EP0330674B1 - Internal-combustion engine - Google Patents

Internal-combustion engine Download PDF

Info

Publication number
EP0330674B1
EP0330674B1 EP88900352A EP88900352A EP0330674B1 EP 0330674 B1 EP0330674 B1 EP 0330674B1 EP 88900352 A EP88900352 A EP 88900352A EP 88900352 A EP88900352 A EP 88900352A EP 0330674 B1 EP0330674 B1 EP 0330674B1
Authority
EP
European Patent Office
Prior art keywords
combustion engine
ring
cycle
around
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88900352A
Other languages
German (de)
French (fr)
Other versions
EP0330674A1 (en
Inventor
Ludwig Elsbett
Günter Elsbett
Klaus Elsbett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0330674A1 publication Critical patent/EP0330674A1/en
Application granted granted Critical
Publication of EP0330674B1 publication Critical patent/EP0330674B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/26Engines with cylinder axes coaxial with, or parallel or inclined to, main-shaft axis; Engines with cylinder axes arranged substantially tangentially to a circle centred on main-shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/02Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis with wobble-plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P9/00Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P2003/006Liquid cooling the liquid being oil

Definitions

  • DE-OS 2736023 has no cooling and lubrication with the same medium, while DE-OS 2825870 does not introduce a swash plate drive.
  • a swashplate drive which are known to be very compact in terms of weight and performance, the question is of interest and the task is to save on the construction weight and to simplify the entire lubrication and cooling devices. This can be achieved with a common cooling and lubrication arrangement.
  • the purpose of the invention is further to simplify the circuits, which should be flexible for different cooling requirements (aircraft or truck, unit or ship engine), as well as the use of a heat-insulating motor technology for cooling and lubrication of axial motors.
  • claim 1 consists in that the same medium is used for cooling and lubrication, the circuit of the medium being branched into an inner and an outer circuit and this branching of the paths in the control housing and bearing bracket, and further in the arrangement of a central distributor groove, at which the various cooling and lubrication circuit combinations can be freely selected by simply repositioning cross-section locks without having to produce component variants.
  • the invention is best understood using an example.
  • Fig. 1 shows one half of an axial motor, which converts the oscillating movement of the pistons (13) in the cylinders (14), which are arranged axially around a wobble shaft (15), into a rotation of the wobble shaft.
  • the cylinders are covered by heads (16) and these in turn by a control housing (17) which is connected to the motor housing (34) via the bearing bracket (18) at the same time.
  • the control housing on each engine side has two oil pumps (1) and (2) which are driven by the crankshaft (15). By means of the method described in FIG. 2, the oil either reaches the crankshaft in the direction of the arrow (via space (19)) and forms a lubricating and spray oil circuit, or it reaches ring space (20) and forms the cooling circuit.
  • the oil flows from the annular space (20) into the annular spaces (21) of the individual cylinders. These annular spaces (21) serve to wash around the cylinder area, which is constantly covered by the piston crown of spray oil (22).
  • the oil enters an annular collecting groove (23) in the head (16), from which it flows through a bore (24) into the control housing (17), from where it returns to the oil container (25).
  • the annular spaces (20) on both sides are connected by pipes (26).
  • the oil can flow from one side of the annular space (19) to the other side through the swash shaft (15) and ensures lubrication of the base bearings.
  • the oil passes through the pendulum ring (28) and connecting rod (29) into the bolt (30) and from there into the connecting piece (31) of both pistons. Heurruch can lubricate all moving parts.
  • the oil emerges from the part (31) through spray nozzles and cools and lubricates the piston and cylinder wall by means of a jet (22) directed thereon. The oil thus lost through lubrication and spraying collects in the housing (18) and is fed to the oil container (25).
  • Fig. 2 shows a section of the annular space (32) in the bearing bracket (18) and schematically the holes opening onto this annular space (Fig. 2).
  • the oil pumps (1) and (2) installed in the control housing draw the oil from the oil tank and convey it into the annular space (32).
  • the star-shaped bores leading to the outside or coming from the outside are: lines for pumps (1) and (2) and lines (3), (4) and (11) for connections to external devices such as filters, coolers, thermostats and pressure gauges.
  • the holes (10) lead the oil into the inside of the swash shaft (15) via space (19), and the hole (9) connects the annular space (32) with the annular space (20) on the back of the bearing chair (18).
  • the holes (38) each lead to pressure relief valves.
  • the ring space is divided into ring sections by five removable locking blocks (5), (6), (7), (8) and (12). The following arrangements are possible (blocks (5) and (8) always remain in the position shown):
  • Arrangement 1 Pump (1) and (2) as six-oil pumps (with filtering and cooling): (6) is removed (connection (11) tight): Oil flows through (3) to the filter and cooler to (4) and through holes (10) into the wobble wave. Bore (9) is blocked by blocks (12) and (8) (if only one pump is used, the connections of the others are closed).
  • Arrangement 4 Pump (1) as a lubricating oil pump with filtering and cooling, Pump (2) as a cooling oil pump without filtering and cooling: (12) and (7) are removed ((11) is tight): Oil flows directly to (9) as cooling oil. Oil flows via (3) to the filter and cooler after (4) and in holes (10) in the swash shaft.
  • Arrangement 5 Pump (1) as a lubricating oil pump with filtering and cooling, pump (2) as a cooling oil pump with cooling: (7) is removed: Oil flows as cooling oil via (11) and cooler to connection (11) on the other side and bore ( 9) the other side. Oil flows as lubricating oil like arrangement 4.
  • Combinations of these arrangements on both engine sides are, for example, a combination of arrangement 1 with 2 or 3. It is advantageous for the manufacture of the components that 100% tightness of the respective sections and circuits to one another is not necessary since the medium is the same .
  • Fig. 3 shows a pendulum ring (28), via which the oil from the rotating wobble shaft (15) and the rotating support sleeve (33) finds a way into the connecting rod (29) carrying out a pendulum movement.
  • This pendulum ring (28) has a circumferential collecting groove on its inside, from which the oil reaches the connecting rod oil bore (36) via branch bores (35).
  • the chamfering of the bore (35) on the contact surface of the pendulum ring / connecting rod is so large that even with maximum pendulum deflection, oil still flows smoothly.
  • the ring (28) is secured against rotation by the pins (37), which, however, leave it enough play to compensate for the pendulum movement.
  • Fig. 4 shows a cross section through an annular space barrier (section C-C): A cylindrical rotary part (12) or a cylindrical sleeve is inserted into a bore that is larger and deeper than the annular space cross section. A plate spring (39) ensures that the front end seals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Reciprocating Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

