EP1121718A1 - Solar cell comprising a bypass diode - Google Patents
Solar cell comprising a bypass diodeInfo
- Publication number
- EP1121718A1 EP1121718A1 EP99970210A EP99970210A EP1121718A1 EP 1121718 A1 EP1121718 A1 EP 1121718A1 EP 99970210 A EP99970210 A EP 99970210A EP 99970210 A EP99970210 A EP 99970210A EP 1121718 A1 EP1121718 A1 EP 1121718A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solar cell
- bypass diode
- light
- semiconductor
- doping type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 239000004020 conductor Substances 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims description 15
- 239000004065 semiconductor Substances 0.000 claims description 10
- 238000009792 diffusion process Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 11
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
- H01L31/0504—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
- H01L31/0508—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/142—Energy conversion devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the invention relates to a method for producing a solar cell, in which at least one layer of a semiconductor of the second doping type for producing the solar cell is applied to a base layer of a semiconductor of the first doping type, and in which further suitable doping types are diffused at a non-masked point on the solar cell a bypass diode is formed.
- a solar cell which is built on an n-type GaAs layer.
- the bypass diode required to protect individual shaded cells in the case of a series connection of several similar solar cells is arranged laterally to the solar cell. This does not shade the solar cell itself, but the cell as a whole requires more space. This has an unfavorable effect especially in space applications.
- the solar cell and the bypass diode adversely affect each other in the manufacturing process.
- the bypass diode is implanted on the light incidence side of the solar cell, thus shading part of the usable area.
- the second type of solar cells shown is characterized in that the solar cell is formed on one surface of a p-type silicon substrate, while a bypass diode is produced on the other surface. Due to the polarity of the bypass diode, however, it can only be used to protect the next solar cell following in the series connection. A further discrete diode is therefore required to protect the first solar cell in a series connection. In addition, such an arrangement has the consequence that the electrical connection between two adjacent solar cells must be made via two different electrical conductors.
- the object of the invention is therefore to provide a solar cell with an integrated bypass diode in which the diode does not shade or reduce the Photoelectric active surface takes place, and which has a simple manufacturing process in which the processes for manufacturing the solar cell and the diode influence each other as little as possible.
- the electrical connection between adjacent solar cells should also be as simple as possible.
- the structure of the cell has the advantage that a one-piece electrical conductor which is very simple to produce can be used as the electrical cell connector.
- the application of the invention is possible with a wide variety of semiconductor substrates. Examples include: n-Si, p-Si, n-Ge, p-Ge, n-GaAs, p-GaAs etc.
- the exemplary embodiment is limited to the representation of the principle using an n-type Ge substrate.
- FIG. 2 shows an equivalent circuit diagram for the solar cells according to FIG. 1
- a solar cell 8 initially has an n-type Substrate on.
- a trough 2 is introduced on the side of the substrate facing away from the incidence of light by means of p-diffusion.
- the trough is delimited locally in a manner known per se with the aid of a suitable masking medium (for example silicon nitride) which leaves the area of the substrate to be doped free and which is removed again after the doping process.
- the tub 2 later forms the anode of the bypass diode.
- an n-doped island 3 is diffused into the p-doped well 2, for which purpose a masking layer is applied again before the diffusion process.
- the n-doped island 3 acts as the cathode of the bypass diode.
- the epitaxial layers of one or more solar cell arrangements 4 generated on the opposite side of the substrate 1 by means of the customary epitaxial methods. These methods are known and are therefore not described in detail.
- the front of the semiconductor material is prepared accordingly (polished, etc.). By means of the method steps described so far, the solar cell 8 is constructed with a bypass diode 2, 3 integrated on the rear.
- An advantageous side effect here is that the generation of the bypass diode and the application of the epitaxial layers do not negatively influence one another.
- the diffusion processes for producing the bypass diode are set so that the doping depths or profiles only reach the desired values and profiles after all high-temperature steps.
- the electrical connections are made by metallizing certain areas of the front and back of the solar cell 8.
- a comb-shaped electrode 5a arranged at the front is sufficient for this purpose, which serves to contact the emitter adjacent to the solar cell 8.
