EP0326857A1 - Thin film solar cell array - Google Patents
Thin film solar cell array Download PDFInfo
- Publication number
- EP0326857A1 EP0326857A1 EP89100808A EP89100808A EP0326857A1 EP 0326857 A1 EP0326857 A1 EP 0326857A1 EP 89100808 A EP89100808 A EP 89100808A EP 89100808 A EP89100808 A EP 89100808A EP 0326857 A1 EP0326857 A1 EP 0326857A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solar cell
- layer
- layers
- thin
- film solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 24
- 238000010276 construction Methods 0.000 claims abstract description 5
- 239000004020 conductor Substances 0.000 claims description 12
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 11
- 239000012212 insulator Substances 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 229910021424 microcrystalline silicon Inorganic materials 0.000 claims description 3
- 230000003760 hair shine Effects 0.000 claims 1
- 239000012780 transparent material Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/075—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
- H01L31/076—Multiple junction or tandem solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/0445—PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
- H01L31/046—PV modules composed of a plurality of thin film solar cells deposited on the same substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/0445—PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
- H01L31/046—PV modules composed of a plurality of thin film solar cells deposited on the same substrate
- H01L31/0465—PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Definitions
- the invention relates to a thin-film solar cell arrangement with at least a first solar cell and a second solar cell of the pin or nip type, which are arranged as a tandem cell to each other, each having a p-type p-layer, an intrinsic i-layer, an n-type n - Have layer and electrical contacts, suitable for modular construction with series connection.
- thin-film solar cells which contain a so-called pin junction.
- An undoped, i.e. H. Provide intrinsic, i-layer on one side with a p-doped p-layer and on the opposite side with an n-doped n-layer.
- the i-layer is e.g. B. built on the basis of amorphous silicon.
- An effective solar cell made of amorphous silicon must have a uniform and as large as possible electrical field in the entire absorption zone.
- a higher field strength is e.g. B. achieved by a thinner i-layer. However, this only absorbs part of the incident light.
- two solar cells are combined in a tandem cell that absorb the light in different wavelength ranges (see e.g. JJ Yang, Intern. Conf. On Stability of a-Si Alloy Mat. And Devices, 28.- Jan. 30, 87, Palo Alto. California, pp. 295-303).
- the different wavelength sensitivity is due to different additives to the amorphous silicon of the i-layer such.
- the total voltage of the tandem cell of the arrangement is the sum of the individual voltages.
- the electrical values are adjusted e.g. B. by adjusting the thicknesses of the two i-layers.
- Another possibility is to isolate the two solar cells completely, e.g. B. on different sides of a substrate or on two substrates. Each solar cell is then provided with two contacts that can be connected independently. The application of the solar cells on the different sides of the substrate is cumbersome and requires increased care. The interconnection of the solar cells is very labor intensive due to the many individual contacts.
- the invention has for its object a thin layer Specify solar cell arrangement that is stable with respect to aging, that is easy to design, that is suitable for modular construction and that is easy to manufacture on an industrial scale.
- the object is achieved in a thin-film solar cell arrangement of the type mentioned at the outset in that the solar cells are arranged in pairs in relation to one another in such a way that adjacent layers of the first solar cell and the second solar cells are of the same conductivity type and that the p-layers of the first solar cell and the second solar cell and the n layers of the first solar cell and the second solar cell are electrically connected to one another in the manner of a parallel connection.
- This arrangement has the advantage of increased stability with regard to aging behavior, since the layers can be thin ( ⁇ 0.2 ⁇ m).
- the electrical voltages on the two solar cells are the same.
- the connection of the two solar cells corresponds to a parallel connection.
- the currents in the cells can therefore be arbitrary without reducing the efficiency of the arrangement.
- the adaptation of two cells in such an arrangement is therefore very simple.
- intrinsic semiconductor material with different additives that absorb the light in different wavelength ranges is used for the intrinsic i-layers of the first solar cell and the second solar cell.
- i layers z. B. provided on the basis of hydrogenated amorphous silicon, for example carbon, germanium or fluorine are suitable as an additive.
- the adjacent layers of the first solar cell and the second solar cell may be design as a double layer. This is e.g. B. the case when the second solar cell to be manufactured in a different plant than the first. If different materials are used in the two solar cells, possible difficulties can be avoided by providing an insulation layer between the adjacent layers. The arrangement then has four connections.
- a very simple construction of the arrangement is achieved in that the adjacent layers of the first solar cell and the second solar cell, which according to the invention are of the same conductivity type, are formed as a single common layer.
- contact layers To contact the solar cell arrangement with i-layers based on amorphous silicon, contact layers must be provided on the surface of the layer sequence of the solar cells facing away from the common layer. At least one of these contact layers, through which the incidence of light occurs, consists of transparent, electrically conductive material. Contacting via contact layers leads to good current dissipation. The application of contact layers is technologically simpler in the manufacturing process than the mounting of individual electrodes.
- both contact layers consist of transparent, electrically conductive material, the incidence of light can be used from both sides of the solar cell arrangement.
- the light that was not absorbed in the thin-film solar cell arrangement and that is reflected on the surface behind the thin-film solar cell arrangement back into the thin-film solar cell arrangement can continue used to generate electricity (so-called bifacial cells, see BA Pantoja-Lopez, J. Garcia Martin, 7th EPSEC, Sevilla / Spain 1986, pp. 137-141)
- the layer structure has a layer sequence of a first p-type, a first intrinsic, a common n-type, a second intrinsic and a second p-type layer.
- a contact layer is adjacent to the first p-type layer and the second p-type layer.
- the individual tandem cells are separated from one another in the layer structure by trenches.
- the flanks of the trenches, which run perpendicular to the layer structure, are each covered with a structured insulator layer in such a way that the common n-conducting layer is exposed on one flank and that the two contact layers are exposed on the other, opposite flank.
