de soufflage comporte une paroi isolante de confinement de l'arc, réalisée en un matériau transparent ou translucide au rayonnement de l'arc. La transparence de la paroi de confinement de l'arc permet d'évacuer une partie de l'énergie d'arc par rayonnement. Il en résulte une diminution de l'action calorifique de l'arc sur la paroi, et une extinction rapide de l'arc. La matériau transparent de la paroi est formé par un isolant minéral ou plastique comptatible avec le gaz SF6.
  • Selon un premier mode de réalisation, le disjoncteur à autosoufflage est du type à compression du gaz par pistonnage au moyen d'un ensemble piston-cylindre, et la buse de soufflage constitue ladite paroi de confinement de l'arc qui canalise l'écoulement gazeux vers l'intervalle de coupure. La buse est totalement ou partiellement en un matériau transparent au rayonnement de l'arc.
  • Selon un deuxième mode de réalisation, le disjoncteur à autosoufflage est de type à expansion du gaz avec ou sans rotation de l'arc, et l'enceinte de montée en pression du gaz sous l'action de l'arc présente une paroi transparente laissant passer une partie de l'énergie de l'arc par rayonnement.
  • D'autres avantages et caractéristiques de l'invention ressortiront plus clairement de la description qui va suivre de deux modes de réalisation donnés à titre d'exemples non limitatifs, et représentés aux dessins annexés, dans lesquels:
    • - la figure 1 est une vue en coupe axiale d'un disjoncteur à autosoufflage par pistonnage équipée d'une buse selon l'invention, le disjoncteur étant représenté en position de fermeture;
    • - la figure 2 est une vue partielle de la figure 1, en cours d'ouverture de contacts pendant la période d'arc;
    • - la figure 3 montre une demi-vue en coupe d'une variante de buse de soufflage;
    • - la figure 4 représente une vue identique à la figure 1 d'une variante de réalisation.
  • Sur les figures 1 et 2, l'invention est appliquée à un disjoncteur ou interrupteur électrique à autosoufflage par pistonnage de gaz du type décrit dans le brevet français 2302581 de la demanderesse. Le disjoncteur peut être utilisé dans un réseau à moyenne ou haute tension, et est logé dans une enveloppe 10 cylindrique, remplie de gaz isolant à rigidité diélectrique élevée, notamment de l'hexafluorure de soufre. L'enveloppe 10 allongée est divisée en deux compartiments par une cloison transversale 12 fixe. Un piston de soufflage 14, solidaire d'un contact mobile 16 creux, coulisse le long d'un cylindre constitué par la paroi interne de l'enveloppe 10 cylindrique en faisant varier un volume pistonnable 18 compris entre le piston mobile 14 et la cloison 12. Le piston 14 est muni d'une buse 20 de soufflage, présentant une forme de convergent-divergent susceptible de guider l'écoulement gazeux s'établissant à travers des ouvertures 22 ménagées dans le piston 14. Un contact fixe 24 creux est aligné axialement avec le contact mobile 16 et comporte des orifices 26 faisant communiquer l'intérieur du contact creux 24 avec la chambre d'extinction d'arc. Une deuxième série d'orifices 30 relie le volume intérieur du contact mobile 16 creux au compartiment aval 32. Une partie massive isolante 34 isole la tige de manoeuvre 36 du contact mobile 16 et une membrane 38 en élastomère assure l'étanchéité du compartiment 32.
  • Le contact mobile 16 du type à tulipe, pourvu de doigts flexibles 40, s'emboîte dans le contact fixe 24 lors de la course de fermeture. L'agencement par emboîtement des contacts 16,24 provoque une précompression du gaz de soufflage au début de l'actionnement de la tige 36 du disjoncteur et avant la séparation des contacts 24,16.
  • Un fourreau 42 tubulaire en matériau plastique déformable, recouvre les interstices 46 ménagés entre les doigts 40 flexibles du contact mobile 16. La face terminale 48 du fourreau 42 est disposée axialement en retrait du plan transversal de trace XX′ passant par les extrémités libres des doigts 40.
  • Le contact fixe 24 peut coopérer avec un ressort pour être semi-­fixe.
  • Selon l'invention, la buse 20 de soufflage est réalisée totalement ou partiellement en un matériau transparent aux rayonnements engendrés par l'arc 49 dans l'intervalle de coupure 50. Le matériau utilisé peut être un isolant minéral translucide, notamment à base de céramique ou de verre, ou un isolant plastique transparent, par exemple un polycarbonate ou un polymétacrylate de méthyle. D'autres matériaux translucides comptatibles avec le gaz SF6 sont bien entendus utilisables.
  • La figure 2 montre une buse 20 de soufflage en matériau composite, ayant un convergent 52 opaque en polytétrafluor­éthylène chargée d'alumine, la partie restante comprenant le col 54 et le divergent 56 étant en matériau isolant translucide.