- two further electrical contact surfaces 5b, 5c are applied. The first further contact 5b is used for the electrical
- the solar cell 8 is produced, not only the photoelectrically active solar cell 10 is produced, as can be seen from the equivalent circuit diagram in FIG. 2, but also two further diodes 11 by means of the p- and n-doping on the side facing away from the light. 12, which are connected in series in opposite directions. Of these two diodes, only the one that is polarized opposite to the solar cell 10 is required as the bypass diode 12. Therefore, the first further contact 5b is carried out so that it as the short circuit 6, the pn junction of the parasitic diode 1 1 in 2, which is formed from the n-type Ge substrate and the p-type well 2.
- the electrical conductor 7 has a combined function. On the one hand, it serves to connect the solar cells 8 and 9 in series by connecting the front contact of the solar cell 8 to the base contact of the solar cell 9. On the other hand, it creates the electrical connection from the cathode 5c of the bypass diode 12 to the front electrode 5a and thus the emitter of the solar cell 8.
- the simple design option of this electrical conductor 7, which is shown in an oblique view in FIG. 3, is particularly advantageous here. Accordingly, the conductor 7 consists only of a stamped, etched or eroded part made of a conductive film or a thin sheet which is brought into the required shape by means of a suitable tool. It is also easily possible to arrange two or more bypass diodes on a solar cell using the method according to the invention. In this case, an appropriately adapted shape is selected for the conductor 7.
- bypass diode described in connection with modern solar cell technology is particularly suitable for the production of tandem or triple solar cells on GaAs or Ge substrates, which is used in the production of highly efficient solar cells for space travel.
- the technologies mentioned benefit in particular from the method described, since the integration of the bypass diodes into the substrate material takes place before the method steps for producing the photoelectrically active solar cell layers.
- the bypass diode can therefore be optimized independently of the actual solar cell with regard to its blocking and transmission behavior. The aim is to achieve as high a breakdown voltage as possible and a small forward voltage that drives a shadowed solar cell in the reverse direction.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
Abstract
The invention relates to a production method for a solar cell and to the solar cell itself which comprises an integrated bypass diode on the side facing away from the incidence of light and which can be produced in a simple manner. A one-piece electric conductor serves to connect two successive solar cells in series and simultaneously effects the contacting of the corresponding bypass diode.
Description
Solarzelle mit Bypassdiode Solar cell with bypass diode
Die Erfindung betrifft ein Verfahren zur Herstellung einer Solarzelle, bei der auf eine Basisschicht eines Halbleiters vom ersten Dotierungstyp mindestens eine Schicht eines Halbleiters vom zweiten Dotierungstyp zur Erzeugung der Solarzelle aufgebracht wird, und bei der mittels Eindiffundieren weiterer geeigneter Dotierungstypen an einer nicht maskierten Stelle der Solarzelle eine Bypassdiode ausgebildet wird.The invention relates to a method for producing a solar cell, in which at least one layer of a semiconductor of the second doping type for producing the solar cell is applied to a base layer of a semiconductor of the first doping type, and in which further suitable doping types are diffused at a non-masked point on the solar cell a bypass diode is formed.
Das zugrundeliegende Problem ist, daß seriell geschaltete Solarzellen Bypassdioden benötigen, die im Fall der Abschattung einer oder mehrerer Zellen die auftretenden unzulässig hohen Rückwärtsspannungen unterdrücken.The underlying problem is that series-connected solar cells require bypass diodes which, in the case of shadowing one or more cells, suppress the impermissibly high reverse voltages.
Aus der DE 39 03 837 A1 ist eine Solarzelle bekannt geworden, die auf einer n-Typ GaAs-Schicht aufgebaut ist. Die im Fall einer Serienschaltung mehrerer gleichartiger Solarzellen zum Schutz einzelner abgeschatteter Zellen notwendige Bypassdiode ist hierbei seitlich zur Solarzelle angeordnet. Damit wird zwar nicht die Solarzelle selbst abgeschattet, aber die Zelle weist insgesamt einen größeren Flächenbedarf auf. Dies wirkt sich gerade bei Raumfahrtanwendungen ungünstig aus. Außerdem beeinflussen sich beim Herstellungsprozeß die Solarzelle und die Bypassdiode gegenseitig in nachteiliger Weise.From DE 39 03 837 A1 a solar cell is known which is built on an n-type GaAs layer. The bypass diode required to protect individual shaded cells in the case of a series connection of several similar solar cells is arranged laterally to the solar cell. This does not shade the solar cell itself, but the cell as a whole requires more space. This has an unfavorable effect especially in space applications. In addition, the solar cell and the bypass diode adversely affect each other in the manufacturing process.