- the trench is filled with an electrically conductive material.
- the structuring of the insulator layers electrically connects the common n-conducting layer of the one tandem cell to the contact layers and thus to the p-conducting layers of the subsequent tandem cell.
- the structuring of the insulator layers is such. B. achieved by etching steps in the flanks of the trench.
- the common n-type layer or the contact layer are located on the surface of the steps.
- the steps are created, for example, by selective etching.
- the first contact layer 2 and the second contact layer 8 consist of a transparent conductive material z. B. from doped SnO2.
- the first p-layer 3 and the second p-layer 7 consist of amorphous silicon and are p-conductive by doping with boron.
- the first i-layer 4 and the second i-layer 6 are intrinsic layers.
- the first i-layer 4 consists of amorphous silicon germanium.
- the second i-layer 6 consists of amorphous silicon.
- the common n-layer 5 consists, for. B. made of microcrystalline silicon and is n-conductive by doping with phosphorus.
- the layers have the following thicknesses: first p-layer 3: 15 to 20 nm, first i-layer 4: 100 to 250 nm, common n-layer 5: 20 to 40 nm, second i-layer 6: 300 to 700 nm, second p-layer 7: 15 to 20 nm.
- FIG. 2 schematically shows the potential curve in the tandem cell along a section that runs perpendicular to the layer sequence in FIG. 1.
- FIG. 2 also shows how the charge is transported through electrons and holes.
- the layer structure 12 contains the substrate 1, the first contact layer 2, the first p-layer 3, the first i-layer 4, the common n-layer 5, the second i-layer 6, the second p-layer 7 and the second Contact layer 8.
- a first tandem cell 13 and a second tandem cell 14 are separated by a trench 15.
- the trench 15 runs perpendicular to the layer sequence down to the substrate 1.
- a first flank 16 of the trench 15 has a first step 17.
- the first flank 16 delimits the first tandem cell 13.
- the first step 17 runs along the surface of the common n-layer 5.
- a second flank 18 of the trench 15, which lies opposite the first flank 16 and which delimits the second tandem cell 14, has a second one Level 19 on.
- the second step 19 runs on the surface of the first contact layer 2.
- the first flank 16 and the second flank 18 are each covered with a structured insulator layer 20.
- the insulator layers 20 are structured such that on the first flank 16 all layers are covered except for the common n-layer 5 and that on the second flank 18 all layers are covered except for the first contact layer 2 and the second contact layer 8.
- the trench 15 is filled with electrically conductive material 21.
- the electrically conductive material 21 connects the common n-layer 5 on the first flank 16 to the first contact layer 2 and the second contact layer 8 on the second flank 18.
- the common n-layer 5 is the first tandem cell 13 electrically connected to the first p-layer 3 and the second p-layer 7 of the second tandem cell 14.
- a multiple repetition of the connection between two tandem cells explained in FIG. 3 ensures in a module with many tandem cells that the tandem cells are connected in series and at the same time the solar cells contained in the tandem cells are connected in parallel.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
Die Erfindung betrifft eine Dünnschichtsolarzellenanordnung mit mindestens einer ersten Solarzelle und einer zweiten Solarzelle vom pin- oder nip-Typ, die als Tandemzelle zueinander angeordnet sind, die jeweils eine p-leitende p-Schicht, eine intrinsische i-Schicht, eine n-leitende n-Schicht und elektrische Kontaktierungen aufweisen, geeignet für Modulbauweise mit Serienverschaltung.The invention relates to a thin-film solar cell arrangement with at least a first solar cell and a second solar cell of the pin or nip type, which are arranged as a tandem cell to each other, each having a p-type p-layer, an intrinsic i-layer, an n-type n - Have layer and electrical contacts, suitable for modular construction with series connection.
Aus z. B. W. Heywang, "Amorphe und polykristalline Halbleiter", Springer Verlag, Berlin, Heidelberg, New York, Tokio 1984, Seite 58 bis 64 sind Dünnschichtsolarzellen bekannt, die einen sogenannten pin-Übergang enthalten. Dabei ist eine undotierte, d. h. intrinsische, i-Schicht auf der einen Seite mit einer p-dotierten p-Schicht und auf der gegenüberliegenden Seite mit einer n-dotierten n-Schicht versehen. Die i-Schicht ist z. B. auf der Basis von amorphem Silizium aufgebaut.From e.g. B. W. Heywang, "Amorphous and polycrystalline semiconductors", Springer Verlag, Berlin, Heidelberg, New York, Tokyo 1984, pages 58 to 64, thin-film solar cells are known which contain a so-called pin junction. An undoped, i.e. H. Provide intrinsic, i-layer on one side with a p-doped p-layer and on the opposite side with an n-doped n-layer. The i-layer is e.g. B. built on the basis of amorphous silicon.
Eine effektive Solarzelle aus amorphem Silizium muß in der gesamten Absorptionszone ein gleichmäßiges und möglichst großes elektrisches Feld besitzen. Je höher die elektrische Feldstärke in der i-Schicht vorgesehen ist, desto weniger altert die Solarzelle. Eine höhere Feldstärke wird z. B. durch eine dünnere i-Schicht erzielt. Dadurch wird aber nur noch ein Teil des einfallenden Lichts absorbiert.An effective solar cell made of amorphous silicon must have a uniform and as large as possible electrical field in the entire absorption zone. The higher the electric field strength in the i-layer, the less the solar cell ages. A higher field strength is e.g. B. achieved by a thinner i-layer. However, this only absorbs part of the incident light.