  • Le fonctionnement du disjoncteur à autosoufflage selon les figures 1 et 2 est le suivant:
  • Après la phase de précompression au cours de laquelle le gaz SF6 est comprimé par la descente du piston 14 dans le volume pistonnable 18, les contacts 16,24 se séparent avec formation d'un arc 49 axial. Pendant la période d'arc s'établissant avant le zéro de courant, l'énergie calorifique développée par l'arc est évacuée grâce au soufflage par autocompression provoquant un écoulement de gaz SF6 canalisé par la buse 20 et guidé à travers les contacts 16,24 creux. Il en résulte un refroidissement de l'arc par convection forcée autorisant le remplacement d'une certaine quantité de gaz chaud par du gaz froid. Au voisinage du zéro de courant, le refroidissement de l'arc s'opère par conductivité thermique radiale. En plus de ces deux modes d'échange de chaleur par convection et conduction, intervient dans le disjoncteur à autocompression un troisième mode d'échange par rayonnement dû principalement à la propagation des radiations lumineuses de l'arc à travers la matière translucide de la buse de soufflage 20. Une partie importante de l'énergie de l'arc 49 est ainsi évacuée de l'intervalle de coupure 50 vers l'enveloppe 10 à l'extérieur de la buse 20. Il en résulte une diminution des contraintes calorifiques de l'arc 49 sur la buse 20, et une extinction rapide de l'arc. Après la coupure réussie au zéro de courant, le contact mobile 16 poursuit sa course jusqu'à la position d'ouverture correspondant au niveau d'isolement du disjoncteur.
  • Dans le cas d'un matériau thermoplastique translucide, la buse 20 de soufflage est réalisée avantageusement par moulage. Une telle buse peut également être utilisée dans le disjoncteur faisant l'objet du brevet français n° 2496334.
  • Selon la variante de la figure 4, un pôle d'un disjoncteur ou interrupteur à autoexpansion et à arc tournant comporte une enveloppe 100 étanche remplie de SF6 à la pression atmosphérique. L'enveloppe 100 est formée par une paroi latérale cylindrique 102 en matériau isolant obturée à ses extrémités par deux fonds 104,106 en matériau conducteur constituant les plages d'amenée de courant. Le fond supérieur 104 porte un ensemble contact fixe 108 creux et bobine 110 associée à une électrode 112 de mise en rotation de l'arc. Le contact mobile 114 tubulaire s'étend en alignement axial avec le contact fixe à l'intérieur d'une chambre de coupure 116 confinée par une enceinte 118 interne en matériau isolant translucide. L'intervalle de coupure 117 se trouve à l'intérieur de la chambre 116 et le contact mobile 114 traverse l'enceinte 118 avec un jeu prédéterminé, et est accouplé mécaniquement par l'extrémité opposée à une tige de commande 119, traversant le fond inférieur 106. La tige 119 est bien entendu isolée du contact mobile 114. La chambre de coupure 116 communique avec l'enveloppe 100 par des conduits d'écoulements constitués par les contacts 108,114 tubulaires équipés d'orifices 120. L'arc 122 tiré dans la chambre de coupure 116 est mis en rotation par le champ de la bobine 110, provoquant un échauffement et une montée en pression du gaz SF6, lequel s'échappe ensuite par les conduits d'écoulement des contacts 108,114 vers une chambre d'expansion constituée par le volume interne de l'enveloppe 100. Le soufflage pneumatique par autoexpansion provoque un refroidissement de l'arc par convection. L'extinction de l'arc est facilitée par l'effet de rayonnement dû à une évacuation partielle de l'énergie d'arc à travers la paroi de l'enceinte 118 translucide. Les radiations lumineuses émises par l'arc depuis la chambre de coupure 116 restent enfermées à l'intérieur de l'enveloppe 100.
  • On remarque que la combinaison des deux effets d'autoexpansion et de rotation de l'arc est complétée par l'effet physique de rayonnement à travers la paroi de la chambre de coupure 116.
  • La forme de l'enceinte 118 peut être quelconque par exemple cylindrique, sphérique ou ellipsoïdale. La bobine 110 peut être remplacée par un aimant permanent.
  • Dans le cas d'un disjoncteur à autoexpansion ayant des contacts principaux et des contacts d'arc tel que décrit dans la demande de brevet français n°8709524 du 2/07/87, l'enceinte 118 peut également être métallique et comporter une ouverture obturée par un écran transparent au niveau de l'intervalle de coupure 117.
  • La forme de l'enceinte 118 translucide de révolution selon la figure 4 peut être dissymétrique pour constituer une lentille optique convergente ou divergente destinée à augmenter l'effet de rayonnement de l'arc.
  • L'invention peut s'appliquer à tout autre type d'interrupteur ou de disjoncteur à refroidissement de l'arc par convection ayant au moins une paroi de confinement de l'arc, réalisée en matériau transparent.

