EP0326857A1 - Thin film solar cell array - Google Patents

Thin film solar cell array Download PDF

Info

Publication number
EP0326857A1
EP0326857A1 EP89100808A EP89100808A EP0326857A1 EP 0326857 A1 EP0326857 A1 EP 0326857A1 EP 89100808 A EP89100808 A EP 89100808A EP 89100808 A EP89100808 A EP 89100808A EP 0326857 A1 EP0326857 A1 EP 0326857A1
Authority
EP
European Patent Office
Prior art keywords
solar cell
layer
layers
thin
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89100808A
Other languages
German (de)
French (fr)
Other versions
EP0326857B1 (en
Inventor
Wilfried Dipl.-Phys. Jürgens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0326857A1 publication Critical patent/EP0326857A1/en
Application granted granted Critical
Publication of EP0326857B1 publication Critical patent/EP0326857B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the invention relates to a thin-film solar cell arrangement with at least a first solar cell and a second solar cell of the pin or nip type, which are arranged as a tandem cell to each other, each having a p-type p-layer, an intrinsic i-layer, an n-type n - Have layer and electrical contacts, suitable for modular construction with series connection.
  • thin-film solar cells which contain a so-called pin junction.
  • An undoped, i.e. H. Provide intrinsic, i-layer on one side with a p-doped p-layer and on the opposite side with an n-doped n-layer.
  • the i-layer is e.g. B. built on the basis of amorphous silicon.
  • An effective solar cell made of amorphous silicon must have a uniform and as large as possible electrical field in the entire absorption zone.
  • a higher field strength is e.g. B. achieved by a thinner i-layer. However, this only absorbs part of the incident light.
  • two solar cells are combined in a tandem cell that absorb the light in different wavelength ranges (see e.g. JJ Yang, Intern. Conf. On Stability of a-Si Alloy Mat. And Devices, 28.- Jan. 30, 87, Palo Alto. California, pp. 295-303).
  • the different wavelength sensitivity is due to different additives to the amorphous silicon of the i-layer such.
  • the total voltage of the tandem cell of the arrangement is the sum of the individual voltages.
  • the electrical values are adjusted e.g. B. by adjusting the thicknesses of the two i-layers.
  • Another possibility is to isolate the two solar cells completely, e.g. B. on different sides of a substrate or on two substrates. Each solar cell is then provided with two contacts that can be connected independently. The application of the solar cells on the different sides of the substrate is cumbersome and requires increased care. The interconnection of the solar cells is very labor intensive due to the many individual contacts.
  • the invention has for its object a thin layer Specify solar cell arrangement that is stable with respect to aging, that is easy to design, that is suitable for modular construction and that is easy to manufacture on an industrial scale.
  • the object is achieved in a thin-film solar cell arrangement of the type mentioned at the outset in that the solar cells are arranged in pairs in relation to one another in such a way that adjacent layers of the first solar cell and the second solar cells are of the same conductivity type and that the p-layers of the first solar cell and the second solar cell and the n layers of the first solar cell and the second solar cell are electrically connected to one another in the manner of a parallel connection.
  • This arrangement has the advantage of increased stability with regard to aging behavior, since the layers can be thin ( ⁇ 0.2 ⁇ m).
  • the electrical voltages on the two solar cells are the same.
  • the connection of the two solar cells corresponds to a parallel connection.
  • the currents in the cells can therefore be arbitrary without reducing the efficiency of the arrangement.
  • the adaptation of two cells in such an arrangement is therefore very simple.
  • intrinsic semiconductor material with different additives that absorb the light in different wavelength ranges is used for the intrinsic i-layers of the first solar cell and the second solar cell.
  • i layers z. B. provided on the basis of hydrogenated amorphous silicon, for example carbon, germanium or fluorine are suitable as an additive.
  • the adjacent layers of the first solar cell and the second solar cell may be design as a double layer. This is e.g. B. the case when the second solar cell to be manufactured in a different plant than the first. If different materials are used in the two solar cells, possible difficulties can be avoided by providing an insulation layer between the adjacent layers. The arrangement then has four connections.
  • a very simple construction of the arrangement is achieved in that the adjacent layers of the first solar cell and the second solar cell, which according to the invention are of the same conductivity type, are formed as a single common layer.
  • contact layers To contact the solar cell arrangement with i-layers based on amorphous silicon, contact layers must be provided on the surface of the layer sequence of the solar cells facing away from the common layer. At least one of these contact layers, through which the incidence of light occurs, consists of transparent, electrically conductive material. Contacting via contact layers leads to good current dissipation. The application of contact layers is technologically simpler in the manufacturing process than the mounting of individual electrodes.
  • both contact layers consist of transparent, electrically conductive material, the incidence of light can be used from both sides of the solar cell arrangement.
  • the light that was not absorbed in the thin-film solar cell arrangement and that is reflected on the surface behind the thin-film solar cell arrangement back into the thin-film solar cell arrangement can continue used to generate electricity (so-called bifacial cells, see BA Pantoja-Lopez, J. Garcia Martin, 7th EPSEC, Sevilla / Spain 1986, pp. 137-141)
  • the layer structure has a layer sequence of a first p-type, a first intrinsic, a common n-type, a second intrinsic and a second p-type layer.
  • a contact layer is adjacent to the first p-type layer and the second p-type layer.
  • the individual tandem cells are separated from one another in the layer structure by trenches.
  • the flanks of the trenches, which run perpendicular to the layer structure, are each covered with a structured insulator layer in such a way that the common n-conducting layer is exposed on one flank and that the two contact layers are exposed on the other, opposite flank.
  • the trench is filled with an electrically conductive material.
  • the structuring of the insulator layers electrically connects the common n-conducting layer of the one tandem cell to the contact layers and thus to the p-conducting layers of the subsequent tandem cell.
  • the structuring of the insulator layers is such. B. achieved by etching steps in the flanks of the trench.
  • the common n-type layer or the contact layer are located on the surface of the steps.
  • the steps are created, for example, by selective etching.
  • the first contact layer 2 and the second contact layer 8 consist of a transparent conductive material z. B. from doped SnO2.
  • the first p-layer 3 and the second p-layer 7 consist of amorphous silicon and are p-conductive by doping with boron.
  • the first i-layer 4 and the second i-layer 6 are intrinsic layers.
  • the first i-layer 4 consists of amorphous silicon germanium.
  • the second i-layer 6 consists of amorphous silicon.
  • the common n-layer 5 consists, for. B. made of microcrystalline silicon and is n-conductive by doping with phosphorus.
  • the layers have the following thicknesses: first p-layer 3: 15 to 20 nm, first i-layer 4: 100 to 250 nm, common n-layer 5: 20 to 40 nm, second i-layer 6: 300 to 700 nm, second p-layer 7: 15 to 20 nm.
  • FIG. 2 schematically shows the potential curve in the tandem cell along a section that runs perpendicular to the layer sequence in FIG. 1.
  • FIG. 2 also shows how the charge is transported through electrons and holes.
  • the layer structure 12 contains the substrate 1, the first contact layer 2, the first p-layer 3, the first i-layer 4, the common n-layer 5, the second i-layer 6, the second p-layer 7 and the second Contact layer 8.
  • a first tandem cell 13 and a second tandem cell 14 are separated by a trench 15.
  • the trench 15 runs perpendicular to the layer sequence down to the substrate 1.
  • a first flank 16 of the trench 15 has a first step 17.
  • the first flank 16 delimits the first tandem cell 13.
  • the first step 17 runs along the surface of the common n-layer 5.
  • a second flank 18 of the trench 15, which lies opposite the first flank 16 and which delimits the second tandem cell 14, has a second one Level 19 on.
  • the second step 19 runs on the surface of the first contact layer 2.
  • the first flank 16 and the second flank 18 are each covered with a structured insulator layer 20.
  • the insulator layers 20 are structured such that on the first flank 16 all layers are covered except for the common n-layer 5 and that on the second flank 18 all layers are covered except for the first contact layer 2 and the second contact layer 8.
  • the trench 15 is filled with electrically conductive material 21.
  • the electrically conductive material 21 connects the common n-layer 5 on the first flank 16 to the first contact layer 2 and the second contact layer 8 on the second flank 18.
  • the common n-layer 5 is the first tandem cell 13 electrically connected to the first p-layer 3 and the second p-layer 7 of the second tandem cell 14.
  • a multiple repetition of the connection between two tandem cells explained in FIG. 3 ensures in a module with many tandem cells that the tandem cells are connected in series and at the same time the solar cells contained in the tandem cells are connected in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The thin film solar cell array comprises at least two p-i-n-(n-i-p) solar cells which are arranged as a tandem cell (13, 14) in such a way that adjacent layers (5) of the two solar cells are of the same conductivity type. The two solar cells are interconnected in the manner of a parallel circuit. The thin film solar cell array is suitable for modular construction with series connection, the two solar cells in each of the tandem cells (13, 14) being jointly connected to the series circuit (21). …<IMAGE>…