Es ist bekannt, mehrere serienverschaltete pin-Zellen übereinander zu stapeln (siehe z. B. W. Heywang, "Amorphe und polykristalline Halbleiter", Springer Verlag, Berlin, Heidelberg, New York, Tokio 1984, Seite 64). Dadurch vergrößert sich die Absorption des Lichts. Durch die Serienverschaltung vergrößert sich die Leerlaufspannung der Anordnung. Eine solche Anordnung, die aus zwei übereinander gestapelten Solarzellen besteht, wird allgemein Tandemzelle genannt und ist z. B. aus J. Yang, Intern. Conf. on Stability of a-Si Alloy Mat. and Devices, 28.-30. Jan. 87, Palo Alto. California, S. 295-303 bekannt.It is known to stack several series-connected pin cells one above the other (see, for example, BW Heywang, "Amorphous and polycrystalline semiconductors", Springer Verlag, Berlin, Heidelberg, New York, Tokyo 1984, page 64). This increases the absorption of light. The series connection increases the open circuit voltage of the arrangement. Such an arrangement, consisting of two one above the other there is stacked solar cells, is commonly called tandem cell and z. B. from J. Yang, Intern. Conf. on Stability of a-Si Alloy Mat. and Devices, 28-30. Jan. 87, Palo Alto. California, pp. 295-303.
Um das Spektrum des einfallenden Lichts besser auszunutzen, werden in einer Tandemzelle zwei Solarzellen kombiniert, die das Licht in unterschiedlichen Wellenlängenbereichen absorbieren (siehe z. B. J. Yang, Intern. Conf. on Stability of a-Si Alloy Mat. and Devices, 28.-30. Jan. 87, Palo Alto. California, S. 295-303). Die unterschiedliche Wellenlängenempfindlichkeit wird dabei durch unterschiedliche Zusätze zum amorphen Silizium der i-Schicht wie z. B. Kohlenstoff, Germanium oder Fluor erzielt.In order to better utilize the spectrum of the incident light, two solar cells are combined in a tandem cell that absorb the light in different wavelength ranges (see e.g. JJ Yang, Intern. Conf. On Stability of a-Si Alloy Mat. And Devices, 28.- Jan. 30, 87, Palo Alto. California, pp. 295-303). The different wavelength sensitivity is due to different additives to the amorphous silicon of the i-layer such. B. carbon, germanium or fluorine.
Dabei ergibt sich die Schwierigkeit, die elektrischen Werte der beiden übereinanderliegenden, in Serie geschalteten Zellen anzupassen. In der Serienschaltung ist die Gesamtspannung der Tandemzelle der Anordnung die Summe der Einzelspannungen. Bei der Tandemzelle muß der Strom in beiden einzelnen Solarzellen gleich sein, wenn Verluste vermieden werden sollen. Die Anpassung der elektrischen Werte erfolgt z. B. durch Anpassung der Dicken der beiden i-Schichten.The difficulty arises in adapting the electrical values of the two cells one above the other, connected in series. In the series connection, the total voltage of the tandem cell of the arrangement is the sum of the individual voltages. With the tandem cell, the current in both individual solar cells must be the same if losses are to be avoided. The electrical values are adjusted e.g. B. by adjusting the thicknesses of the two i-layers.
Eine andere Möglichkeit (s. z. B. C. Eberspacher et al., 18th IEEE, Las Vegas 1985, S. 1031-1035) besteht darin, die beiden Solarzellen völlig isoliert, z. B. auf verschiedenen Seiten eines Substrates oder auf zwei Substraten, zu erzeugen. Jede Solarzelle ist dann mit zwei Kontakten versehen, die unabhängig verschaltet werden können. Das Aufbringen der Solarzellen auf den verschiedenen Seiten des Substrats ist umständlich und erfordert erhöhte Sorgfalt. Die Verschaltung der Solarzellen ist durch die vielen einzelnen Kontakte sehr arbeitsintensiv.Another possibility (see, e.g., C. Eberspacher et al., 18th IEEE, Las Vegas 1985, pp. 1031-1035) is to isolate the two solar cells completely, e.g. B. on different sides of a substrate or on two substrates. Each solar cell is then provided with two contacts that can be connected independently. The application of the solar cells on the different sides of the substrate is cumbersome and requires increased care. The interconnection of the solar cells is very labor intensive due to the many individual contacts.
Der Erfindung liegt die Aufgabe zugrunde, eine Dünnschicht solarzellenanordnung anzugeben, die stabil im Bezug auf Alterung ist, die einfach zu konzipieren ist, die für Modulbauweise geeignet ist und die großtechnisch einfach herstellbar ist.The invention has for its object a thin layer Specify solar cell arrangement that is stable with respect to aging, that is easy to design, that is suitable for modular construction and that is easy to manufacture on an industrial scale.
Die Aufgabe wird in einer Dünnschichtsolarzellenanordnung der eingangs genannten Art dadurch gelöst, daß die Solarzellen paarweise so zueinander angeordnet sind, daß benachbarte Schichten der ersten Solarzelle und der zweiten Solarzellen vom selben Leitfähigkeitstyp sind und daß die p-Schichten der ersten Solarzelle und der zweiten Solarzelle sowie die n-Schichten der ersten Solarzelle und der zweiten Solarzelle in Art einer Parallelschaltung elektrisch miteinander verbunden sind.The object is achieved in a thin-film solar cell arrangement of the type mentioned at the outset in that the solar cells are arranged in pairs in relation to one another in such a way that adjacent layers of the first solar cell and the second solar cells are of the same conductivity type and that the p-layers of the first solar cell and the second solar cell and the n layers of the first solar cell and the second solar cell are electrically connected to one another in the manner of a parallel connection.