Claims (9)

1. Disjoncteur électrique à autosoufflage comprenant:
- une enveloppe (10,100) étanche remplie de gaz isolant à rigidité diélectrique élevée, notamment de l'hexafluorure de soufre,
- une paire de contacts séparables ayant un contact fixe ou semi-­fixe (24,108), et un contact mobile (16,114) destiné à être déplacé par un organe de commande (36,119) entre une position de fermeture et une position d'ouverture,
- un intervalle de coupure (50,117) avec formation d'un arc (49,122) entre les contacts séparés,
- et un dispositif de soufflage susceptible d'engendrer un écoulement de gaz vers l'intervalle de coupure pour refroidir l'arc par convection, caractérisé en ce que le dispositif de soufflage comporte une paroi isolante de confinement de l'arc, réalisée en un matériau transparent ou translucide au rayonnement de l'arc.
2. Disjoncteur électrique à autosoufflage selon la revendication 1, caractérisé en ce que le matériau de ladite paroi est un isolant minéral, notamment à base de céramique ou de verre.
3. Disjoncteur électrique à autosoufflage selon la revendication 1, caractérisé en ce que le matériau de ladite paroi est un isolant plastique, notamment un polycarbonate ou un polymétacrylate de méthyle.
4. Disjoncteur électrique à autosoufflage selon l'une des revendications 1 à 3, caractérisé en ce que le dispositif de soufflage à compression du gaz par pistonnage est équipé d'un ensemble piston cylindre coopérant avec le contact mobile (16) lors de l'ouverture pour assurer la compression du gaz par pistonnage, l'écoulement de gaz étant canalisé vers l'intervalle de coupure (50) au moyen d'une buse (20) de soufflage entourant coaxialement les contacts (16,24) pendant la période d'arc, et que la paroi transparente fait partie intégrante de la buse (20) pour autoriser la propagation des radiations lumineuses de l'arc vers le volume interne de l'enveloppe (10) à l'extérieur de la buse (20).
5. Disjoncteur électrique à autosoufflage selon la revendication 4, caractérisé en ce que la buse (20) de soufflage est fabriquée par moulage du matériau plastique transparent.
6. Disjoncteur électrique à autosoufflage selon la revendication 4 ou 5, caractérisé en ce que la buse de soufflage (20) est réalisée en matériau composite, comporte un convergent (52) opaque, notamment en polytétrafluoréthylène chargée d'alumine, la partie restante comprenant le col 54 et un divergent 56 étant en matériau isolant translucide.
7. Disjoncteur électrique à autosoufflage selon l'une des revendications 1 à 3, caractérisé en ce que le dispositif de soufflage par expansion du gaz comporte:
- une enceinte (118) interne disposée à l'intérieur de l'enveloppe (100) en entourant l'intervalle de coupure (117) pour délimiter une chambre de coupure (116) dans laquelle s'effectue une montée en pression du gaz sous l'action de l'arc,
- une chambre d'expansion constituée par le volume interne restant de l'enveloppe (100),
- des conduits d'écoulement ménagés à l'intérieur des contacts creux (108,114) pour faire communiquer la chambre de coupure (116) avec la chambre d'expansion,
- la paroi de ladite enceinte (118) étant réalisée totalement ou partiellement en un matériau transparent.
8. Disjoncteur électrique à autosoufflage selon la revendication 7, caractérisé en ce que la chambre de coupure (116) renferme de plus une bobine (110) ou un aimant permanent associé à l'un des contacts (108,114) pour la mise en rotation de l'arc (122) sous l'action d'un champ magnétique.
9. Disjoncteur électrique à autosoufflage selon la revendication 7 ou 8, caractérisé en ce que l'enceinte (118) translucide présente un profil dissymétrique de révolution conformé en lentille optique convergente ou divergente pour augmenter l'effet de rayonnement de l'arc.
EP89420037A 1988-03-01 1989-02-07 Disjoncteur électrique à autosoufflage par pistonnage ou expansion de gaz isolant Ceased EP0331587A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8802676 1988-03-01
FR8802676A FR2628259A1 (fr) 1988-03-01 1988-03-01 Disjoncteur electrique a autosoufflage par pistonnage ou expansion de gaz isolant