Die DE 42 36 827 C2 beschreibt zwei unterschiedliche Arten von Solarzellen. Bei der ersten Art wird die Bypassdiode auf der Lichteinfallsseite der Solarzelle implantiert und schattet damit einen Teil der Nutzfläche ab. Die zweite Art der dargestellten Solarzellen zeichnet sich dadurch aus, daß auf der einen Oberfläche eines p-Typ Siliziumsubstrats die Solarzelle ausgebildet wird während auf der anderen Oberfläche eine Bypassdiode erzeugt wird. Aufgrund der Polarität der Bypassdiode kann diese jedoch nur zum Schutz der nächsten in der Serienschaltung folgenden Solarzelle verwendet werden. Deshalb wird zum Schutz der ersten Solarzelle einer Serienschaltung eine weitere diskrete Diode benötigt. Außerdem hat eine derartige Anordnung zur Folge, daß die elektrische Verbindung zwischen zwei benachbarten Solarzellen über zwei verschiedene elektrische Leiter erfolgen muß.DE 42 36 827 C2 describes two different types of solar cells. In the first type, the bypass diode is implanted on the light incidence side of the solar cell, thus shading part of the usable area. The second type of solar cells shown is characterized in that the solar cell is formed on one surface of a p-type silicon substrate, while a bypass diode is produced on the other surface. Due to the polarity of the bypass diode, however, it can only be used to protect the next solar cell following in the series connection. A further discrete diode is therefore required to protect the first solar cell in a series connection. In addition, such an arrangement has the consequence that the electrical connection between two adjacent solar cells must be made via two different electrical conductors.
Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Solarzelle mit integrierter Bypassdiode bereitzustellen, bei der durch die Diode keine Abschattung oder Verringerung der
photoelektrisch wirksamen Fläche stattfindet, und die einen einfachen Herstellprozeß aufweist, bei dem sich die Prozesse zur Herstellung der Solarzelle und der Diode möglichst wenig gegenseitig beeinflussen. Darüber hinaus sollte auch die elektrische Verbindung zwischen benachbarten Solarzellen möglichst einfach gestaltet sein.The object of the invention is therefore to provide a solar cell with an integrated bypass diode in which the diode does not shade or reduce the Photoelectric active surface takes place, and which has a simple manufacturing process in which the processes for manufacturing the solar cell and the diode influence each other as little as possible. In addition, the electrical connection between adjacent solar cells should also be as simple as possible.
Die Aufgabe wird durch die in den Ansprüchen 1 und 3 wiedergegebenen Merkmale auf einfache Weise gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den kennzeichnenden Teilen der Unteransprüche wiedergegeben.The object is achieved in a simple manner by the features reproduced in claims 1 and 3. Advantageous embodiments of the invention are given in the characterizing parts of the subclaims.
Die besonderen Vorteile der erfindungsgemäßen Solarzelle sind darin begründet, daß dieThe particular advantages of the solar cell according to the invention are due to the fact that the
Herstellung der beiden Komponenten Solarzelle und integrierte Bypassdiode nahezu unabhängig voneinander erfolgt und keine negative gegenseitige Beeinflussung der beiden Prozesse stattfindet. Der Aufwand für die Erzeugung der Bypassdiode ist sehr gering. Die photoelektrisch wirksame Fläche der Solarzelle wird von der Bypassdiode überhaupt nicht reduziert. Schließlich ergibt sich aus dem Aufbau der Zelle der Vorteil, daß als elektrischer Zellverbinder ein einstückiger elektrischer Leiter Verwendung finden kann, der sehr einfach herzustellen ist.Manufacture of the two components solar cell and integrated bypass diode takes place almost independently of each other and there is no negative mutual influence of the two processes. The effort for producing the bypass diode is very low. The bypass diode does not reduce the photoelectrically effective area of the solar cell at all. Finally, the structure of the cell has the advantage that a one-piece electrical conductor which is very simple to produce can be used as the electrical cell connector.