Diese Anordnung hat den Vorteil einer erhöhten Stabilität in Bezug auf das Alterungsverhalten, da die Schichten dünn sein können (≦ 0.2 µm). Die elektrischen Spannungen an den beiden Solarzellen sind gleich groß. Die Verschaltung der beiden Solarzellen entspricht einer Parallelschaltung. Die Ströme in den Zellen können daher beliebig sein, ohne den Wirkungsgrad der Anordnung zu verringern. Die Anpassung zweier Zellen in einer solchen Anordnung ist daher sehr einfach.This arrangement has the advantage of increased stability with regard to aging behavior, since the layers can be thin (≦ 0.2 µm). The electrical voltages on the two solar cells are the same. The connection of the two solar cells corresponds to a parallel connection. The currents in the cells can therefore be arbitrary without reducing the efficiency of the arrangement. The adaptation of two cells in such an arrangement is therefore very simple.
Um das Spektrum des einfallenden Lichts besser auszunutzen, wird für die intrinsischen i-Schichten der ersten Solarzelle und der zweiten Solarzelle intrinsisches Halbleitermaterial mit unterschiedlichen Zusätzen, die das Licht in unterschiedlichen Wellenlängenbereichen absorbieren, verwendet. Sind die i-Schichten z. B. auf der Basis von hydrogenisiertem amorphem Silizium vorgesehen, eignen sich beispielsweise Kohlenstoff, Germanium oder Fluor als Zusatz.In order to make better use of the spectrum of the incident light, intrinsic semiconductor material with different additives that absorb the light in different wavelength ranges is used for the intrinsic i-layers of the first solar cell and the second solar cell. Are the i layers z. B. provided on the basis of hydrogenated amorphous silicon, for example carbon, germanium or fluorine are suitable as an additive.
Es kann vorteilhaft sein, die benachbarten Schichten der ersten Solarzelle und der zweiten Solarzelle als Doppelschicht auszubilden. Dies ist z. B. der Fall, wenn die zweite Solarzelle in einer anderen Anlage hergestellt werden soll als die erste. Bei der Verwendung unterschiedlicher Materialien in den beiden Solarzellen können eventuelle Schwierigkeiten dadurch vermieden werden, daß zwischen den benachbarten Schichten eine Isolationsschicht vorgesehen wird. Die Anordnung hat dann vier Anschlüsse.It may be advantageous to design the adjacent layers of the first solar cell and the second solar cell as a double layer. This is e.g. B. the case when the second solar cell to be manufactured in a different plant than the first. If different materials are used in the two solar cells, possible difficulties can be avoided by providing an insulation layer between the adjacent layers. The arrangement then has four connections.
Ein sehr einfacher Aufbau der Anordnung wird dadurch erzielt, daß die benachbarten Schichten der ersten Solarzelle und der zweiten Solarzelle, die erfindungsgemäß vom selben Leitfähigkeitstyp sind, als eine einzige gemeinsame Schicht ausgebildet sind.A very simple construction of the arrangement is achieved in that the adjacent layers of the first solar cell and the second solar cell, which according to the invention are of the same conductivity type, are formed as a single common layer.
Die Stromableitung der gemeinsamen Schicht wird dadurch verbessert, daß auf der gemeinsamen Schicht ein Grid aus transparentem elektrisch leitfähigem Material, z. B. ITO (= Indium-Zinn-Oxid), vorgesehen ist.The current dissipation of the common layer is improved in that a grid made of transparent electrically conductive material, for. B. ITO (= indium tin oxide) is provided.
Zur Kontaktierung der Solarzellenanordnung mit i-Schichten auf der Basis von amorphem Silizium müssen Kontaktschichten jeweils auf der, der gemeinsamen Schicht abgewandten Oberfläche der Schichtenfolge der Solarzellen vorgesehen werden. Mindestens eine dieser Kontaktschichten, durch die der Lichteinfall erfolgt, besteht dabei aus transparentem elektrisch leitfähigem Material. Die Kontaktierung über Kontaktschichten führt zu einer guten Stromableitung. Das Aufbringen von Kontaktschichten ist im Herstellprozeß technologisch einfacher als das Montieren einzelner Elektroden.To contact the solar cell arrangement with i-layers based on amorphous silicon, contact layers must be provided on the surface of the layer sequence of the solar cells facing away from the common layer. At least one of these contact layers, through which the incidence of light occurs, consists of transparent, electrically conductive material. Contacting via contact layers leads to good current dissipation. The application of contact layers is technologically simpler in the manufacturing process than the mounting of individual electrodes.
Bestehen beide Kontaktschichten aus transparentem, elektrisch leitfähigem Material, kann der Lichteinfall von beiden Seiten der Solarzellenanordnung genutzt werden.If both contact layers consist of transparent, electrically conductive material, the incidence of light can be used from both sides of the solar cell arrangement.
Dadurch kann das Licht, das in der Dünnschichtsolarzellenanordnung nicht absorbiert wurde und das an der Fläche hinter der Dünnschichtsolarzellenanordnung zurück in die Dünnschichtsolarzellenanordnung reflektiert wird, weiter zur Stromerzeugung genutzt werden (sogenannte bifacial-cells, s. z. B. A. Pantoja-Lopez, J. Garcia Martin, 7. EPSEC, Sevilla/Spanien 1986, S. 137-141)As a result, the light that was not absorbed in the thin-film solar cell arrangement and that is reflected on the surface behind the thin-film solar cell arrangement back into the thin-film solar cell arrangement can continue used to generate electricity (so-called bifacial cells, see BA Pantoja-Lopez, J. Garcia Martin, 7th EPSEC, Sevilla / Spain 1986, pp. 137-141)
Technologisch einfach ist es, die Parallelverschaltung der beiden Solarzellen in jeder Tandemzelle zusammen mit der Serienverschaltung im Modulaufbau vorzusehen.It is technologically simple to provide the parallel connection of the two solar cells in each tandem cell together with the series connection in the module structure.