Description

Die Erfindung betrifft eine Dünnschichtsolarzellenanordnung mit mindestens einer ersten Solarzelle und einer zweiten Solarzelle vom pin- oder nip-Typ, die als Tandemzelle zu­einander angeordnet sind, die jeweils eine p-leitende p-Schicht, eine intrinsische i-Schicht, eine n-leitende n-Schicht und elektrische Kontaktierungen aufweisen, geeig­net für Modulbauweise mit Serienverschaltung.The invention relates to a thin-film solar cell arrangement with at least a first solar cell and a second solar cell of the pin or nip type, which are arranged as a tandem cell to each other, each having a p-type p-layer, an intrinsic i-layer, an n-type n - Have layer and electrical contacts, suitable for modular construction with series connection.

Aus z. B. W. Heywang, "Amorphe und polykristalline Halb­leiter", Springer Verlag, Berlin, Heidelberg, New York, Tokio 1984, Seite 58 bis 64 sind Dünnschichtsolarzellen bekannt, die einen sogenannten pin-Übergang enthalten. Dabei ist eine undotierte, d. h. intrinsische, i-Schicht auf der einen Seite mit einer p-dotierten p-Schicht und auf der gegenüberliegenden Seite mit einer n-dotierten n-Schicht versehen. Die i-Schicht ist z. B. auf der Basis von amorphem Silizium aufgebaut.From e.g. B. W. Heywang, "Amorphous and polycrystalline semiconductors", Springer Verlag, Berlin, Heidelberg, New York, Tokyo 1984, pages 58 to 64, thin-film solar cells are known which contain a so-called pin junction. An undoped, i.e. H. Provide intrinsic, i-layer on one side with a p-doped p-layer and on the opposite side with an n-doped n-layer. The i-layer is e.g. B. built on the basis of amorphous silicon.

Eine effektive Solarzelle aus amorphem Silizium muß in der gesamten Absorptionszone ein gleichmäßiges und möglichst großes elektrisches Feld besitzen. Je höher die elektrische Feldstärke in der i-Schicht vorgesehen ist, desto weniger altert die Solarzelle. Eine höhere Feldstärke wird z. B. durch eine dünnere i-Schicht erzielt. Dadurch wird aber nur noch ein Teil des einfallenden Lichts absorbiert.An effective solar cell made of amorphous silicon must have a uniform and as large as possible electrical field in the entire absorption zone. The higher the electric field strength in the i-layer, the less the solar cell ages. A higher field strength is e.g. B. achieved by a thinner i-layer. However, this only absorbs part of the incident light.

Es ist bekannt, mehrere serienverschaltete pin-Zellen über­einander zu stapeln (siehe z. B. W. Heywang, "Amorphe und polykristalline Halbleiter", Springer Verlag, Berlin, Heidelberg, New York, Tokio 1984, Seite 64). Dadurch ver­größert sich die Absorption des Lichts. Durch die Serien­verschaltung vergrößert sich die Leerlaufspannung der Anordnung. Eine solche Anordnung, die aus zwei übereinander gestapelten Solarzellen besteht, wird allgemein Tandemzelle genannt und ist z. B. aus J. Yang, Intern. Conf. on Stability of a-Si Alloy Mat. and Devices, 28.-30. Jan. 87, Palo Alto. California, S. 295-303 bekannt.It is known to stack several series-connected pin cells one above the other (see, for example, BW Heywang, "Amorphous and polycrystalline semiconductors", Springer Verlag, Berlin, Heidelberg, New York, Tokyo 1984, page 64). This increases the absorption of light. The series connection increases the open circuit voltage of the arrangement. Such an arrangement, consisting of two one above the other there is stacked solar cells, is commonly called tandem cell and z. B. from J. Yang, Intern. Conf. on Stability of a-Si Alloy Mat. and Devices, 28-30. Jan. 87, Palo Alto. California, pp. 295-303.

Um das Spektrum des einfallenden Lichts besser auszunutzen, werden in einer Tandemzelle zwei Solarzellen kombiniert, die das Licht in unterschiedlichen Wellenlängenbereichen absorbieren (siehe z. B. J. Yang, Intern. Conf. on Stability of a-Si Alloy Mat. and Devices, 28.-30. Jan. 87, Palo Alto. California, S. 295-303). Die unterschiedliche Wellenlängenempfindlichkeit wird dabei durch unterschied­liche Zusätze zum amorphen Silizium der i-Schicht wie z. B. Kohlenstoff, Germanium oder Fluor erzielt.In order to better utilize the spectrum of the incident light, two solar cells are combined in a tandem cell that absorb the light in different wavelength ranges (see e.g. JJ Yang, Intern. Conf. On Stability of a-Si Alloy Mat. And Devices, 28.- Jan. 30, 87, Palo Alto. California, pp. 295-303). The different wavelength sensitivity is due to different additives to the amorphous silicon of the i-layer such. B. carbon, germanium or fluorine.