Grundsätzlich ist die Anwendung der Erfindung bei verschiedensten Halbleiter-Substraten möglich. Als Beispiele seien genannt: n-Si, p-Si, n-Ge, p-Ge, n-GaAs, p-GaAs etc.. Das Ausführungsbeispiel beschränkt sich auf die Darstellung des Prinzips anhand eines n-Typ GeSubstrats.In principle, the application of the invention is possible with a wide variety of semiconductor substrates. Examples include: n-Si, p-Si, n-Ge, p-Ge, n-GaAs, p-GaAs etc. The exemplary embodiment is limited to the representation of the principle using an n-type Ge substrate.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigen:An embodiment of the invention is shown in the drawing and will be described in more detail below. Show it:
Fig.1 einen Schnitt durch Solarzellen gemäß der Erfindung1 shows a section through solar cells according to the invention
Fig. 2 ein Ersatzschaltbild zu den Solarzellen gemäß Fig. 1FIG. 2 shows an equivalent circuit diagram for the solar cells according to FIG. 1
Fig.3 eine Serienschaltung zweier Solarzellen in Schrägansicht3 shows a series connection of two solar cells in an oblique view
In der Fig. 1 ist schematisch vereinfacht der Aufbau einer Solarzelle als Ausführungsbeispiel der Erfindung dargestellt. Die Solarzelle 8 weist zunächst als Ausgangsmaterial ein n-Typ Ge-
Substrat auf. Auf der dem Lichteinfall abgewandten Seite des Substrats wird in einem ersten Verfahrensschritt mittels p-Diffusion eine Wanne 2 eingebracht. Die örtliche Begrenzung der Wanne erfolgt in für sich bekannter Weise mit Hilfe eines geeigneten Maskierungsmediums (z.B. Siliziumnitrid), welches die zu dotierende Stelle des Substrats frei läßt und das nach dem Dotierungsvorgang wieder entfernt wird. Die Wanne 2 bildet später die Anode der Bypassdiode. Danach wird mit Hilfe einer weiteren Maske in die p-dotierte Wanne 2 eine n-dotierte Insel 3 eindiffundiert, wozu wieder vor dem Diffusionsvorgang eine Maskierungsschicht aufgebracht wird. Die n-dotierte Insel 3 wirkt als Kathode der Bypassdiode. Erst nach dem Entstehen der Bypassdiode werden auf der gegenüberliegenden Seite des Substrats 1 die Epitaxieschichten einer oder auch mehrerer Solarzellenanordnungen 4 mittels der üblichen Epitaxieverfahren erzeugt. Diese Verfahren sind bekannt und werden deshalb nicht näher beschrieben. Vor der Abscheidung wird die Vorderseite des Halbleitermaterials entsprechend vorbereitet (poliert etc.). Mittels der bisher beschriebenen Verfahrensschritte wird die Solarzelle 8 mit einer rückseitig integrierten Bypassdiode 2,3 aufgebaut. Als vorteilhafter Nebeneffekt ergibt sich hierbei, daß die Erzeugung der Bypassdiode und das Aufbringen der Epitaxieschichten sich nicht gegenseitig negativ beeinflussen. Die Diffusionsprozesse zur Herstellung der Bypassdiode werden so eingestellt, daß die Dotierungstiefen, bzw. -profile erst nach allen Hochtemperaturschritten die gewünschten Werte und Verläufe erreichen.In Fig. 1, the structure of a solar cell is shown schematically simplified as an embodiment of the invention. The solar cell 8 initially has an n-type Substrate on. In a first method step, a trough 2 is introduced on the side of the substrate facing away from the incidence of light by means of p-diffusion. The trough is delimited locally in a manner known per se with the aid of a suitable masking medium (for example silicon nitride) which leaves the area of the substrate to be doped free and which is removed again after the doping process. The tub 2 later forms the anode of the bypass diode. Then, with the aid of a further mask, an n-doped island 3 is diffused into the p-doped well 2, for which purpose a masking layer is applied again before the diffusion process. The n-doped island 3 acts as the cathode of the bypass diode. Only after the bypass diode has arisen are the epitaxial layers of one or more solar cell arrangements 4 generated on the opposite side of the substrate 1 by means of the customary epitaxial methods. These methods are known and are therefore not described in detail. Before deposition, the front of the semiconductor material is prepared accordingly (polished, etc.). By means of the method steps described so far, the solar cell 8 is constructed with a bypass diode 2, 3 integrated on the rear. An advantageous side effect here is that the generation of the bypass diode and the application of the epitaxial layers do not negatively influence one another. The diffusion processes for producing the bypass diode are set so that the doping depths or profiles only reach the desired values and profiles after all high-temperature steps.