Technologisch günstig ist es, die Dünnschichtsolarzellenanordnung in einem Schichtaufbau vorzusehen. Der Schichtaufbau weist eine Schichtenfolge von einer ersten p-leitenden, einer ersten intrinsischen, einer gemeinsamen n-leitenden, einer zweiten intrinsischen und einer zweiten p-leitenden Schicht auf. Der ersten p-leitenden Schicht und der zweiten p-leitenden Schicht ist jeweils eine Kontaktschicht benachbart. Die einzelnen Tandemzellen werden im Schichtaufbau durch Gräben voneinander getrennt. Die Flanken der Gräben, die senkrecht zum Schichtaufbau verlaufen, sind so mit je einer strukturierten Isolatorschicht bedeckt, daß an der einen Flanke die gemeinsame n-leitende Schicht offenliegt und daß an der anderen, gegenüberliegenden Flanke die beiden Kontaktschichten offenliegen. Der Graben ist mit einem elektrisch leitfähigen Material aufgefüllt. Durch die Strukturierung der Isolatorschichten wird durch das leitfähige Material die gemeinsame n-leitende Schicht der einen Tandemzelle mit den Kontaktschichten und damit mit den p-leitenden Schichten der darauffolgenden Tandemzelle elektrisch verbunden.It is technologically favorable to provide the thin-film solar cell arrangement in a layer structure. The layer structure has a layer sequence of a first p-type, a first intrinsic, a common n-type, a second intrinsic and a second p-type layer. A contact layer is adjacent to the first p-type layer and the second p-type layer. The individual tandem cells are separated from one another in the layer structure by trenches. The flanks of the trenches, which run perpendicular to the layer structure, are each covered with a structured insulator layer in such a way that the common n-conducting layer is exposed on one flank and that the two contact layers are exposed on the other, opposite flank. The trench is filled with an electrically conductive material. The structuring of the insulator layers electrically connects the common n-conducting layer of the one tandem cell to the contact layers and thus to the p-conducting layers of the subsequent tandem cell.
Die Strukturierung der Isolatorschichten wird z. B. dadurch erreicht, daß in die Flanken des Grabens Stufen geätzt werden. An der Oberfläche der Stufen befinden sich die gemeinsame n-leitende Schicht bzw. die Kontaktschicht. Die Stufen werden beispielsweise durch selektives Ätzen erzeugt. Dazu ist es vorteilhaft, die n-leitenden oder p-leitenden Schichten aus mikrokristallinem Silizium vorzusehen.The structuring of the insulator layers is such. B. achieved by etching steps in the flanks of the trench. The common n-type layer or the contact layer are located on the surface of the steps. The steps are created, for example, by selective etching. For this purpose, it is advantageous to provide the n-type or p-type layers made of microcrystalline silicon.
Die erfindungswesentlichen Merkmale können selbstverständlich auch in einem Schichtaufbau mit einer Schichtfolge mit einer n-leitenden, einer intrinsischen, einer gemeinsamen p-leitenden, einer intrinsischen und einer n-leitenden Schicht realisiert sein.The features essential to the invention can of course also be implemented in a layer structure with a layer sequence with an n-conducting, an intrinsic, a common p-conducting, an intrinsic and an n-conducting layer.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels und den FIG näher erläutert.
- In FIG 1 ist eine Tandemzelle dargestellt.
- FIG 2 zeigt schematisch den Potentialverlauf in einer Tandemzelle.
- FIG 3 zeigt zwei in Serie verschaltete Solarzellen.
- 1 shows a tandem cell.
- 2 shows schematically the potential curve in a tandem cell.
- 3 shows two solar cells connected in series.
Für gleiche Teile gelten in den Figuren gleiche Bezugszeichnen.The same reference numerals apply to the same parts in the figures.
In FIG 1 ist eine Tandemzelle dargestellt. Auf einem Substrat 1 aus z. B. Glas ist eine erste Kontaktschicht 2, eine erste p-Schicht 3, eine erste i-Schicht 4, eine gemeinsame n-Schicht 5, eine zweite i-Schicht 6, eine zweite p-Schicht 7 und eine zweite Kontaktschicht 8 vorgesehen. Die erste Kontaktschicht 2 und die zweite Kontaktschicht 8 bestehen aus einem transparentem leitfähigem Material z. B. aus dotiertem SnO₂. Die erste p-Schicht 3 und die zweite p-Schicht 7 bestehen aus amorphem Silizium und sind durch Dotierung mit Bor p-leitend. Die erste i-Schicht 4 und die zweite i-Schicht 6 sind intrinsische Schichten. Die erste i-Schicht 4 besteht aus amorphem Silizium-Germanium. Die zweite i-Schicht 6 besteht aus amorphem Silizium. Die gemeinsame n-Schicht 5 besteht z. B. aus mikrokristallinem Silizium und ist durch Dotierung mit Phosphor n-leitend. Die Schichten haben folgende Dicken: erste p-Schicht 3: 15 bis 20 nm, erste i-Schicht 4: 100 bis 250 nm, gemeinsame n-Schicht 5: 20 bis 40 nm, zweite i-Schicht 6: 300 bis 700 nm, zweite p-Schicht 7: 15 bis 20 nm.1 shows a tandem cell. On a substrate 1 from z. B. Glass is provided with a
Im Betrieb der Tandemzelle in FIG 1 wird von der Seite der zweiten Kontaktschicht 8 her Licht, angedeutet als Pfeile 9, in die Tandemzelle eingestrahlt. Das Licht wird zum Teil in der ersten i-Schicht 4, zum Teil in der zweiten i-Schicht 6 absorbiert. Dabei werden Ladungsträger 10 erzeugt. Durch das elektrische Feld werden die Ladungsträger entsprechend ihrer Polarität zur gemeinsamen n-Schicht 5 bzw. zur ersten p-Schicht 3 oder zweiten p-Schicht 7 gezogen. Die gemeinsame n-Schicht 5 ist über einen Verbraucher 11 mit der ersten p-Schicht 3 und mit der zweiten p-Schicht 7 elektrisch verbunden.During operation of the tandem cell in FIG. 1, light, indicated as
In FIG 2 ist schematisch der Potentialverlauf in der Tandemzelle dargestellt entlang einem Schnitt, der senkrecht zur Schichtenfolge in FIG 1 verläuft. Die FIG 2 zeigt weiterhin, wie der Ladungstransport durch Elektronen und Löcher erfolgt.FIG. 2 schematically shows the potential curve in the tandem cell along a section that runs perpendicular to the layer sequence in FIG. 1. FIG. 2 also shows how the charge is transported through electrons and holes.