Dabei ergibt sich die Schwierigkeit, die elektrischen Werte der beiden übereinanderliegenden, in Serie geschalteten Zellen anzupassen. In der Serienschaltung ist die Gesamt­spannung der Tandemzelle der Anordnung die Summe der Einzelspannungen. Bei der Tandemzelle muß der Strom in beiden einzelnen Solarzellen gleich sein, wenn Verluste vermieden werden sollen. Die Anpassung der elektrischen Werte erfolgt z. B. durch Anpassung der Dicken der beiden i-Schichten.The difficulty arises in adapting the electrical values of the two cells one above the other, connected in series. In the series connection, the total voltage of the tandem cell of the arrangement is the sum of the individual voltages. With the tandem cell, the current in both individual solar cells must be the same if losses are to be avoided. The electrical values are adjusted e.g. B. by adjusting the thicknesses of the two i-layers.

Eine andere Möglichkeit (s. z. B. C. Eberspacher et al., 18th IEEE, Las Vegas 1985, S. 1031-1035) besteht darin, die beiden Solarzellen völlig isoliert, z. B. auf verschiedenen Seiten eines Substrates oder auf zwei Substraten, zu er­zeugen. Jede Solarzelle ist dann mit zwei Kontakten ver­sehen, die unabhängig verschaltet werden können. Das Auf­bringen der Solarzellen auf den verschiedenen Seiten des Substrats ist umständlich und erfordert erhöhte Sorgfalt. Die Verschaltung der Solarzellen ist durch die vielen einzelnen Kontakte sehr arbeitsintensiv.Another possibility (see, e.g., C. Eberspacher et al., 18th IEEE, Las Vegas 1985, pp. 1031-1035) is to isolate the two solar cells completely, e.g. B. on different sides of a substrate or on two substrates. Each solar cell is then provided with two contacts that can be connected independently. The application of the solar cells on the different sides of the substrate is cumbersome and requires increased care. The interconnection of the solar cells is very labor intensive due to the many individual contacts.

Der Erfindung liegt die Aufgabe zugrunde, eine Dünnschicht­ solarzellenanordnung anzugeben, die stabil im Bezug auf Alterung ist, die einfach zu konzipieren ist, die für Modulbauweise geeignet ist und die großtechnisch einfach herstellbar ist.The invention has for its object a thin layer Specify solar cell arrangement that is stable with respect to aging, that is easy to design, that is suitable for modular construction and that is easy to manufacture on an industrial scale.

Die Aufgabe wird in einer Dünnschichtsolarzellenanordnung der eingangs genannten Art dadurch gelöst, daß die Solar­zellen paarweise so zueinander angeordnet sind, daß benachbarte Schichten der ersten Solarzelle und der zweiten Solarzellen vom selben Leitfähigkeitstyp sind und daß die p-Schichten der ersten Solarzelle und der zweiten Solar­zelle sowie die n-Schichten der ersten Solarzelle und der zweiten Solarzelle in Art einer Parallelschaltung elektrisch miteinander verbunden sind.The object is achieved in a thin-film solar cell arrangement of the type mentioned at the outset in that the solar cells are arranged in pairs in relation to one another in such a way that adjacent layers of the first solar cell and the second solar cells are of the same conductivity type and that the p-layers of the first solar cell and the second solar cell and the n layers of the first solar cell and the second solar cell are electrically connected to one another in the manner of a parallel connection.

Diese Anordnung hat den Vorteil einer erhöhten Stabilität in Bezug auf das Alterungsverhalten, da die Schichten dünn sein können (≦ 0.2 µm). Die elektrischen Spannungen an den beiden Solarzellen sind gleich groß. Die Verschaltung der beiden Solarzellen entspricht einer Parallelschaltung. Die Ströme in den Zellen können daher beliebig sein, ohne den Wirkungsgrad der Anordnung zu verringern. Die Anpassung zweier Zellen in einer solchen Anordnung ist daher sehr einfach.This arrangement has the advantage of increased stability with regard to aging behavior, since the layers can be thin (≦ 0.2 µm). The electrical voltages on the two solar cells are the same. The connection of the two solar cells corresponds to a parallel connection. The currents in the cells can therefore be arbitrary without reducing the efficiency of the arrangement. The adaptation of two cells in such an arrangement is therefore very simple.

Um das Spektrum des einfallenden Lichts besser auszu­nutzen, wird für die intrinsischen i-Schichten der ersten Solarzelle und der zweiten Solarzelle intrinsisches Halb­leitermaterial mit unterschiedlichen Zusätzen, die das Licht in unterschiedlichen Wellenlängenbereichen absorbieren, verwendet. Sind die i-Schichten z. B. auf der Basis von hydrogenisiertem amorphem Silizium vorgesehen, eignen sich beispielsweise Kohlenstoff, Germanium oder Fluor als Zusatz.In order to make better use of the spectrum of the incident light, intrinsic semiconductor material with different additives that absorb the light in different wavelength ranges is used for the intrinsic i-layers of the first solar cell and the second solar cell. Are the i layers z. B. provided on the basis of hydrogenated amorphous silicon, for example carbon, germanium or fluorine are suitable as an additive.

Es kann vorteilhaft sein, die benachbarten Schichten der ersten Solarzelle und der zweiten Solarzelle als Doppel­schicht auszubilden. Dies ist z. B. der Fall, wenn die zweite Solarzelle in einer anderen Anlage hergestellt werden soll als die erste. Bei der Verwendung unterschied­licher Materialien in den beiden Solarzellen können eventuelle Schwierigkeiten dadurch vermieden werden, daß zwischen den benachbarten Schichten eine Isolationsschicht vorgesehen wird. Die Anordnung hat dann vier Anschlüsse.It may be advantageous to design the adjacent layers of the first solar cell and the second solar cell as a double layer. This is e.g. B. the case when the second solar cell to be manufactured in a different plant than the first. If different materials are used in the two solar cells, possible difficulties can be avoided by providing an insulation layer between the adjacent layers. The arrangement then has four connections.

Ein sehr einfacher Aufbau der Anordnung wird dadurch er­zielt, daß die benachbarten Schichten der ersten Solar­zelle und der zweiten Solarzelle, die erfindungsgemäß vom selben Leitfähigkeitstyp sind, als eine einzige gemeinsame Schicht ausgebildet sind.A very simple construction of the arrangement is achieved in that the adjacent layers of the first solar cell and the second solar cell, which according to the invention are of the same conductivity type, are formed as a single common layer.

Die Stromableitung der gemeinsamen Schicht wird dadurch verbessert, daß auf der gemeinsamen Schicht ein Grid aus transparentem elektrisch leitfähigem Material, z. B. ITO (= Indium-Zinn-Oxid), vorgesehen ist.The current dissipation of the common layer is improved in that a grid made of transparent electrically conductive material, for. B. ITO (= indium tin oxide) is provided.

Zur Kontaktierung der Solarzellenanordnung mit i-Schichten auf der Basis von amorphem Silizium müssen Kontaktschichten jeweils auf der, der gemeinsamen Schicht abgewandten Ober­fläche der Schichtenfolge der Solarzellen vorgesehen werden. Mindestens eine dieser Kontaktschichten, durch die der Lichteinfall erfolgt, besteht dabei aus transparentem elektrisch leitfähigem Material. Die Kontaktierung über Kontaktschichten führt zu einer guten Stromableitung. Das Aufbringen von Kontaktschichten ist im Herstellprozeß technologisch einfacher als das Montieren einzelner Elektroden.To contact the solar cell arrangement with i-layers based on amorphous silicon, contact layers must be provided on the surface of the layer sequence of the solar cells facing away from the common layer. At least one of these contact layers, through which the incidence of light occurs, consists of transparent, electrically conductive material. Contacting via contact layers leads to good current dissipation. The application of contact layers is technologically simpler in the manufacturing process than the mounting of individual electrodes.