Publications (1)

Publication Number Publication Date
EP0331587A1 true EP0331587A1 (fr) 1989-09-06

Family

ID=9363862

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89420037A Ceased EP0331587A1 (fr) 1988-03-01 1989-02-07 Disjoncteur électrique à autosoufflage par pistonnage ou expansion de gaz isolant

Country Status (4)

Country Link
US (1) US4935590A (fr)
EP (1) EP0331587A1 (fr)
JP (1) JPH01253136A (fr)
FR (1) FR2628259A1 (fr)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9314779U1 (de) * 1993-09-24 1993-11-25 Siemens AG, 80333 München Hochspannungs-Leistungsschalter mit einer Kühleinrichtung zur Kühlung des Löschgases
DE4427163A1 (de) * 1994-08-01 1996-02-08 Abb Management Ag Druckgasschalter
IT1292453B1 (it) 1997-07-02 1999-02-08 Aeg Niederspannungstech Gmbh Gruppo rotante di contatti per interrutttori di alta portata
DE19819242B4 (de) 1998-04-29 2005-11-10 Ge Power Controls Polska Sp.Z.O.O. Thermomagnetischer Leistungsschalter
US6114641A (en) * 1998-05-29 2000-09-05 General Electric Company Rotary contact assembly for high ampere-rated circuit breakers
US6087913A (en) * 1998-11-20 2000-07-11 General Electric Company Circuit breaker mechanism for a rotary contact system
US6037555A (en) * 1999-01-05 2000-03-14 General Electric Company Rotary contact circuit breaker venting arrangement including current transformer
US6166344A (en) * 1999-03-23 2000-12-26 General Electric Company Circuit breaker handle block
US6262872B1 (en) 1999-06-03 2001-07-17 General Electric Company Electronic trip unit with user-adjustable sensitivity to current spikes
US6268991B1 (en) 1999-06-25 2001-07-31 General Electric Company Method and arrangement for customizing electronic circuit interrupters
US6218917B1 (en) 1999-07-02 2001-04-17 General Electric Company Method and arrangement for calibration of circuit breaker thermal trip unit
US6188036B1 (en) 1999-08-03 2001-02-13 General Electric Company Bottom vented circuit breaker capable of top down assembly onto equipment
US6710988B1 (en) 1999-08-17 2004-03-23 General Electric Company Small-sized industrial rated electric motor starter switch unit
US6252365B1 (en) 1999-08-17 2001-06-26 General Electric Company Breaker/starter with auto-configurable trip unit
US6396369B1 (en) 1999-08-27 2002-05-28 General Electric Company Rotary contact assembly for high ampere-rated circuit breakers
US6232570B1 (en) 1999-09-16 2001-05-15 General Electric Company Arcing contact arrangement
US6326869B1 (en) 1999-09-23 2001-12-04 General Electric Company Clapper armature system for a circuit breaker
US6239395B1 (en) 1999-10-14 2001-05-29 General Electric Company Auxiliary position switch assembly for a circuit breaker
US6229413B1 (en) 1999-10-19 2001-05-08 General Electric Company Support of stationary conductors for a circuit breaker
US6317018B1 (en) 1999-10-26 2001-11-13 General Electric Company Circuit breaker mechanism
US6232856B1 (en) 1999-11-02 2001-05-15 General Electric Company Magnetic shunt assembly
US6377144B1 (en) 1999-11-03 2002-04-23 General Electric Company Molded case circuit breaker base and mid-cover assembly
EP1098343B1 (fr) 1999-11-03 2005-09-21 AEG Niederspannungstechnik GmbH & Co. KG Dispositif a contact tournant pour disjoncteur
US6300586B1 (en) 1999-12-09 2001-10-09 General Electric Company Arc runner retaining feature