In einem weiteren Verfahrensschritt werden die elektrischen Anschlüsse mittels Metallisierung bestimmter Bereiche der Vorder- und Rückseite der Solarzelle 8 hergestellt. Auf der dem Lichteinfall zugewandten Seite genügt hierfür eine frontseitig angeordnete kammförmige Elektrode 5a, die zur Kontaktierung des Emitters der Solarzelle 8 benachbarten dient. Auf der dem Lichteinfall abgewandten Seite der Solarzelle 8 werden zwei weitere elektrische Kontaktflächen 5b, 5c aufgebracht. Der erste weitere Kontakt 5b dient dem elektrischenIn a further method step, the electrical connections are made by metallizing certain areas of the front and back of the solar cell 8. On the side facing the incidence of light, a comb-shaped electrode 5a arranged at the front is sufficient for this purpose, which serves to contact the emitter adjacent to the solar cell 8. On the side of the solar cell 8 facing away from the light, two further electrical contact surfaces 5b, 5c are applied. The first further contact 5b is used for the electrical
Anschluß des Basiskontaktes der Solarzelle 8. Er erfüllt aber noch eine weitere Aufgabe. Bei der Erzeugung der Solarzelle 8 entstehen, wie dem Ersatzschaltbild in der Fig. 2 zu entnehmen ist, nicht nur die photoelektrisch wirksame Solarzelle 10, sondern mittels der p- und n-Dotierung auf der dem Lichteinfall abgewandten Seite auch zwei weitere Dioden 1 1 , 12, die gegengleich in Serie geschaltet sind. Von diesen beiden Dioden wird nur diejenige als Bypassdiode 12 benötigt, die entgegengesetzt zur Solarzelle 10 gepolt ist. Deshalb wird der erste weitere Kontakt 5b so ausgeführt, daß er als Kurzschluß 6 den pn-Übergang der parasitären Diode 1 1 im
Ersatzschaltbild gemäß Fig. 2 überbrückt, der aus dem n-Typ Ge-Substrat und der p-Typ Wanne 2 gebildet wird.Connection of the base contact of the solar cell 8. But it also fulfills another task. When the solar cell 8 is produced, not only the photoelectrically active solar cell 10 is produced, as can be seen from the equivalent circuit diagram in FIG. 2, but also two further diodes 11 by means of the p- and n-doping on the side facing away from the light. 12, which are connected in series in opposite directions. Of these two diodes, only the one that is polarized opposite to the solar cell 10 is required as the bypass diode 12. Therefore, the first further contact 5b is carried out so that it as the short circuit 6, the pn junction of the parasitic diode 1 1 in 2, which is formed from the n-type Ge substrate and the p-type well 2.
Der elektrische Leiter 7 hat eine kombinierte Funktion. Zum einen dient er der Serienschaltung der Solarzellen 8 und 9, indem er den Frontkontakt der Solarzelle 8 mit dem Basiskontakt der Solarzelle 9 verbindet. Zum anderen erzeugt er die elektrische Verbindung von der Kathode 5c der Bypassdiode 12 mit der Frontelektrode 5a und somit dem Emitter der Solarzelle 8. Besonders vorteilhaft ist hierbei die einfache Gestaltungsmöglichkeit dieses elektrischen Leiters 7, die in der Fig. 3 in einer Schrägansicht dargestellt ist. Der Leiter 7 besteht demnach nur aus einem gestanzten, geäzten oder erodierten Teil aus einer leitfähigen Folie oder einem dünnen Blech, das mittels eines geeigneten Werkzeugs in die benötigte Form gebracht wird. Es ist ohne weiteres auch möglich, auf einer Solarzelle zwei oder mehrere Bypassdioden mit Hilfe des erfindungsgemäßen Verfahrens anzuordnen. Im diesem Falle wird für den Leiter 7 eine entsprechend angepaßte Form gewählt.The electrical conductor 7 has a combined function. On the one hand, it serves to connect the solar cells 8 and 9 in series by connecting the front contact of the solar cell 8 to the base contact of the solar cell 9. On the other hand, it creates the electrical connection from the cathode 5c of the bypass diode 12 to the front electrode 5a and thus the emitter of the solar cell 8. The simple design option of this electrical conductor 7, which is shown in an oblique view in FIG. 3, is particularly advantageous here. Accordingly, the conductor 7 consists only of a stamped, etched or eroded part made of a conductive film or a thin sheet which is brought into the required shape by means of a suitable tool. It is also easily possible to arrange two or more bypass diodes on a solar cell using the method according to the invention. In this case, an appropriately adapted shape is selected for the conductor 7.