An internal combustion engine has an axial cylinder assembly arranged around an eccentring shaft. The same fluid is used for lubricating and for cooling and can be supplied to the places to be lubricated and cooled from the inside of the eccentric shaft as well as from the outside to the cylinders and cylinder heads.

Description

Es sind keine Verbrennungsmotoren mit axialer Zylinderanordnung um eine Tamelwelle herum mit einem taumelscheibenartigen Kurbeltrieb bekannt, die Schmierung und Kühlung des Motors mit dem gleichen flüssigen Medium vorschlagen. Die DE-OS 2736023 hat keine Kühlung und Schmierung mit dem gleichen Medium, während die DE-OS 2825870 keinen Taumelscheibentrieb vorstellt. Bei Verbrennungsmotoren mit Taumelscheibentrieb, die bekanntlich gewicht-leistungsmäßig sehr kompakt bauen, interessiert die Frage un steht die Aufgabe, am Baugewicht enzusparen und die gesamten Schmierungs- und Kühlungsvorrichtungen zu vereinfachen. Dies kann mit einer gemeinsamen Kühl- und Schmieranordnung erreicht werden. Zweck der Erfindung ist weiter die Vereinfachung der Kreisläufe, die flexibel für unterschiedliche Kühlanforderugen (Flugzeug- oder LKW-, Aggregats- oder Schiffsmotor) sein sollen, sowie die Anwendung einer wärmedämmenden Motorentechnologie für Kühlung und Schmeirung von Axialmotoren.There are no known internal combustion engines with an axial cylinder arrangement around a tamel shaft with a swashplate-like crank mechanism that propose lubrication and cooling of the engine with the same liquid medium. DE-OS 2736023 has no cooling and lubrication with the same medium, while DE-OS 2825870 does not introduce a swash plate drive. In the case of internal combustion engines with a swashplate drive, which are known to be very compact in terms of weight and performance, the question is of interest and the task is to save on the construction weight and to simplify the entire lubrication and cooling devices. This can be achieved with a common cooling and lubrication arrangement. The purpose of the invention is further to simplify the circuits, which should be flexible for different cooling requirements (aircraft or truck, unit or ship engine), as well as the use of a heat-insulating motor technology for cooling and lubrication of axial motors.