Bestehen beide Kontaktschichten aus transparentem, elektrisch leitfähigem Material, kann der Lichteinfall von beiden Seiten der Solarzellenanordnung genutzt werden.If both contact layers consist of transparent, electrically conductive material, the incidence of light can be used from both sides of the solar cell arrangement.

Dadurch kann das Licht, das in der Dünnschichtsolarzellen­anordnung nicht absorbiert wurde und das an der Fläche hinter der Dünnschichtsolarzellenanordnung zurück in die Dünnschichtsolarzellenanordnung reflektiert wird, weiter zur Stromerzeugung genutzt werden (sogenannte bifacial-­cells, s. z. B. A. Pantoja-Lopez, J. Garcia Martin, 7. EPSEC, Sevilla/Spanien 1986, S. 137-141)As a result, the light that was not absorbed in the thin-film solar cell arrangement and that is reflected on the surface behind the thin-film solar cell arrangement back into the thin-film solar cell arrangement can continue used to generate electricity (so-called bifacial cells, see BA Pantoja-Lopez, J. Garcia Martin, 7th EPSEC, Sevilla / Spain 1986, pp. 137-141)

Technologisch einfach ist es, die Parallelverschaltung der beiden Solarzellen in jeder Tandemzelle zusammen mit der Serienverschaltung im Modulaufbau vorzusehen.It is technologically simple to provide the parallel connection of the two solar cells in each tandem cell together with the series connection in the module structure.

Technologisch günstig ist es, die Dünnschichtsolarzellen­anordnung in einem Schichtaufbau vorzusehen. Der Schicht­aufbau weist eine Schichtenfolge von einer ersten p-leitenden, einer ersten intrinsischen, einer gemeinsamen n-leitenden, einer zweiten intrinsischen und einer zweiten p-leitenden Schicht auf. Der ersten p-leitenden Schicht und der zweiten p-leitenden Schicht ist jeweils eine Kontaktschicht benachbart. Die einzelnen Tandemzellen werden im Schichtaufbau durch Gräben voneinander getrennt. Die Flanken der Gräben, die senkrecht zum Schichtaufbau verlaufen, sind so mit je einer strukturierten Isolator­schicht bedeckt, daß an der einen Flanke die gemeinsame n-leitende Schicht offenliegt und daß an der anderen, gegenüberliegenden Flanke die beiden Kontaktschichten offenliegen. Der Graben ist mit einem elektrisch leit­fähigen Material aufgefüllt. Durch die Strukturierung der Isolatorschichten wird durch das leitfähige Material die gemeinsame n-leitende Schicht der einen Tandemzelle mit den Kontaktschichten und damit mit den p-leitenden Schichten der darauffolgenden Tandemzelle elektrisch verbunden.It is technologically favorable to provide the thin-film solar cell arrangement in a layer structure. The layer structure has a layer sequence of a first p-type, a first intrinsic, a common n-type, a second intrinsic and a second p-type layer. A contact layer is adjacent to the first p-type layer and the second p-type layer. The individual tandem cells are separated from one another in the layer structure by trenches. The flanks of the trenches, which run perpendicular to the layer structure, are each covered with a structured insulator layer in such a way that the common n-conducting layer is exposed on one flank and that the two contact layers are exposed on the other, opposite flank. The trench is filled with an electrically conductive material. The structuring of the insulator layers electrically connects the common n-conducting layer of the one tandem cell to the contact layers and thus to the p-conducting layers of the subsequent tandem cell.

Die Strukturierung der Isolatorschichten wird z. B. dadurch erreicht, daß in die Flanken des Grabens Stufen geätzt werden. An der Oberfläche der Stufen befinden sich die gemeinsame n-leitende Schicht bzw. die Kontaktschicht. Die Stufen werden beispielsweise durch selektives Ätzen erzeugt. Dazu ist es vorteilhaft, die n-leitenden oder p-leitenden Schichten aus mikrokristallinem Silizium vorzusehen.The structuring of the insulator layers is such. B. achieved by etching steps in the flanks of the trench. The common n-type layer or the contact layer are located on the surface of the steps. The steps are created, for example, by selective etching. For this purpose, it is advantageous to provide the n-type or p-type layers made of microcrystalline silicon.

Die erfindungswesentlichen Merkmale können selbstver­ständlich auch in einem Schichtaufbau mit einer Schicht­folge mit einer n-leitenden, einer intrinsischen, einer gemeinsamen p-leitenden, einer intrinsischen und einer n-leitenden Schicht realisiert sein.The features essential to the invention can of course also be implemented in a layer structure with a layer sequence with an n-conducting, an intrinsic, a common p-conducting, an intrinsic and an n-conducting layer.

Im folgenden wird die Erfindung anhand eines Ausführungs­beispiels und den FIG näher erläutert.

  • In FIG 1 ist eine Tandemzelle dargestellt.
  • FIG 2 zeigt schematisch den Potentialverlauf in einer Tandemzelle.
  • FIG 3 zeigt zwei in Serie verschaltete Solarzellen.
In the following the invention is explained in more detail using an exemplary embodiment and the FIG.
  • 1 shows a tandem cell.
  • 2 shows schematically the potential curve in a tandem cell.
  • 3 shows two solar cells connected in series.

Für gleiche Teile gelten in den Figuren gleiche Bezugs­zeichnen.The same reference numerals apply to the same parts in the figures.

In FIG 1 ist eine Tandemzelle dargestellt. Auf einem Substrat 1 aus z. B. Glas ist eine erste Kontaktschicht 2, eine erste p-Schicht 3, eine erste i-Schicht 4, eine gemeinsame n-Schicht 5, eine zweite i-Schicht 6, eine zweite p-Schicht 7 und eine zweite Kontaktschicht 8 vor­gesehen. Die erste Kontaktschicht 2 und die zweite Kontakt­schicht 8 bestehen aus einem transparentem leitfähigem Material z. B. aus dotiertem SnO₂. Die erste p-Schicht 3 und die zweite p-Schicht 7 bestehen aus amorphem Silizium und sind durch Dotierung mit Bor p-leitend. Die erste i-Schicht 4 und die zweite i-Schicht 6 sind intrinsische Schichten. Die erste i-Schicht 4 besteht aus amorphem Silizium-Germanium. Die zweite i-Schicht 6 besteht aus amorphem Silizium. Die gemeinsame n-Schicht 5 besteht z. B. aus mikrokristallinem Silizium und ist durch Dotierung mit Phosphor n-leitend. Die Schichten haben folgende Dicken: erste p-Schicht 3: 15 bis 20 nm, erste i-Schicht 4: 100 bis 250 nm, gemeinsame n-Schicht 5: 20 bis 40 nm, zweite i-Schicht 6: 300 bis 700 nm, zweite p-Schicht 7: 15 bis 20 nm.1 shows a tandem cell. On a substrate 1 from z. B. Glass is provided with a first contact layer 2, a first p-layer 3, a first i-layer 4, a common n-layer 5, a second i-layer 6, a second p-layer 7 and a second contact layer 8. The first contact layer 2 and the second contact layer 8 consist of a transparent conductive material z. B. from doped SnO₂. The first p-layer 3 and the second p-layer 7 consist of amorphous silicon and are p-conductive by doping with boron. The first i-layer 4 and the second i-layer 6 are intrinsic layers. The first i-layer 4 consists of amorphous silicon germanium. The second i-layer 6 consists of amorphous silicon. The common n-layer 5 consists, for. B. made of microcrystalline silicon and is n-conductive by doping with phosphorus. The layers have the following thicknesses: first p-layer 3: 15 to 20 nm, first i-layer 4: 100 to 250 nm, common n-layer 5: 20 to 40 nm, second i-layer 6: 300 to 700 nm, second p-layer 7: 15 to 20 nm.