Die beschriebene Integration einer Bypassdiode eignet sich in Verbindung mit moderner Solarzellentechnologie besonders zur Herstellung von Tandem- oder Triple-Solarzellen auf GaAs- oder Ge-Substraten, welche bei der Fertigung von hocheffizienten Solarzellen für die Raumfahrt angewendetet wird. Die genannten Technologien profitieren im besonderen von dem beschriebenen Verfahren, da die Integration der Bypassdioden in das Substratmaterial zeitlich vor den Verfahrensschritten zur Herstellung der photoelektrisch wirksamen Solarzellenschichten stattfindet. Die Bypassdiode kann daher unabhängig von der eigentlichen Solarzelle bezüglich ihres Sperr- und Durchlaßverhaltens optimiert werden. Hierbei wird eine möglichst hohe Durchbruchspannung und eine kleine Vorwärtsspannung, welche eine abgeschattete Solarzelle in Rückwärtsrichtung treibt, angestrebt.
The integration of a bypass diode described in connection with modern solar cell technology is particularly suitable for the production of tandem or triple solar cells on GaAs or Ge substrates, which is used in the production of highly efficient solar cells for space travel. The technologies mentioned benefit in particular from the method described, since the integration of the bypass diodes into the substrate material takes place before the method steps for producing the photoelectrically active solar cell layers. The bypass diode can therefore be optimized independently of the actual solar cell with regard to its blocking and transmission behavior. The aim is to achieve as high a breakdown voltage as possible and a small forward voltage that drives a shadowed solar cell in the reverse direction.
Claims
1. Verfahren zur Herstellung einer Solarzelle, bei dem ausgehend von einem Halbleitersubstrat vom ersten Leitfähigkeitstyp auf der dem Lichteinfall zugewandten Seite Epitaxie-Schichten zum Herstellen mindestens einer lichtempfindlichen pn-Diode aufgebracht werden, nachdem zuvor mittels Diffusion von Dotierungsmaterialien in das Substrat eine pn-Bypassdiode ausgebildet wurde, dadurch gekennzeichnet, daß zur Herstellung der Bypassdiode in der dem Lichteinfall abgewandten Seite des Halbleitersubstrats ein flacher Bereich vom zweiten Leitfähigkeitstpy durch Diffusion erzeugt wird und in diesem Bereich eine Insel vom ersten1. A method for producing a solar cell, in which, starting from a semiconductor substrate of the first conductivity type, epitaxial layers for producing at least one light-sensitive pn diode are applied to the side facing the light after a pn bypass diode has been previously diffused into the substrate by means of diffusion of doping materials was formed, characterized in that for the manufacture of the bypass diode in the side of the semiconductor substrate facing away from the light incidence, a flat area of the second conductivity type is generated by diffusion and in this area an island of the first
Leitfähigkeitstyp eindiffundiert wird.Conductivity type is diffused.
2. Solarzelle, bestehend aus einer Basisschicht eines Halbleiters vom ersten Dotierungstyp und mindestens einer Schicht eines Halbleiters vom zweiten Dotierungstyp, wobei mittels Eindiffundieren weiterer geeigneter Dotierungstypen an einer nichtmaskierten Stelle der2. Solar cell consisting of a base layer of a semiconductor of the first doping type and at least one layer of a semiconductor of the second doping type, wherein by means of diffusing in further suitable doping types at a non-masked point
Solarzelle eine Bypassdiode ausgebildet wird, dadurch gekennzeichnet, daß die Solarzelle eine Substratschicht des ersten Dotierungstyps ( 1 ) aufweist, auf deren dem Lichteinfall zugewandten Seite eine oder mehrere Solarzelleneinheiten in Epitaxie-Schichten (4) angeordnet sind und in deren dem Lichteinfall abgewandter Seite eine Wanne (2) aus einem Halbleiter eines zweiten Dotierungstyps eingelassen ist, in den/die eine Insel (3) aus einemA bypass diode is formed in the solar cell, characterized in that the solar cell has a substrate layer of the first doping type (1), on the side facing the incident light one or more solar cell units are arranged in epitaxial layers (4) and in the side facing away from the incident a well (2) is embedded from a semiconductor of a second doping type, into which an island (3) from a
Halbleiter des ersten Dotierungstyps eindiffundiert ist.Semiconductor of the first doping type is diffused.