Die Lösung der Aufgabe ist dem Anspruch 1 zu entnehmen. Sie besteht darin, daß das gleiche Medium für Kühlung und Schmierung verwendet wird, wobei der Kreislauf des Mediums aufgezweigt wird in einen inneren und einen äußeren Kreislauf und diese Aufzweigung der Wege im Steuergehäuse und Lagerstuhl erfolgt, und weiter in der Anordnung einer zentralen Verteilernut, bei der die verschiedenen Kühl- und Schmierkreislauf-Kombinationen durch einfaches Umstecken von Querschnittssperren frei gewählt werden können, ohne Bauteilvarianten hervorbringen zu müssen. Die Erfindung ist anhand eines Beispieles am besten zu verstehen.The solution to the problem can be found in claim 1. It consists in that the same medium is used for cooling and lubrication, the circuit of the medium being branched into an inner and an outer circuit and this branching of the paths in the control housing and bearing bracket, and further in the arrangement of a central distributor groove, at which the various cooling and lubrication circuit combinations can be freely selected by simply repositioning cross-section locks without having to produce component variants. The invention is best understood using an example.

Fig. 1 zeigt eine Hälfte eines Axialmotor, der die oszillierende Bewegung der Kolben (13) in den Zylidern (14), die axial um eine Taumelwelle (15) herum angeordnet sind, in eine Drehung der Taumelwelle umsetzt. Die Zylinder werden durch Köpfe (16) abgedeckt und diese ihrerseits von einem Steuergehäuse (17), welches gleichzeitig über den Lagerstuhl (18) mit dem Motorgehäuse (34) verbunden ist. Das Steuergehäuse auf jeder Motorseite weist zwei Ölpumpen (1) und (2) auf, welche von der Kurbelwelle (15) angetrieben werden. Durch in Fig. 2 beschriebenes Verfahren gelangt das Öl in Pfeilrichtung entweder in die Kurbelwelle (über Raum (19)) und bildet einen Schmier- und Spritzölkreislauf, oder es gelangt in Ringraum (20) und bildet den Kühlkreislauf.Fig. 1 shows one half of an axial motor, which converts the oscillating movement of the pistons (13) in the cylinders (14), which are arranged axially around a wobble shaft (15), into a rotation of the wobble shaft. The cylinders are covered by heads (16) and these in turn by a control housing (17) which is connected to the motor housing (34) via the bearing bracket (18) at the same time. The control housing on each engine side has two oil pumps (1) and (2) which are driven by the crankshaft (15). By means of the method described in FIG. 2, the oil either reaches the crankshaft in the direction of the arrow (via space (19)) and forms a lubricating and spray oil circuit, or it reaches ring space (20) and forms the cooling circuit.

KühlkreislaufCooling circuit

Von Ringraum (20) fließt das Öl in die Ringräume (21) der einzelnen Zylinder. Diese Ringräume (21) dienen der Umspülung des Zylinderbereichs, der durch die Kolbenkrone von Spritzöl (22) ständig abgedeckt ist. Das Öl gelangt in eine Ringsammelnut (23) im Kopf (16), von der es durch eine Bohrung (24) in das Steuergehäuse (17) fließt, von wo es zurück in den Ölbehälter (25) gelangt. Die Ringräume (20) auf beiden Seiten sind durch Rohre (26) verbunden.The oil flows from the annular space (20) into the annular spaces (21) of the individual cylinders. These annular spaces (21) serve to wash around the cylinder area, which is constantly covered by the piston crown of spray oil (22). The oil enters an annular collecting groove (23) in the head (16), from which it flows through a bore (24) into the control housing (17), from where it returns to the oil container (25). The annular spaces (20) on both sides are connected by pipes (26).