Im Betrieb der Tandemzelle in FIG 1 wird von der Seite der zweiten Kontaktschicht 8 her Licht, angedeutet als Pfeile 9, in die Tandemzelle eingestrahlt. Das Licht wird zum Teil in der ersten i-Schicht 4, zum Teil in der zweiten i-Schicht 6 absorbiert. Dabei werden Ladungsträger 10 erzeugt. Durch das elektrische Feld werden die Ladungs­träger entsprechend ihrer Polarität zur gemeinsamen n-Schicht 5 bzw. zur ersten p-Schicht 3 oder zweiten p-Schicht 7 gezogen. Die gemeinsame n-Schicht 5 ist über einen Verbraucher 11 mit der ersten p-Schicht 3 und mit der zweiten p-Schicht 7 elektrisch verbunden.During operation of the tandem cell in FIG. 1, light, indicated as arrows 9, is radiated into the tandem cell from the side of the second contact layer 8. The light is partly absorbed in the first i-layer 4 and partly in the second i-layer 6. Charge carriers 10 are generated in the process. The charge carriers are drawn according to their polarity to the common n-layer 5 or to the first p-layer 3 or second p-layer 7 by the electric field. The common n-layer 5 is electrically connected to the first p-layer 3 and to the second p-layer 7 via a consumer 11.

In FIG 2 ist schematisch der Potentialverlauf in der Tandemzelle dargestellt entlang einem Schnitt, der senk­recht zur Schichtenfolge in FIG 1 verläuft. Die FIG 2 zeigt weiterhin, wie der Ladungstransport durch Elektronen und Löcher erfolgt.FIG. 2 schematically shows the potential curve in the tandem cell along a section that runs perpendicular to the layer sequence in FIG. 1. FIG. 2 also shows how the charge is transported through electrons and holes.

In FIG 3 sind zwei in Serie geschaltete Tandemzellen dar­gestellt, die in einem Schichtaufbau 12 enthalten sind. Der Schichtaufbau 12 enthält das Substrat 1, die erste Kontakt­schicht 2, die erste p-Schicht 3, die erste i-Schicht 4, die gemeinsame n-Schicht 5, die zweite i-Schicht 6, die zweite p-Schicht 7 und die zweite Kontaktschicht 8. In dem Schichtaufbau 12 sind eine erste Tandemzelle 13 und eine zweite Tandemzelle 14 durch einen Graben 15 getrennt. Der Graben 15 verläuft senkrecht zur Schichtenfolge bis auf das Substrat 1. Eine erste Flanke 16 des Grabens 15 weist eine erste Stufe 17 auf. Die erste Flanke 16 begrenzt die erste Tandemzelle 13. Die erste Stufe 17 verläuft entlang der Oberfläche der gemeinsamen n-Schicht 5. Eine zweite Flanke 18 des Grabens 15, die der ersten Flanke 16 gegenüber­liegt und die die zweite Tandemzelle 14 begrenzt, weist eine zweite Stufe 19 auf. Die zweite Stufe 19 verläuft an der Oberfläche der ersten Kontaktschicht 2. Die erste Flanke 16 und die zweite Flanke 18 sind mit je einer struk­turierten Isolatorschicht 20 bedeckt. Die Isolatorschichten 20 sind so strukturiert, daß an der ersten Flanke 16 alle Schichten bedeckt sind bis auf die gemeinsame n-Schicht 5 und daß an der zweiten Flanke 18 alle Schichten bedeckt sind bis auf die erste Kontaktschicht 2 und die zweite Kontaktschicht 8. Der Graben 15 ist mit elektrisch leit­fähigem Material 21 aufgefüllt. Durch die Strukturierung der Isolatorschichten 20 verbindet das elektrisch leit­fähige Material 21 die gemeinsame n-Schicht 5 an der ersten Flanke 16 mit der ersten Kontaktschicht 2 und der zweiten Kontaktschicht 8 an der zweiten Flanke 18. Dadurch ist die gemeinsame n-Schicht 5 der ersten Tandemzelle 13 elektrisch mit der ersten p-Schicht 3 und der zweiten p-Schicht 7 der zweiten Tandemzelle 14 verbunden.3 shows two tandem cells connected in series, which are contained in a layer structure 12. The layer structure 12 contains the substrate 1, the first contact layer 2, the first p-layer 3, the first i-layer 4, the common n-layer 5, the second i-layer 6, the second p-layer 7 and the second Contact layer 8. In the layer structure 12, a first tandem cell 13 and a second tandem cell 14 are separated by a trench 15. The trench 15 runs perpendicular to the layer sequence down to the substrate 1. A first flank 16 of the trench 15 has a first step 17. The first flank 16 delimits the first tandem cell 13. The first step 17 runs along the surface of the common n-layer 5. A second flank 18 of the trench 15, which lies opposite the first flank 16 and which delimits the second tandem cell 14, has a second one Level 19 on. The second step 19 runs on the surface of the first contact layer 2. The first flank 16 and the second flank 18 are each covered with a structured insulator layer 20. The insulator layers 20 are structured such that on the first flank 16 all layers are covered except for the common n-layer 5 and that on the second flank 18 all layers are covered except for the first contact layer 2 and the second contact layer 8. The trench 15 is filled with electrically conductive material 21. By structuring the insulator layers 20, the electrically conductive material 21 connects the common n-layer 5 on the first flank 16 to the first contact layer 2 and the second contact layer 8 on the second flank 18. As a result, the common n-layer 5 is the first tandem cell 13 electrically connected to the first p-layer 3 and the second p-layer 7 of the second tandem cell 14.

Durch eine vielfache Wiederholung der anhand FIG 3 erläuterten Verbindung zwischen zwei Tandemzellen ist in einem Modul mit vielen Tandemzellen gewährleistet, daß die Tandemzellen seriell verschaltet sind und gleichzeitig die in den Tandemzellen enthaltenen Solarzellen parallel verschaltet sind.A multiple repetition of the connection between two tandem cells explained in FIG. 3 ensures in a module with many tandem cells that the tandem cells are connected in series and at the same time the solar cells contained in the tandem cells are connected in parallel.