US6310307B1 (en) 1999-12-17 2001-10-30 General Electric Company Circuit breaker rotary contact arm arrangement
US6184761B1 (en) 1999-12-20 2001-02-06 General Electric Company Circuit breaker rotary contact arrangement
US6172584B1 (en) 1999-12-20 2001-01-09 General Electric Company Circuit breaker accessory reset system
US6215379B1 (en) 1999-12-23 2001-04-10 General Electric Company Shunt for indirectly heated bimetallic strip
US6281461B1 (en) 1999-12-27 2001-08-28 General Electric Company Circuit breaker rotor assembly having arc prevention structure
US6346869B1 (en) 1999-12-28 2002-02-12 General Electric Company Rating plug for circuit breakers
US6211758B1 (en) 2000-01-11 2001-04-03 General Electric Company Circuit breaker accessory gap control mechanism
US6239677B1 (en) 2000-02-10 2001-05-29 General Electric Company Circuit breaker thermal magnetic trip unit
US6429759B1 (en) 2000-02-14 2002-08-06 General Electric Company Split and angled contacts
US6281458B1 (en) 2000-02-24 2001-08-28 General Electric Company Circuit breaker auxiliary magnetic trip unit with pressure sensitive release
US6313425B1 (en) 2000-02-24 2001-11-06 General Electric Company Cassette assembly with rejection features
US6404314B1 (en) 2000-02-29 2002-06-11 General Electric Company Adjustable trip solenoid
US6204743B1 (en) 2000-02-29 2001-03-20 General Electric Company Dual connector strap for a rotary contact circuit breaker
US6379196B1 (en) 2000-03-01 2002-04-30 General Electric Company Terminal connector for a circuit breaker
US6346868B1 (en) 2000-03-01 2002-02-12 General Electric Company Circuit interrupter operating mechanism
US6340925B1 (en) 2000-03-01 2002-01-22 General Electric Company Circuit breaker mechanism tripping cam
US6448521B1 (en) 2000-03-01 2002-09-10 General Electric Company Blocking apparatus for circuit breaker contact structure
US6366438B1 (en) 2000-03-06 2002-04-02 General Electric Company Circuit interrupter rotary contact arm
US6211757B1 (en) 2000-03-06 2001-04-03 General Electric Company Fast acting high force trip actuator
US6459349B1 (en) 2000-03-06 2002-10-01 General Electric Company Circuit breaker comprising a current transformer with a partial air gap
US6496347B1 (en) 2000-03-08 2002-12-17 General Electric Company System and method for optimization of a circuit breaker mechanism
US6429659B1 (en) 2000-03-09 2002-08-06 General Electric Company Connection tester for an electronic trip unit
US6232859B1 (en) 2000-03-15 2001-05-15 General Electric Company Auxiliary switch mounting configuration for use in a molded case circuit breaker
US6366188B1 (en) 2000-03-15 2002-04-02 General Electric Company Accessory and recess identification system for circuit breakers
US6218919B1 (en) 2000-03-15 2001-04-17 General Electric Company Circuit breaker latch mechanism with decreased trip time
US6459059B1 (en) 2000-03-16 2002-10-01 General Electric Company Return spring for a circuit interrupter operating mechanism
US6421217B1 (en) 2000-03-16 2002-07-16 General Electric Company Circuit breaker accessory reset system
US6639168B1 (en) 2000-03-17 2003-10-28 General Electric Company Energy absorbing contact arm stop
US6373010B1 (en) 2000-03-17 2002-04-16 General Electric Company Adjustable energy storage mechanism for a circuit breaker motor operator