In FIG 3 sind zwei in Serie geschaltete Tandemzellen dargestellt, die in einem Schichtaufbau 12 enthalten sind. Der Schichtaufbau 12 enthält das Substrat 1, die erste Kontaktschicht 2, die erste p-Schicht 3, die erste i-Schicht 4, die gemeinsame n-Schicht 5, die zweite i-Schicht 6, die zweite p-Schicht 7 und die zweite Kontaktschicht 8. In dem Schichtaufbau 12 sind eine erste Tandemzelle 13 und eine zweite Tandemzelle 14 durch einen Graben 15 getrennt. Der Graben 15 verläuft senkrecht zur Schichtenfolge bis auf das Substrat 1. Eine erste Flanke 16 des Grabens 15 weist eine erste Stufe 17 auf. Die erste Flanke 16 begrenzt die erste Tandemzelle 13. Die erste Stufe 17 verläuft entlang der Oberfläche der gemeinsamen n-Schicht 5. Eine zweite Flanke 18 des Grabens 15, die der ersten Flanke 16 gegenüberliegt und die die zweite Tandemzelle 14 begrenzt, weist eine zweite Stufe 19 auf. Die zweite Stufe 19 verläuft an der Oberfläche der ersten Kontaktschicht 2. Die erste Flanke 16 und die zweite Flanke 18 sind mit je einer strukturierten Isolatorschicht 20 bedeckt. Die Isolatorschichten 20 sind so strukturiert, daß an der ersten Flanke 16 alle Schichten bedeckt sind bis auf die gemeinsame n-Schicht 5 und daß an der zweiten Flanke 18 alle Schichten bedeckt sind bis auf die erste Kontaktschicht 2 und die zweite Kontaktschicht 8. Der Graben 15 ist mit elektrisch leitfähigem Material 21 aufgefüllt. Durch die Strukturierung der Isolatorschichten 20 verbindet das elektrisch leitfähige Material 21 die gemeinsame n-Schicht 5 an der ersten Flanke 16 mit der ersten Kontaktschicht 2 und der zweiten Kontaktschicht 8 an der zweiten Flanke 18. Dadurch ist die gemeinsame n-Schicht 5 der ersten Tandemzelle 13 elektrisch mit der ersten p-Schicht 3 und der zweiten p-Schicht 7 der zweiten Tandemzelle 14 verbunden.3 shows two tandem cells connected in series, which are contained in a
Durch eine vielfache Wiederholung der anhand FIG 3 erläuterten Verbindung zwischen zwei Tandemzellen ist in einem Modul mit vielen Tandemzellen gewährleistet, daß die Tandemzellen seriell verschaltet sind und gleichzeitig die in den Tandemzellen enthaltenen Solarzellen parallel verschaltet sind.A multiple repetition of the connection between two tandem cells explained in FIG. 3 ensures in a module with many tandem cells that the tandem cells are connected in series and at the same time the solar cells contained in the tandem cells are connected in parallel.
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3803519 | 1988-02-05 | ||
DE3803519 | 1988-02-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0326857A1 true EP0326857A1 (en) | 1989-08-09 |
EP0326857B1 EP0326857B1 (en) | 1991-12-18 |
Family
ID=6346733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89100808A Expired - Lifetime EP0326857B1 (en) | 1988-02-05 | 1989-01-18 | Thin film solar cell array |
Country Status (4)
Country | Link |
---|---|
US (1) | US4948436A (en) |
EP (1) | EP0326857B1 (en) |
JP (1) | JPH025576A (en) |
DE (1) | DE58900568D1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993015527A1 (en) * | 1992-02-04 | 1993-08-05 | Siemens Aktiengesellschaft | Integrated-circuit stacked-cell solar module |
DE102006062018A1 (en) * | 2006-12-29 | 2008-07-03 | Näbauer, Anton, Dr. | Thin section solar module has different cell types which deliver different electric voltage and current at even homogenous radiation of module, and at operation near maximum power point |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU663350B2 (en) * | 1991-12-09 | 1995-10-05 | Csg Solar Ag | Buried contact, interconnected thin film and bulk photovoltaic cells |
US5599743A (en) * | 1994-04-07 | 1997-02-04 | Matsushita Electronics Corporation | Method of manufacturing a semiconductor device |
JP3437386B2 (en) | 1996-09-05 | 2003-08-18 | キヤノン株式会社 | Photovoltaic element and manufacturing method thereof |
US6166318A (en) | 1998-03-03 | 2000-12-26 | Interface Studies, Inc. | Single absorber layer radiated energy conversion device |
JP4984197B2 (en) * | 1999-02-18 | 2012-07-25 | 大日本印刷株式会社 | Transparent film type solar cell module |
JP2003273383A (en) * | 2002-03-15 | 2003-09-26 | Sharp Corp | Solar cell element and manufacturing method therefor |
JP2006013403A (en) * | 2004-06-29 | 2006-01-12 | Sanyo Electric Co Ltd | Solar cell, solar cell module, its manufacturing method, and its reparing method |
US7781673B2 (en) * | 2005-07-14 | 2010-08-24 | Konarka Technologies, Inc. | Polymers with low band gaps and high charge mobility |
US20070267055A1 (en) * | 2005-07-14 | 2007-11-22 | Konarka Technologies, Inc. | Tandem Photovoltaic Cells |
US7772485B2 (en) * | 2005-07-14 | 2010-08-10 | Konarka Technologies, Inc. | Polymers with low band gaps and high charge mobility |