Claims (13)

1. Dünnschichtsolarzellenanordnung mit mindestens einer ersten Solarzelle und einer zweiten Solarzelle vom pin- oder nip-Typ, die als Tandemzelle zueinander angeordnet sind, die jeweils eine p-leitende p-Schicht, eine intrinsische i-Schicht, eine n-leitende n-Schicht und Kontaktschichten bzw. elektrische Kontaktierungen auf­weisen, geeignet für Modulbauweise mit Serienverschaltung, gekennzeichnet durch folgende Merkmale: a) die Solarzellen sind so zueinander angeordnet, daß benachbarte Schichten (5) der ersten Solarzelle und der zweiten Solarzelle vom selben Leitfähigkeitstyp sind, b) die p-Schichten (3, 7) der ersten Solarzelle und der zweiten Solarzelle sowie die n-Schichten (5) der ersten Solarzelle und der zweiten Solarzelle sind in Art einer Parallelschaltung elektrisch miteinander verbunden. 1. Thin-film solar cell arrangement with at least a first solar cell and a second solar cell of the pin or nip type, which are arranged as a tandem cell to one another, each having a p-type p-layer, an intrinsic i-layer, an n-type n-layer and have contact layers or electrical contacts, suitable for modular construction with series connection, characterized by the following features: a) the solar cells are arranged with respect to one another in such a way that adjacent layers (5) of the first solar cell and the second solar cell are of the same conductivity type, b) the p-layers (3, 7) of the first solar cell and the second solar cell and the n-layers (5) of the first solar cell and the second solar cell are electrically connected to one another in the manner of a parallel connection. 2. Dünnschichtsolarzellenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die i-Schicht (4) der ersten Solarzelle und die i-Schicht (6) der zweiten Solar­zelle aus unterschiedlichen intrinsischen Halbleiterma­terialen, die das Licht in unterschiedlichen Wellenlängen­bereichen absorbieren, bestehen.2. Thin-film solar cell arrangement according to claim 1, characterized in that the i-layer (4) of the first solar cell and the i-layer (6) of the second solar cell consist of different intrinsic semiconductor materials that absorb the light in different wavelength ranges. 3. Dünnschichtsolarzellenanordnung nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß die i-Schichten (4, 6) der ersten Solarzelle und der zweiten Solarzelle auf der Basis von amorphem Silizium vorgesehen sind, daß zur Kontaktierung der ersten Solar­zelle und der zweiten Solarzelle jeweils auf der der gemeinsamen Schicht abgewandten Oberfläche der Schichten­folge eine Kontaktschicht (2, 8) aus elektrisch leit­fähigem Material vorgesehen ist und mindestens die dem Licht zugewandte Kontaktschicht (8) aus transparentem Material besteht.3. Thin-film solar cell arrangement according to claim 1 or claim 2, characterized in that the i-layers (4, 6) of the first solar cell and the second solar cell are provided on the basis of amorphous silicon, that for contacting the first solar cell and the second solar cell in each case a contact layer (2, 8) made of electrically conductive material is provided on the surface of the layer sequence facing away from the common layer and at least the contact layer (8) facing the light consists of transparent material. 4. Dünnschichtsolarzellenanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß mindestens eine der n-Schichten (5) und der p-Schichten (3, 7) aus mikrokristallinem Silizium vorge­sehen ist.4. Thin-film solar cell arrangement according to one of claims 1 to 3, characterized in that at least one of the n-layers (5) and the p-layers (3, 7) made of microcrystalline silicon is provided. 5. Dünnschichtsolarzellenanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zwischen den benachbarten Schichten der ersten Solarzelle und der zweiten Solarzelle eine isolierende Schicht vorge­sehen ist.5. Thin-film solar cell arrangement according to one of claims 1 to 4, characterized in that an insulating layer is provided between the adjacent layers of the first solar cell and the second solar cell. 6. Dünnschichtsolarzellenanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die benachbarten Schichten der ersten Solarzelle und der zweiten Solarzelle als eine einzige gemeinsame Schicht (5) vorgesehen sind.6. Thin-film solar cell arrangement according to one of claims 1 to 4, characterized in that the adjacent layers of the first solar cell and the second solar cell are provided as a single common layer (5). 7. Dünnschichtsolarzellenanordnung nach Anspruch 6, dadurch gekennzeichnet, daß zur Unter­stützung der Stromableitung auf der gemeinsamen Schicht (5) ein Grid aus transparentem leitfähigen Material vorgesehen ist.7. Thin-film solar cell arrangement according to claim 6, characterized in that a grid made of transparent conductive material is provided to support the current dissipation on the common layer (5). 8. Dünnschichtsolarzellenanordnung, die mehrere in Serie verschaltete Tandemzellen nach einem der Ansprüche 1 bis 7 enthält, dadurch gekennzeichnet, daß die Parallelverschaltung jeweils der ersten Solarzelle und der zweiten Solarzelle in jeder Tandemzelle (13, 14) zusammen mit der Serienverschaltung vorgesehen ist.8. Thin-film solar cell arrangement which contains a plurality of tandem cells connected in series according to one of claims 1 to 7, characterized in that the parallel connection of the first solar cell and the second solar cell in each tandem cell (13, 14) is provided together with the series connection. 9. Dünnschichtsolarzellenanordnung nach Anspruch 8, gekennzeichnet durch folgende Merkmale: a) die Tandemzellen (13, 14) sind in einem Schichtaufbau (12) enthalten, b) im Schichtaufbau (12) sind Gräben (15) vorgesehen, die die einzelnen Tandemzellen (13,14) voneinander trennen, c) die Gräben (15), die senkrecht zu den Schichten ver­laufen, weisen jeweils an einer ersten Flanke (16) des Grabens (15) eine erste Stufe (17) auf, an deren Oberfläche die gemeinsame Schicht (5) liegt, d) die erste Flanke (16) des Grabens (15) ist mit einer Isolatorschicht (20) bedeckt, die so strukturiert ist, daß sie die Oberfläche der ersten Stufe (17) unbedeckt läßt, aber alle anderen Schichten (2, 3, 4, 6, 7, 8) be­deckt, e) die Gräben (15) weisen jeweils an einer zweiten Flanke (18), die der ersten Flanke (16) gegenüberliegt, eine zweite Stufe (19) auf, an deren Oberfläche die der Ober­fläche des Schichtaufbaus (12) abgewandte Kontaktschicht (2) liegt, f) die zweite Flanke (19) des Grabens (15) ist mit einer Isolatorschicht (20) bedeckt, die so strukturiert ist, daß die Kontaktschichten (2, 8) unbedeckt sind, aber alle anderen Schichten (3, 4, 5, 6, 7) bedeckt sind, g) die Gräben (15) sind mit einem elektrisch leitfähigen Material (21) aufgefüllt. 9. Thin-film solar cell arrangement according to claim 8, characterized by the following features: a) the tandem cells (13, 14) are contained in a layer structure (12), b) in the layer structure (12), trenches (15) are provided which separate the individual tandem cells (13, 14) from one another, c) the trenches (15), which run perpendicular to the layers, each have a first step (17) on a first flank (16) of the trench (15), on the surface of which the common layer (5) lies, d) the first flank (16) of the trench (15) is covered with an insulator layer (20) which is structured in such a way that it leaves the surface of the first stage (17) uncovered, but all other layers (2, 3, 4 , 6, 7, 8) covered, e) the trenches (15) each have a second step (19) on a second flank (18) opposite the first flank (16), on the surface of which the contact layer (2) facing away from the surface of the layer structure (12) lies, f) the second flank (19) of the trench (15) is covered with an insulator layer (20) which is structured in such a way that the contact layers (2, 8) are uncovered, but all other layers (3, 4, 5, 6 , 7) are covered, g) the trenches (15) are filled with an electrically conductive material (21). 10. Dünnschichtsolarzellenanordnung nach Anspruch 9, dadurch gekennzeichnet, daß anstelle der Isolatorschichten (20) eine die Kontaktschichten (2, 8) enthaltende Struktur vorgesehen ist, die so ausgebildet ist, daß ein Kurzschluß zwischen der gemeinsamen Schicht (5) und jeweils einer der Kontaktschichten (2, 8) über das elektrisch leitfähige Material (21) verhindert wird.10. Thin-film solar cell arrangement according to claim 9, characterized in that instead of the insulator layers (20) a contact layers (2, 8) containing structure is provided, which is designed such that a short circuit between the common layer (5) and each one of the contact layers (2, 8) is prevented via the electrically conductive material (21). 11. Dünnschichtsolarzellenanordnung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß beide Kontaktschichten (2, 8) aus transparentem elektrisch leitfähigem Material bestehen.11. Thin-film solar cell arrangement according to one of claims 1 to 10, characterized in that both contact layers (2, 8) consist of transparent, electrically conductive material. 12. Verwendung einer Dünnschichtsolarzellenanordnung nach Anspruch 11 in einem Modul, wobei der Lichteinfall von beiden Seiten genutzt wird.12. Use of a thin-film solar cell arrangement according to claim 11 in a module, wherein the incidence of light is used from both sides. 13. Verwendung einer Dünnschichtsolarzellenanordnung nach Anspruch 11 in einem Modul, das vor einem reflektierenden Hintergrund aufgebaut ist, wobei nicht absorbiertes Licht am Hintergrund reflektiert wird und nochmals die Dünn­schichtsolarzellenanordnung durchstrahlt.13. Use of a thin-film solar cell arrangement according to claim 11 in a module that is constructed against a reflective background, wherein non-absorbed light is reflected on the background and shines through the thin-film solar cell arrangement again.
EP89100808A 1988-02-05 1989-01-18 Thin film solar cell array Expired - Lifetime EP0326857B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3803519 1988-02-05
DE3803519 1988-02-05