3. Solarzelle nach Anspruch 3, dadurch gekennzeichnet, daß auf der dem Lichteinfall zugewandten Seite ein metallischer Frontkontakt (5a) und auf der dem Lichteinfall abgewandten Seite zwei weitere Kontakte angeordnet sind von denen der erste weitere3. Solar cell according to claim 3, characterized in that on the side facing the light a metallic front contact (5a) and on the side facing away from the light two further contacts are arranged, of which the first further
Kontakt (5b) das Substrat des ersten Dotierungstyps und die Schicht der Wanne vom zweiten Dotierungstyp verbindet (6) und von denen der zweite weitere Kontakt (5c) den externen Anschluß der Bypassdiode (2,3) bildet.Contact (5b) connects the substrate of the first doping type and the layer of the well of the second doping type (6) and of which the second further contact (5c) forms the external connection of the bypass diode (2, 3).
4. Solarzelle nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß zwei gleichartige benachbarte Solarzellen in Reihenschaltung mittels eines einstückigen elektrischen Leiters (7) verbunden sind, der gleichzeitig die elektrische Verbindung von der Kathode (5c) der Bypassdiode ( 1 2) mit der Frontelektrode (5a) bildet. 4. Solar cell according to claim 3 or 4, characterized in that two similar adjacent solar cells are connected in series by means of a one-piece electrical conductor (7), which at the same time the electrical connection from the cathode (5c) of the bypass diode (1 2) to the front electrode (5a) forms.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19845658 | 1998-10-05 | ||
DE19845658A DE19845658C2 (en) | 1998-10-05 | 1998-10-05 | Solar cell with bypass diode |
PCT/DE1999/003103 WO2000021138A1 (en) | 1998-10-05 | 1999-09-28 | Solar cell comprising a bypass diode |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1121718A1 true EP1121718A1 (en) | 2001-08-08 |
Family
ID=7883341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99970210A Withdrawn EP1121718A1 (en) | 1998-10-05 | 1999-09-28 | Solar cell comprising a bypass diode |
Country Status (5)
Country | Link |
---|---|
US (1) | US6452086B1 (en) |
EP (1) | EP1121718A1 (en) |
JP (1) | JP2002527889A (en) |
DE (1) | DE19845658C2 (en) |
WO (1) | WO2000021138A1 (en) |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6278054B1 (en) * | 1998-05-28 | 2001-08-21 | Tecstar Power Systems, Inc. | Solar cell having an integral monolithically grown bypass diode |
US8664030B2 (en) | 1999-03-30 | 2014-03-04 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
JP4039949B2 (en) * | 2000-12-28 | 2008-01-30 | 三菱電機株式会社 | Solar cell |
DE10219956B4 (en) * | 2001-05-18 | 2004-07-08 | Webasto Vehicle Systems International Gmbh | solar system |
EP1428267B1 (en) * | 2001-07-27 | 2012-09-12 | Emcore Solar Power, Inc. | Solar cell having a bypass diode for reverse bias protection |
US6864414B2 (en) * | 2001-10-24 | 2005-03-08 | Emcore Corporation | Apparatus and method for integral bypass diode in solar cells |
DE10239845C1 (en) * | 2002-08-29 | 2003-12-24 | Day4 Energy Inc | Electrode for photovoltaic cells, photovoltaic cell and photovoltaic module |
US7071407B2 (en) * | 2002-10-31 | 2006-07-04 | Emcore Corporation | Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell |
US7335835B2 (en) * | 2002-11-08 | 2008-02-26 | The Boeing Company | Solar cell structure with by-pass diode and wrapped front-side diode interconnection |
US7592536B2 (en) * | 2003-10-02 | 2009-09-22 | The Boeing Company | Solar cell structure with integrated discrete by-pass diode |
US20060049464A1 (en) | 2004-09-03 | 2006-03-09 | Rao G R Mohan | Semiconductor devices with graded dopant regions |
US7242564B2 (en) * | 2004-10-20 | 2007-07-10 | Toppoly Optoelectronics Corporation | ESD protection circuit for charge pump and electronic device and system using the same |
DE102004055225B4 (en) * | 2004-11-16 | 2014-07-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Arrangement with solar cell and integrated bypass diode |
WO2007035677A2 (en) * | 2005-09-19 | 2007-03-29 | Solar Roofing Systems, Inc. | Integrated solar roofing system |