US6388213B1 (en) 2000-03-17 2002-05-14 General Electric Company Locking device for molded case circuit breakers
US6472620B2 (en) 2000-03-17 2002-10-29 Ge Power Controls France Sas Locking arrangement for circuit breaker draw-out mechanism
FR2806548B1 (fr) 2000-03-17 2002-08-23 Ge Power Controls France Mecanisme extractible pour disjoncteurs
US6476698B1 (en) 2000-03-17 2002-11-05 General Electric Company Convertible locking arrangement on breakers
US6559743B2 (en) 2000-03-17 2003-05-06 General Electric Company Stored energy system for breaker operating mechanism
US6586693B2 (en) 2000-03-17 2003-07-01 General Electric Company Self compensating latch arrangement
US6479774B1 (en) 2000-03-17 2002-11-12 General Electric Company High energy closing mechanism for circuit breakers
US6747535B2 (en) 2000-03-27 2004-06-08 General Electric Company Precision location system between actuator accessory and mechanism
US6373357B1 (en) 2000-05-16 2002-04-16 General Electric Company Pressure sensitive trip mechanism for a rotary breaker
US6400245B1 (en) 2000-10-13 2002-06-04 General Electric Company Draw out interlock for circuit breakers
US6429760B1 (en) 2000-10-19 2002-08-06 General Electric Company Cross bar for a conductor in a rotary breaker
US6806800B1 (en) 2000-10-19 2004-10-19 General Electric Company Assembly for mounting a motor operator on a circuit breaker
US6531941B1 (en) 2000-10-19 2003-03-11 General Electric Company Clip for a conductor in a rotary breaker
US6362711B1 (en) 2000-11-10 2002-03-26 General Electric Company Circuit breaker cover with screw locating feature
US6380829B1 (en) 2000-11-21 2002-04-30 General Electric Company Motor operator interlock and method for circuit breakers
US6448522B1 (en) 2001-01-30 2002-09-10 General Electric Company Compact high speed motor operator for a circuit breaker
US6476337B2 (en) 2001-02-26 2002-11-05 General Electric Company Auxiliary switch actuation arrangement
US6882258B2 (en) * 2001-02-27 2005-04-19 General Electric Company Mechanical bell alarm assembly for a circuit breaker
US6678135B2 (en) 2001-09-12 2004-01-13 General Electric Company Module plug for an electronic trip unit
US6469882B1 (en) 2001-10-31 2002-10-22 General Electric Company Current transformer initial condition correction
US6804101B2 (en) 2001-11-06 2004-10-12 General Electric Company Digital rating plug for electronic trip unit in circuit breakers
FR2868875B1 (fr) * 2004-04-07 2011-09-23 Areva T & D Sa Appareil electrique comprenant un isolateur composite muni d'une fenetre d'observation des contacts
DE102005019424A1 (de) * 2005-04-25 2006-11-02 Abb Technology Ag Lasttrennschalter
JP5032091B2 (ja) * 2006-10-12 2012-09-26 株式会社東芝 ガス絶縁開閉装置及びガス絶縁開閉装置用部品のアーク損傷検出方法
JP2008210710A (ja) * 2007-02-27 2008-09-11 Mitsubishi Electric Corp 電力用ガス遮断器
US8492672B2 (en) * 2011-08-05 2013-07-23 Eaton Corporation Insulated arc flash arrester
CN102760607B (zh) * 2012-07-24 2014-10-29 上海天灵开关厂有限公司 一种气体绝缘环网柜用压气式负荷开关
WO2014075992A1 (fr) * 2012-11-13 2014-05-22 Abb Technology Ag Système de contact
KR101786521B1 (ko) * 2013-07-02 2017-10-18 엘에스산전 주식회사 초고압 차단기
FR3030106B1 (fr) * 2014-12-11 2017-01-13 Alstom Technology Ltd Dispositif de coupure electrique haute tension a autosoufflage optimise
WO2016110962A1 (fr) * 2015-01-07 2016-07-14 三菱電機株式会社 Disjoncteur à gaz
CN109346370B (zh) * 2018-11-01 2019-10-11 沈阳工业大学 一种活塞助气双能式高压sf6断路器灭弧室