Schmier- und SpritzölkreislaufLubrication and spray oil circuit

Durch die Taumelwelle (15) kann das Öl von einer Seite von Ringraum (19) auf die andere Seite fließen und gewährleistet eine Schmierung der Grundlager. Im Kubelzapfen befinden sich Bohrungen (27), durch die das Öl in den Raum zwischen Zapfen und einer Hülse (33) gelangt, auf der einzelne Pleuel (29) schwenkbar gelagert sind. Durch in Fig. 3 beschriebenes Verfahren gelangt das Öl durch Pendelring (28) und Pleuel (29) in den Bolzen (30) und von da in das Verbindungsstück (31) beider Kolben. Heirdruch kann allen bewegten Teilen Schmierung zugeführt werden. Durch Spritzdüsen tritt das Öl am Teil (31) aus und kühlt und schmiert Kolben und Zylinderwand durch einen darauf gerichteten Strahl (22). Das so durch Schmieren und Spritzen verlorene Öl sammelt sich im Gehäuse (18) und wird dem Ölbehälter (25) zugeführt.The oil can flow from one side of the annular space (19) to the other side through the swash shaft (15) and ensures lubrication of the base bearings. There are bores (27) in the cube pin through which the oil reaches the space between the pin and a sleeve (33) on which individual connecting rods (29) are pivotably mounted. By the method described in FIG. 3, the oil passes through the pendulum ring (28) and connecting rod (29) into the bolt (30) and from there into the connecting piece (31) of both pistons. Heurruch can lubricate all moving parts. The oil emerges from the part (31) through spray nozzles and cools and lubricates the piston and cylinder wall by means of a jet (22) directed thereon. The oil thus lost through lubrication and spraying collects in the housing (18) and is fed to the oil container (25).

Fig. 2 (Schnitt A-A) zeigt einen Schnitt des Ringraumes (32) in Lagerstuhl (18) und schematisch die auf diesen Ringraum mündenden Bohrungen (Fig. 2). Die im Steuergehäuse eingebauten Ölpumpen (1) und (2) saugen das Öl aus dem Ölbehälter und befördern es in den Ringraum (32).Fig. 2 (section A-A) shows a section of the annular space (32) in the bearing bracket (18) and schematically the holes opening onto this annular space (Fig. 2). The oil pumps (1) and (2) installed in the control housing draw the oil from the oil tank and convey it into the annular space (32).

Die sternförmig nach außen führenden bzw. von außen kommenden Bohrungen sind: Leitugen von Pumpe (1) und (2) und Leitungen (3), (4) und (11) für Anschlüsse externer Geräte wie Filter, Kühler, Thermostat und Manometer. Die Bohrungen (10) führen das Öl ins Innere der Taumelwelle (15) über Raum (19), und die Bohrung (9) verbindet den Ringraum (32) mit dem Ringraum (20) auf der Rückseite des Lägerstuhls (18). Die Bohrungen (38) führen jeweils zu Überdruckventilen. Der Ringraum ist durch fünf herausnehmbare Sperrklötze (5), (6), (7), (8) und (12) in Ringabschnitte aufgeteilt. Folgende Anordnungen sind möglich, (Klötze (5) und (8) bleiben dabei stets in der gezeigten Position):The star-shaped bores leading to the outside or coming from the outside are: lines for pumps (1) and (2) and lines (3), (4) and (11) for connections to external devices such as filters, coolers, thermostats and pressure gauges. The holes (10) lead the oil into the inside of the swash shaft (15) via space (19), and the hole (9) connects the annular space (32) with the annular space (20) on the back of the bearing chair (18). The holes (38) each lead to pressure relief valves. The ring space is divided into ring sections by five removable locking blocks (5), (6), (7), (8) and (12). The following arrangements are possible (blocks (5) and (8) always remain in the position shown):

Anordnung 1: Pumpe (1) und (2) als Sechmierölpumpen (mit Filterung und Kühlung): (6) wird entfernt (Anschluß (11) dicht): Öl fließt über (3) zum Filter und Kühler nach (4) und durch Löchern (10) in die Taumelwelle. Bohrung (9) ist durch Klötze (12) und (8) gesperrt (wird nur eine Pumpe benutzt, werden die Anschlüsse der anderen verschlossen).Arrangement 1: Pump (1) and (2) as six-oil pumps (with filtering and cooling): (6) is removed (connection (11) tight): Oil flows through (3) to the filter and cooler to (4) and through holes (10) into the wobble wave. Bore (9) is blocked by blocks (12) and (8) (if only one pump is used, the connections of the others are closed).