Publications (2)

Publication Number Publication Date
EP0326857A1 true EP0326857A1 (en) 1989-08-09
EP0326857B1 EP0326857B1 (en) 1991-12-18

Family

ID=6346733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89100808A Expired - Lifetime EP0326857B1 (en) 1988-02-05 1989-01-18 Thin film solar cell array

Country Status (4)

Country Link
US (1) US4948436A (en)
EP (1) EP0326857B1 (en)
JP (1) JPH025576A (en)
DE (1) DE58900568D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993015527A1 (en) * 1992-02-04 1993-08-05 Siemens Aktiengesellschaft Integrated-circuit stacked-cell solar module
DE102006062018A1 (en) * 2006-12-29 2008-07-03 Näbauer, Anton, Dr. Thin section solar module has different cell types which deliver different electric voltage and current at even homogenous radiation of module, and at operation near maximum power point

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU663350B2 (en) * 1991-12-09 1995-10-05 Csg Solar Ag Buried contact, interconnected thin film and bulk photovoltaic cells
US5599743A (en) * 1994-04-07 1997-02-04 Matsushita Electronics Corporation Method of manufacturing a semiconductor device
JP3437386B2 (en) 1996-09-05 2003-08-18 キヤノン株式会社 Photovoltaic element and manufacturing method thereof
US6166318A (en) 1998-03-03 2000-12-26 Interface Studies, Inc. Single absorber layer radiated energy conversion device
JP4984197B2 (en) * 1999-02-18 2012-07-25 大日本印刷株式会社 Transparent film type solar cell module
JP2003273383A (en) * 2002-03-15 2003-09-26 Sharp Corp Solar cell element and manufacturing method therefor
JP2006013403A (en) * 2004-06-29 2006-01-12 Sanyo Electric Co Ltd Solar cell, solar cell module, its manufacturing method, and its reparing method
US7781673B2 (en) * 2005-07-14 2010-08-24 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
US20070267055A1 (en) * 2005-07-14 2007-11-22 Konarka Technologies, Inc. Tandem Photovoltaic Cells
US7772485B2 (en) * 2005-07-14 2010-08-10 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
US20070181179A1 (en) * 2005-12-21 2007-08-09 Konarka Technologies, Inc. Tandem photovoltaic cells
US20080006324A1 (en) * 2005-07-14 2008-01-10 Konarka Technologies, Inc. Tandem Photovoltaic Cells
US8158881B2 (en) * 2005-07-14 2012-04-17 Konarka Technologies, Inc. Tandem photovoltaic cells
KR20070101917A (en) * 2006-04-12 2007-10-18 엘지전자 주식회사 Thin-film solar cell and fabrication method thereof
WO2008063704A2 (en) * 2006-05-03 2008-05-29 Rochester Institute Of Technology Nanostructured quantum dots or dashes in photovoltaic devices and methods thereof
US8008421B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with silole-containing polymer
US8008424B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with thiazole-containing polymer
US8203071B2 (en) 2007-01-18 2012-06-19 Applied Materials, Inc. Multi-junction solar cells and methods and apparatuses for forming the same
KR100833675B1 (en) * 2007-01-30 2008-05-29 (주)실리콘화일 Semitransparent crystalline thin film solar cell
JP2011503848A (en) * 2007-11-02 2011-01-27 アプライド マテリアルズ インコーポレイテッド Plasma treatment during the deposition process
US20090130827A1 (en) * 2007-11-02 2009-05-21 Soo Young Choi Intrinsic amorphous silicon layer
EP2258007A2 (en) * 2008-02-21 2010-12-08 Konarka Technologies, Inc. Tandem photovoltaic cells
US20090266413A1 (en) * 2008-04-25 2009-10-29 Sagi Mathai Photovoltaic Cells With Gratings For Scattering Light Into Light-absorption Layers
US8455606B2 (en) * 2008-08-07 2013-06-04 Merck Patent Gmbh Photoactive polymers
KR20100021045A (en) * 2008-08-14 2010-02-24 주성엔지니어링(주) Thin film type solar cell and method for manufacturing the same
EP2180526A2 (en) * 2008-10-23 2010-04-28 Samsung Electronics Co., Ltd. Photovoltaic device and method for manufacturing the same
TW201025622A (en) * 2008-12-17 2010-07-01 Ind Tech Res Inst Electrode for solar cell and fabricating method thereof
EP2405485B1 (en) * 2009-03-02 2020-06-10 Kaneka Corporation Thin film solar cell module
US20110088760A1 (en) * 2009-10-20 2011-04-21 Applied Materials, Inc. Methods of forming an amorphous silicon layer for thin film solar cell application
EP2375455B1 (en) * 2010-04-09 2019-01-09 Saint-Augustin Canada Electric Inc. Voltage matched multijunction solar cell
ES2604340T3 (en) * 2011-05-20 2017-03-06 Panasonic Intellectual Property Management Co., Ltd. Multi-junction composite solar cell, multi-junction composite solar battery, and method of manufacturing them
NL2014040B1 (en) * 2014-12-23 2016-10-12 Stichting Energieonderzoek Centrum Nederland Method of making a curent collecting grid for solar cells.
JP6665464B2 (en) * 2015-09-25 2020-03-13 Tdk株式会社 Thin film thermoelectric element
ES2645479B1 (en) 2016-06-03 2018-11-05 Universidad Del País Vasco / Euskal Herriko Unibertsitatea Photovoltaic cell, photovoltaic panel and method of manufacturing photovoltaic cells
FR3060854B1 (en) * 2016-12-16 2021-05-14 Armor METHOD OF MANUFACTURING A PHOTOVOLTAIC MODULE AND A PHOTOVOLTAIC MODULE THUS OBTAINED
FR3082356B1 (en) * 2018-06-11 2020-06-19 Armor PROCESS FOR MANUFACTURING A PHOTOVOLTAIC MODULE AND PHOTOVOLTAIC MODULE THUS OBTAINED