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH320531A (de) * 1951-05-25 1957-03-31 Concordia Masch & Elekt Trennschalter mit Schnellschaltvorrichtung
DE1281528B (de) * 1965-02-12 1968-10-31 Fabriek Van Electrische App N Loeschkammer fuer Hochspannungsschalter mit einer Innenauskleidung aus Kunststoff
DE2342520A1 (de) * 1973-08-23 1975-03-06 Calor Emag Elektrizitaets Ag Hochspannungsleistungsschalter
FR2302581A1 (fr) * 1975-02-26 1976-09-24 Merlin Gerin Disjoncteur electrique a autosoufflage a chambre de coupure perfectionnee

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH320531A (de) * 1951-05-25 1957-03-31 Concordia Masch & Elekt Trennschalter mit Schnellschaltvorrichtung
DE1281528B (de) * 1965-02-12 1968-10-31 Fabriek Van Electrische App N Loeschkammer fuer Hochspannungsschalter mit einer Innenauskleidung aus Kunststoff
DE2342520A1 (de) * 1973-08-23 1975-03-06 Calor Emag Elektrizitaets Ag Hochspannungsleistungsschalter
FR2302581A1 (fr) * 1975-02-26 1976-09-24 Merlin Gerin Disjoncteur electrique a autosoufflage a chambre de coupure perfectionnee

Also Published As

Publication number Publication date
JPH01253136A (ja) 1989-10-09
US4935590A (en) 1990-06-19
FR2628259A1 (fr) 1989-09-08

Similar Documents

Publication Publication Date Title
EP0331587A1 (fr) Disjoncteur électrique à autosoufflage par pistonnage ou expansion de gaz isolant
FR2663457A1 (fr) Disjoncteur electrique a autoexpansion et a rotation de l'arc.
EP0179834B1 (fr) Dispositif interrupteur a ecran de coupure d'arc
EP0367072B1 (fr) Disjoncteur à haute tension à gaz diélectrique sous pression
EP0183755B1 (fr) Dispositif d'extinction d'arc pour appareillage electrique a isolement gazeux
EP0591039A1 (fr) Disjoncteur à haute tension à auto-soufflage ayant une chambre de coupure à compression de gaz réduite
FR2576144A1 (fr) Disjoncteur a haute tension, a gaz comprime, a faible energie de manoeuvre
EP0398211B1 (fr) Disjoncteur à haute tension à gaz diélectrique de soufflage
FR2629260A1 (fr) Disjoncteur a haute tension a faible energie de manoeuvre
EP0021951A1 (fr) Interrupteur à autosoufflage par aspiration
EP0004213B1 (fr) Dispositif d'extinction d'arc à autosoufflage pneumatique et magnétique
FR2610763A1 (fr) Disjoncteur a faible energie de manoeuvre
EP0664552A1 (fr) Disjoncteur à auto-soufflage et à double mouvement
EP0415098A1 (fr) Disjoncteur à moyennne tension à autosoufflage
FR2542918A1 (fr) Interrupteur a arc tournant a circulation des gaz ionises
CA2101214C (fr) Disjoncteur a deux chambres de coupure concentriques
EP0406794A1 (fr) Disjoncteur à haute ou moyenne tension
FR2490397A2 (fr) Disjoncteur a haute tension a arc tournant et autosoufflage
BE897956A (fr) Chambre de coupure pour disjoncteur a gaz
FR2479553A1 (fr) Interrupteur a arc tournant et a expansion thermique du gaz de soufflage
FR2575323A1 (fr) Disjoncteur a gaz comprime
FR2760890A1 (fr) Deflecteur pour appareil electrique sous enveloppe metallique, en particulier pour disjoncteur haute tension
FR2623657A1 (fr) Disjoncteur a autosoufflage par expansion de gaz isolant, equipe d'un ecran de repartition de champ electrique
EP0101371B1 (fr) Interrupteur électrique à arc tournant
FR2460537A1 (fr) Interrupteur a soufflage pneumatique de l'arc par expansion thermique des gaz de soufflage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT SE

17P Request for examination filed

Effective date: 19900208

17Q First examination report despatched

Effective date: 19920506

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19930913