US20070181179A1 (en) * | 2005-12-21 | 2007-08-09 | Konarka Technologies, Inc. | Tandem photovoltaic cells |
US20080006324A1 (en) * | 2005-07-14 | 2008-01-10 | Konarka Technologies, Inc. | Tandem Photovoltaic Cells |
US8158881B2 (en) * | 2005-07-14 | 2012-04-17 | Konarka Technologies, Inc. | Tandem photovoltaic cells |
KR20070101917A (en) * | 2006-04-12 | 2007-10-18 | 엘지전자 주식회사 | Thin-film solar cell and fabrication method thereof |
WO2008063704A2 (en) * | 2006-05-03 | 2008-05-29 | Rochester Institute Of Technology | Nanostructured quantum dots or dashes in photovoltaic devices and methods thereof |
US8008421B2 (en) | 2006-10-11 | 2011-08-30 | Konarka Technologies, Inc. | Photovoltaic cell with silole-containing polymer |
US8008424B2 (en) | 2006-10-11 | 2011-08-30 | Konarka Technologies, Inc. | Photovoltaic cell with thiazole-containing polymer |
US8203071B2 (en) | 2007-01-18 | 2012-06-19 | Applied Materials, Inc. | Multi-junction solar cells and methods and apparatuses for forming the same |
KR100833675B1 (en) * | 2007-01-30 | 2008-05-29 | (주)실리콘화일 | Semitransparent crystalline thin film solar cell |
JP2011503848A (en) * | 2007-11-02 | 2011-01-27 | アプライド マテリアルズ インコーポレイテッド | Plasma treatment during the deposition process |
US20090130827A1 (en) * | 2007-11-02 | 2009-05-21 | Soo Young Choi | Intrinsic amorphous silicon layer |
EP2258007A2 (en) * | 2008-02-21 | 2010-12-08 | Konarka Technologies, Inc. | Tandem photovoltaic cells |
US20090266413A1 (en) * | 2008-04-25 | 2009-10-29 | Sagi Mathai | Photovoltaic Cells With Gratings For Scattering Light Into Light-absorption Layers |
US8455606B2 (en) * | 2008-08-07 | 2013-06-04 | Merck Patent Gmbh | Photoactive polymers |
KR20100021045A (en) * | 2008-08-14 | 2010-02-24 | 주성엔지니어링(주) | Thin film type solar cell and method for manufacturing the same |
EP2180526A2 (en) * | 2008-10-23 | 2010-04-28 | Samsung Electronics Co., Ltd. | Photovoltaic device and method for manufacturing the same |
TW201025622A (en) * | 2008-12-17 | 2010-07-01 | Ind Tech Res Inst | Electrode for solar cell and fabricating method thereof |
EP2405485B1 (en) * | 2009-03-02 | 2020-06-10 | Kaneka Corporation | Thin film solar cell module |
US20110088760A1 (en) * | 2009-10-20 | 2011-04-21 | Applied Materials, Inc. | Methods of forming an amorphous silicon layer for thin film solar cell application |
EP2375455B1 (en) * | 2010-04-09 | 2019-01-09 | Saint-Augustin Canada Electric Inc. | Voltage matched multijunction solar cell |
ES2604340T3 (en) * | 2011-05-20 | 2017-03-06 | Panasonic Intellectual Property Management Co., Ltd. | Multi-junction composite solar cell, multi-junction composite solar battery, and method of manufacturing them |
NL2014040B1 (en) * | 2014-12-23 | 2016-10-12 | Stichting Energieonderzoek Centrum Nederland | Method of making a curent collecting grid for solar cells. |
JP6665464B2 (en) * | 2015-09-25 | 2020-03-13 | Tdk株式会社 | Thin film thermoelectric element |
ES2645479B1 (en) | 2016-06-03 | 2018-11-05 | Universidad Del País Vasco / Euskal Herriko Unibertsitatea | Photovoltaic cell, photovoltaic panel and method of manufacturing photovoltaic cells |
FR3060854B1 (en) * | 2016-12-16 | 2021-05-14 | Armor | METHOD OF MANUFACTURING A PHOTOVOLTAIC MODULE AND A PHOTOVOLTAIC MODULE THUS OBTAINED |
FR3082356B1 (en) * | 2018-06-11 | 2020-06-19 | Armor | PROCESS FOR MANUFACTURING A PHOTOVOLTAIC MODULE AND PHOTOVOLTAIC MODULE THUS OBTAINED |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4316049A (en) * | 1979-08-28 | 1982-02-16 | Rca Corporation | High voltage series connected tandem junction solar battery |
US4387265A (en) * | 1981-07-17 | 1983-06-07 | University Of Delaware | Tandem junction amorphous semiconductor photovoltaic cell |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3175929A (en) * | 1960-05-24 | 1965-03-30 | Bell Telephone Labor Inc | Solar energy converting apparatus |
JPS56148874A (en) * | 1980-04-18 | 1981-11-18 | Mitsubishi Electric Corp | Semiconductor photoelectric converter |
JPS57187975A (en) * | 1981-05-15 | 1982-11-18 | Agency Of Ind Science & Technol | Photoelectric converter |
US4591892A (en) * | 1982-08-24 | 1986-05-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor photoelectric conversion device |
JPS59105379A (en) * | 1982-12-08 | 1984-06-18 | Hitachi Ltd | Amorphous silicon solar battery |
JPS61104678A (en) * | 1984-10-29 | 1986-05-22 | Mitsubishi Electric Corp | Amorphous solar cell |
JPS62221167A (en) * | 1986-03-24 | 1987-09-29 | Seiji Wakamatsu | Multilayer thin film solar battery |
JPS63122283A (en) * | 1986-11-12 | 1988-05-26 | Nippon Denso Co Ltd | Amorphous solar cell |
-
1988