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316049A (en) * 1979-08-28 1982-02-16 Rca Corporation High voltage series connected tandem junction solar battery
US4387265A (en) * 1981-07-17 1983-06-07 University Of Delaware Tandem junction amorphous semiconductor photovoltaic cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3175929A (en) * 1960-05-24 1965-03-30 Bell Telephone Labor Inc Solar energy converting apparatus
JPS56148874A (en) * 1980-04-18 1981-11-18 Mitsubishi Electric Corp Semiconductor photoelectric converter
JPS57187975A (en) * 1981-05-15 1982-11-18 Agency Of Ind Science & Technol Photoelectric converter
US4591892A (en) * 1982-08-24 1986-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor photoelectric conversion device
JPS59105379A (en) * 1982-12-08 1984-06-18 Hitachi Ltd Amorphous silicon solar battery
JPS61104678A (en) * 1984-10-29 1986-05-22 Mitsubishi Electric Corp Amorphous solar cell
JPS62221167A (en) * 1986-03-24 1987-09-29 Seiji Wakamatsu Multilayer thin film solar battery
JPS63122283A (en) * 1986-11-12 1988-05-26 Nippon Denso Co Ltd Amorphous solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316049A (en) * 1979-08-28 1982-02-16 Rca Corporation High voltage series connected tandem junction solar battery
US4387265A (en) * 1981-07-17 1983-06-07 University Of Delaware Tandem junction amorphous semiconductor photovoltaic cell

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
7TH E.C. PHOTOVOLTAIC SOLAR ENERGY CONFERENCE, 27.-31. Oktober 1986, Sevilla, Seiten 395-401, D. Reidel Publishing Co.; Y. UCHIDA: "Light-induced degradation in amorphous silicon solar cells" *
EXTENDED ABSTRACTS, Band 86-1, Nr. 1, Mai 1986, Seiten 457-458, Zusammenfassung Nr. 313, Princeton, New Jersey, US; A. LUQUE: "The concept and the applications of bifacial cells" *
PATENT ABSTRACTS OF JAPAN, Band 7, Nr. 49 (E-161)[1194], 25. Februar 1983; & JP-A-57 199 272 (MITSUBISHI DENKI K.K.) 07-12-1982 *
PATENT ABSTRACTS OF JAPAN, Band 8, Nr. 221 (E-271)[1658], 9. Oktober 1984; & JP-A-59 105 379 (HITACHI SEISAKUSHO K.K.) 18-06-1984 *
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 280 (E-356)[2003], 8. November 1985; & JP-A-60 123 074 (FUJI DENKI SOUGOU KENKYUSHO K.K.) 01-07-1985 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993015527A1 (en) * 1992-02-04 1993-08-05 Siemens Aktiengesellschaft Integrated-circuit stacked-cell solar module
US5527716A (en) * 1992-02-04 1996-06-18 Siemens Aktiengesellschaft Method of making integrated-circuit stacked-cell solar module
DE102006062018A1 (en) * 2006-12-29 2008-07-03 Näbauer, Anton, Dr. Thin section solar module has different cell types which deliver different electric voltage and current at even homogenous radiation of module, and at operation near maximum power point

Also Published As

Publication number Publication date
US4948436A (en) 1990-08-14
DE58900568D1 (en) 1992-01-30
EP0326857B1 (en) 1991-12-18
JPH025576A (en) 1990-01-10

Similar Documents

Publication Publication Date Title
EP0326857B1 (en) Thin film solar cell array
DE3650012T2 (en) Semiconductor device.
DE69217287T2 (en) Multi-junction photovoltaic device and manufacturing method
DE69528323T2 (en) Solar cell with integrated bypass function
DE3854773T2 (en) Thin-film solar cell with spatially modulated intrinsic layer
DE3244626C2 (en)
DE4136827C2 (en) Solar cell with a bypass diode
DE2632987C2 (en) Photovoltaic semiconductor device and method for its manufacture
WO1993015527A1 (en) Integrated-circuit stacked-cell solar module
DE10297371T5 (en) Device and method for an integral bypass diode in a solar cell
EP1056137A1 (en) Solar cell with a protection diode and its manufacturing method
WO2010029180A1 (en) Rear contact solar cell with an integrated bypass diode, and method for producing same
DE3111828A1 (en) DEVICE FOR IMPLEMENTING ELECTROMAGNETIC RADIATION IN ELECTRICAL ENERGY
DE2607005C2 (en) Integrated tandem solar cell
EP1121718A1 (en) Solar cell comprising a bypass diode
DE3615515A1 (en) SEMICONDUCTOR DEVICE FOR CONVERTING LIGHT INTO ELECTRICAL ENERGY
WO2006053518A1 (en) Arrangement comprising a solar cell and an integrated bypass diode
DE3614546A1 (en) AMORPHE SOLAR CELL
DE2854945A1 (en) LIQUID CRYSTAL LIGHT VALVE
DE112013003292B4 (en) Process for producing high-performance solar cells manufactured by cost-effective PECVD
DE3305030C2 (en)
DE202023101309U1 (en) Solar cell and photovoltaic module
DE3408317C2 (en) Amorphous silicon solar cell
DE212013000122U1 (en) Hybrid solar cell
CH685272A5 (en) Solar panels plant.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19890925

17Q First examination report despatched

Effective date: 19900928

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 58900568

Country of ref document: DE

Date of ref document: 19920130

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920325

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921222

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930121

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940118

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050118