Anordnung 2: Pumpe (1) und (2) als Kühlölpumpe (ohne Filterung und Kühlung) (12), (6) und (7) werden entfernt: Öl fließt direkt nach (9). (3), (4) und (11) werden dichtgemacht (wird nur eine Pumpe benutzt, wird der Ansaug der anderen verschlossen).Arrangement 2: Pump (1) and (2) as cooling oil pump (without filtering and cooling) (12), (6) and (7) are removed: oil flows directly to (9). (3), (4) and (11) are sealed (if only one pump is used, the suction of the other is closed).

Anordnung 3: Pumpe (1) und (2) als Kühlölpumpe, mit Kühlung: (12) und (6) werden entfernt ((4) ist dicht): Öl fließt über (3) und Kühler nach (11).Arrangement 3: Pump (1) and (2) as cooling oil pump, with cooling: (12) and (6) are removed ((4) is tight): Oil flows over (3) and cooler after (11).

Anordnung 4: Pumpe (1) als Schmierölpumpe mit Filterung und Kühlung, Pumpe (2) als Kühlölpumpe ohne Filterung und Kühlung: (12) und (7) werden entfernt ((11) ist dicht): Öl fließt als Kühlöl direkt nach (9). Öl fließt über (3) zum Filter und Kühler nach (4) und in Löchern (10) in die Taumelwelle.Arrangement 4: Pump (1) as a lubricating oil pump with filtering and cooling, Pump (2) as a cooling oil pump without filtering and cooling: (12) and (7) are removed ((11) is tight): Oil flows directly to (9) as cooling oil. Oil flows via (3) to the filter and cooler after (4) and in holes (10) in the swash shaft.

Anordnung 5: Pumpe (1) als Schmierölpumpe mit Filterung und Kühlung, Pumpe (2) als Kühlölpumpe mit Kühlung: (7) wird entfernt: Öl fließt als Kühlöl über (11) und Kühler nach Anschluß (11) der anderen Seite und Bohrung (9) der anderen Seite. Öl fließt als Schmieröl wie Anordnung 4.Arrangement 5: Pump (1) as a lubricating oil pump with filtering and cooling, pump (2) as a cooling oil pump with cooling: (7) is removed: Oil flows as cooling oil via (11) and cooler to connection (11) on the other side and bore ( 9) the other side. Oil flows as lubricating oil like arrangement 4.

Kombinationen dieser Anordnungen auf beiden Motorseiten sind beispielsweise Kombination der Anordnung 1 mit 2 oder 3. Es ist für die Fertigung der Bauteile von Vorteil, daß eine 100% Dichtheit der jeweiligen Abschnitte und Kreisläufe zueinander nicht erforderlich ist, da es sich um das gleiche Medium handelt.Combinations of these arrangements on both engine sides are, for example, a combination of arrangement 1 with 2 or 3. It is advantageous for the manufacture of the components that 100% tightness of the respective sections and circuits to one another is not necessary since the medium is the same .

Fig. 3 zeigt einen Pendelring (28), über den das Öl aus der drehenden Taumelwelle (15) und die sich drehende Stützhülse (33) einen Weg findet in das eine Pendelbewegung ausführende Pleuel (29). Dieser Pendelring (28) hat an seiner Innenseite eine umlaufende Sammelnut, von der aus über Stichbohrungen (35) das Öl in die Pleuelölbohrung (36) gelangt. Die Anfasung der Bohrung (35) an der Kontaktfläche Pendelring/Pleuel ist so groß, daß auch bei maximalem Pendelausschlag noch satändig Öl fließt. Der Ring (28) ist gegen Verdrehung durch die Stifte (37) gesichert, die ihm jedoch genügend Spiel zum Ausgleich der Pendelbewegung lassen.Fig. 3 shows a pendulum ring (28), via which the oil from the rotating wobble shaft (15) and the rotating support sleeve (33) finds a way into the connecting rod (29) carrying out a pendulum movement. This pendulum ring (28) has a circumferential collecting groove on its inside, from which the oil reaches the connecting rod oil bore (36) via branch bores (35). The chamfering of the bore (35) on the contact surface of the pendulum ring / connecting rod is so large that even with maximum pendulum deflection, oil still flows smoothly. The ring (28) is secured against rotation by the pins (37), which, however, leave it enough play to compensate for the pendulum movement.