- 1988-12-23 US US07/288,857 patent/US4948436A/en not_active Expired - Fee Related
-
1989
- 1989-01-18 DE DE8989100808T patent/DE58900568D1/en not_active Expired - Fee Related
- 1989-01-18 EP EP89100808A patent/EP0326857B1/en not_active Expired - Lifetime
- 1989-02-01 JP JP1023633A patent/JPH025576A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4316049A (en) * | 1979-08-28 | 1982-02-16 | Rca Corporation | High voltage series connected tandem junction solar battery |
US4387265A (en) * | 1981-07-17 | 1983-06-07 | University Of Delaware | Tandem junction amorphous semiconductor photovoltaic cell |
Non-Patent Citations (5)
Title |
---|
7TH E.C. PHOTOVOLTAIC SOLAR ENERGY CONFERENCE, 27.-31. Oktober 1986, Sevilla, Seiten 395-401, D. Reidel Publishing Co.; Y. UCHIDA: "Light-induced degradation in amorphous silicon solar cells" * |
EXTENDED ABSTRACTS, Band 86-1, Nr. 1, Mai 1986, Seiten 457-458, Zusammenfassung Nr. 313, Princeton, New Jersey, US; A. LUQUE: "The concept and the applications of bifacial cells" * |
PATENT ABSTRACTS OF JAPAN, Band 7, Nr. 49 (E-161)[1194], 25. Februar 1983; & JP-A-57 199 272 (MITSUBISHI DENKI K.K.) 07-12-1982 * |
PATENT ABSTRACTS OF JAPAN, Band 8, Nr. 221 (E-271)[1658], 9. Oktober 1984; & JP-A-59 105 379 (HITACHI SEISAKUSHO K.K.) 18-06-1984 * |
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 280 (E-356)[2003], 8. November 1985; & JP-A-60 123 074 (FUJI DENKI SOUGOU KENKYUSHO K.K.) 01-07-1985 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993015527A1 (en) * | 1992-02-04 | 1993-08-05 | Siemens Aktiengesellschaft | Integrated-circuit stacked-cell solar module |
US5527716A (en) * | 1992-02-04 | 1996-06-18 | Siemens Aktiengesellschaft | Method of making integrated-circuit stacked-cell solar module |
DE102006062018A1 (en) * | 2006-12-29 | 2008-07-03 | Näbauer, Anton, Dr. | Thin section solar module has different cell types which deliver different electric voltage and current at even homogenous radiation of module, and at operation near maximum power point |
Also Published As
Publication number | Publication date |
---|---|
US4948436A (en) | 1990-08-14 |
DE58900568D1 (en) | 1992-01-30 |
EP0326857B1 (en) | 1991-12-18 |
JPH025576A (en) | 1990-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0326857B1 (en) | Thin film solar cell array | |
DE3650012T2 (en) | Semiconductor device. | |
DE69217287T2 (en) | Multi-junction photovoltaic device and manufacturing method | |
DE69528323T2 (en) | Solar cell with integrated bypass function | |
DE3854773T2 (en) | Thin-film solar cell with spatially modulated intrinsic layer | |
DE3244626C2 (en) | ||
DE4136827C2 (en) | Solar cell with a bypass diode | |
DE2632987C2 (en) | Photovoltaic semiconductor device and method for its manufacture | |
WO1993015527A1 (en) | Integrated-circuit stacked-cell solar module | |
DE10297371T5 (en) | Device and method for an integral bypass diode in a solar cell | |
EP1056137A1 (en) | Solar cell with a protection diode and its manufacturing method | |
WO2010029180A1 (en) | Rear contact solar cell with an integrated bypass diode, and method for producing same | |
DE3111828A1 (en) | DEVICE FOR IMPLEMENTING ELECTROMAGNETIC RADIATION IN ELECTRICAL ENERGY | |
DE2607005C2 (en) | Integrated tandem solar cell | |
EP1121718A1 (en) | Solar cell comprising a bypass diode | |
DE3615515A1 (en) | SEMICONDUCTOR DEVICE FOR CONVERTING LIGHT INTO ELECTRICAL ENERGY | |
WO2006053518A1 (en) | Arrangement comprising a solar cell and an integrated bypass diode | |
DE3614546A1 (en) | AMORPHE SOLAR CELL | |
DE2854945A1 (en) | LIQUID CRYSTAL LIGHT VALVE | |
DE112013003292B4 (en) | Process for producing high-performance solar cells manufactured by cost-effective PECVD | |
DE3305030C2 (en) | ||
DE202023101309U1 (en) | Solar cell and photovoltaic module | |
DE3408317C2 (en) | Amorphous silicon solar cell | |
DE212013000122U1 (en) | Hybrid solar cell | |
CH685272A5 (en) | Solar panels plant. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19890925 |
|
17Q | First examination report despatched |
Effective date: 19900928 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 58900568 Country of ref document: DE Date of ref document: 19920130 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19920325 Year of fee payment: 4 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19921222 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19930121 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19931001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19940118 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19940118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19940930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050118 |