Fig. 4 zeigt einen Querschnitt durch eine Ringraumsperre (Schnitt C-C): Ein zylinderförmiges Drehteil (12) oder eine zylindrische Hülse wird in eine Bohrung gesteckt, die größer und tiefer als der Ringraumquerschnitt ist. Eine Tellerfeder (39) sorgt dafür, daß die vordere Stirnseite dichtet.Fig. 4 shows a cross section through an annular space barrier (section C-C): A cylindrical rotary part (12) or a cylindrical sleeve is inserted into a bore that is larger and deeper than the annular space cross section. A plate spring (39) ensures that the front end seals.

Claims (7)

1. A combustion engine with axial arrangement of cylinders around a swash shaft (15) and with a crank drive (15), similar to a swash plate, in an engine casing (34), on one or both faces of which are placed the heads (16) covering the cylinders (14) and the heads (16) containing the gas exchange components, and which are covered on the face away from the engine by a timing case (17), through which the swash shaft (15) passes and which houses the components regulating the gas exchange, characterized in that the engine presents a common lubrication and cooling cycle for the same fluid medium, whereby the cycle of the medium is divided into an internal (19,27 etc.) and an external (20,21 etc.) cycle and this division of paths takes place in the timing case (17) and bearing seats (18), and chambers (32, 19, 20 etc.) carrying said medium both into the interior of the swash shaft (15) and from there to the parts of the crank drive (15) which are to be lubricated and cooled, and also around the exterior of the cylinders (14) and through the cylinder heads (16).
2. A combustion engine according to claim 1, characterized in that said division of cycles for engines with heads (16) and timing case (17) on both sides of the engine is achieved by combining the internal cycles (19, 27 etc.) of both engine sides to form a single cycle, and proceeding in the same way with the external cycles (20, 21 etc.), each cycle starting from the timing case (17) of one side.
3. A combustion engine according to one or several of the preceding claims, characterized in that the entire medium is introduced before distribution into a ring-shaped distribution chamber (32) fitted around the swash shaft and into which the inflow and outflow ducts of bores (1, 2, 3, 4, 11) open and said ring chamber (32) being divided into segments in such a way that division into various paths takes place.
4. A combustion engine according to one or several of the preceding claims, characterized in that said division can take place optionally by means of blocks (5, 6, 7, 8, 12) introduced at fixed points of the ring chamber (32).
5. A combustion engine according to one or several of the preceding claims, characterized in that the external cycle is supplied via one ring groove (20) each on one engine side, whereby from said ring thru bores lead to the ring chamber (21) around the cylinders, from where the medium enters the heads (16) and from there flows back into the timing case (17).
6. A combustion engine according to one or several of the preceding claims, characterized in that the internal cycle is supplied from a ring-shaped chamber (19) around the swash shaft and from which the medium enters the interior of the swash shaft (15) through bores (27), from where it reaches, via bores (35) in the oblique journal, the ring chamber of at least one further component arranged between journal and piston pin (30), from which it is introduced via a bore or injection nozzles on the component (31) onto the parts to be lubricated and cooled.
7. A combustion engine according to one or several of the preceding claims, characterized in that, with engines with oscillating connecting rods, said component is constructed in such a way that it runs annularly around the swash shaft journal and presents a ring collecting groove on its inner side rotating around the journal or a further intermediate sleeve, from where thru bores run to the connecting rods' suspension points on the external periphery and which is fixed against the connecting rods in such a way that the flow of the medium into the connecting rods cannot be interrupted.
EP88900352A 1987-01-02 1988-01-01 Internal-combustion engine Expired - Lifetime EP0330674B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3700023 1987-01-02
DE3700023 1987-01-02

Publications (2)

Publication Number Publication Date
EP0330674A1 EP0330674A1 (en) 1989-09-06
EP0330674B1 true EP0330674B1 (en) 1990-12-12

Family

ID=6318388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88900352A Expired - Lifetime EP0330674B1 (en) 1987-01-02 1988-01-01 Internal-combustion engine

Country Status (4)

Country Link
EP (1) EP0330674B1 (en)
AU (1) AU1055688A (en)
DE (1) DE3861284D1 (en)
WO (1) WO1988005124A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004061237A1 (en) * 2004-12-20 2006-07-06 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Dry running swash plate compressor with a coated swash plate
CH703399A1 (en) * 2010-07-02 2012-01-13 Suter Racing Technology Ag Swashplate motor.

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE267317C (en) *
DE658055C (en) * 1932-06-21 1938-03-21 Spontan Ab Internal combustion engine with coolant circuit
GB520416A (en) * 1937-10-22 1940-04-23 Briggs Mfg Co Improvements in and relating to internal combustion engines having means for resiliently mounting the cylinders thereof
US2417487A (en) * 1944-03-18 1947-03-18 Edwin S Hall Cam engine
FR1297682A (en) * 1961-08-18 1962-06-29 Clevite Corp Swash plate motor
US3528317A (en) * 1969-04-14 1970-09-15 Clessie L Cummins Internal combustion engine
GB1533885A (en) * 1975-02-21 1978-11-29 Lely Nv C Van Der Engines and pumps
DE2656223A1 (en) * 1976-12-11 1978-06-15 Elsbett L COMBUSTION ENGINE, IN PARTICULAR DIESEL ENGINE
DE2736023A1 (en) * 1977-08-10 1979-02-22 Klaue Hermann Axial piston engine swashplate - has axial-radial bearings for axial forces and spherical swashplate support absorbing lateral components

Also Published As

Publication number Publication date
AU1055688A (en) 1988-07-27
EP0330674A1 (en) 1989-09-06
WO1988005124A1 (en) 1988-07-14
DE3861284D1 (en) 1991-01-24

Similar Documents

Publication Publication Date Title
DE19727185C2 (en) Two-cylinder air compressor
WO2007079766A1 (en) Rotary piston engine
DE69104745T2 (en) Swash plate cooling compressor with a ball joint lubrication device.
EP0330674B1 (en) Internal-combustion engine
DE10051131A1 (en) Lubricant system for IC engines has excess pressure valve fitted into oil feed passage to components to be lubricated
DE3725342A1 (en) COOLING COMPRESSOR
EP0016381B1 (en) Air-cooled four-stroke internal-combustion engine with rotary slide valve
DE4042425C2 (en) Crank loop gearbox for a boxer engine with a flywheel and an additional energy swing accumulator
DE2803853A1 (en) PISTON MACHINE
DE2010747A1 (en)
DE3800006A1 (en) Cooling and lubrication circuit of an axial engine
WO2012000126A2 (en) Wobble plate engine
DE372808C (en) Internal combustion engine with fixed cylinders and rotating flywheels
DE868488C (en) Rotary piston compressor, in particular for compressed air systems in vehicles
DE4428338A1 (en) Piston cooling system for a rotary piston machine
DE648731C (en) Rotating compressor with auxiliary fluid
DE2412438A1 (en) ROTARY PRINTING DEVICE FOR FLUID
DE19727987C2 (en) Two-stroke swashplate internal combustion engine
DE1653636C3 (en) Radial piston pump
DE1451808C3 (en)
DE322405C (en) Device which simultaneously allows lubrication of the bearing at the head of the push rod and cooling by circulating water in the working piston in an internal combustion engine
DE4441817C2 (en) Radial piston pump
DE19710590A1 (en) Piston engine with at least two pistons operating on different time cycles
DE29711460U1 (en) Two-stroke swashplate internal combustion engine
DE914498C (en) Reciprocating compressors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890625

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

17Q First examination report despatched

Effective date: 19891016

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19901212

Ref country code: GB

Effective date: 19901212

Ref country code: FR

Effective date: 19901212

REF Corresponds to:

Ref document number: 3861284

Country of ref document: DE

Date of ref document: 19910124

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960927

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971001