US7732705B2 (en) † | 2005-10-11 | 2010-06-08 | Emcore Solar Power, Inc. | Reliable interconnection of solar cells including integral bypass diode |
US9029685B2 (en) * | 2005-11-18 | 2015-05-12 | The Boeing Company | Monolithic bypass diode and photovoltaic cell with bypass diode formed in back of substrate |
US20070144577A1 (en) * | 2005-12-23 | 2007-06-28 | Rubin George L | Solar cell with physically separated distributed electrical contacts |
US7498508B2 (en) | 2006-02-24 | 2009-03-03 | Day4 Energy, Inc. | High voltage solar cell and solar cell module |
US9006563B2 (en) | 2006-04-13 | 2015-04-14 | Solannex, Inc. | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8729385B2 (en) | 2006-04-13 | 2014-05-20 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US9865758B2 (en) | 2006-04-13 | 2018-01-09 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US9236512B2 (en) | 2006-04-13 | 2016-01-12 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8884155B2 (en) | 2006-04-13 | 2014-11-11 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8822810B2 (en) | 2006-04-13 | 2014-09-02 | Daniel Luch | Collector grid and interconnect structures for photovoltaic arrays and modules |
US8536445B2 (en) | 2006-06-02 | 2013-09-17 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells |
US20080029151A1 (en) | 2006-08-07 | 2008-02-07 | Mcglynn Daniel | Terrestrial solar power system using III-V semiconductor solar cells |
US8686282B2 (en) | 2006-08-07 | 2014-04-01 | Emcore Solar Power, Inc. | Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells |
US20080092944A1 (en) * | 2006-10-16 | 2008-04-24 | Leonid Rubin | Semiconductor structure and process for forming ohmic connections to a semiconductor structure |
US20100093127A1 (en) * | 2006-12-27 | 2010-04-15 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film |
US20080245409A1 (en) * | 2006-12-27 | 2008-10-09 | Emcore Corporation | Inverted Metamorphic Solar Cell Mounted on Flexible Film |
US20080177773A1 (en) * | 2007-01-22 | 2008-07-24 | International Business Machines Corporation | Customized media selection using degrees of separation techniques |
US20080185038A1 (en) * | 2007-02-02 | 2008-08-07 | Emcore Corporation | Inverted metamorphic solar cell with via for backside contacts |
DE102007011403A1 (en) * | 2007-03-08 | 2008-09-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Front side series connected solar module |
US20080290368A1 (en) * | 2007-05-21 | 2008-11-27 | Day4 Energy, Inc. | Photovoltaic cell with shallow emitter |
US20080302031A1 (en) * | 2007-06-05 | 2008-12-11 | Solar Roofing Systems, Inc., | Integrated solar roofing tile connection system |
US20090025778A1 (en) * | 2007-07-23 | 2009-01-29 | Day4 Energy Inc. | Shading protection for solar cells and solar cell modules |
US7381886B1 (en) * | 2007-07-30 | 2008-06-03 | Emcore Corporation | Terrestrial solar array |
US20090032090A1 (en) * | 2007-07-30 | 2009-02-05 | Emcore Corporation | Method for assembling a terrestrial solar array including a rigid support frame |
US20090038679A1 (en) * | 2007-08-09 | 2009-02-12 | Emcore Corporation | Thin Multijunction Solar Cells With Plated Metal OHMIC Contact and Support |
US20100233838A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Mounting of Solar Cells on a Flexible Substrate |
US10381505B2 (en) | 2007-09-24 | 2019-08-13 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cells including metamorphic layers |
US8895342B2 (en) | 2007-09-24 | 2014-11-25 | Emcore Solar Power, Inc. | Heterojunction subcells in inverted metamorphic multijunction solar cells |
AU2007362562A1 (en) * | 2007-12-18 | 2009-06-25 | Day4 Energy Inc. | Photovoltaic module with edge access to PV strings, interconnection method, apparatus, and system |
US8513514B2 (en) * | 2008-10-24 | 2013-08-20 | Suncore Photovoltaics, Inc. | Solar tracking for terrestrial solar arrays with variable start and stop positions |
US8759138B2 (en) | 2008-02-11 | 2014-06-24 | Suncore Photovoltaics, Inc. | Concentrated photovoltaic system modules using III-V semiconductor solar cells |
US9331228B2 (en) | 2008-02-11 | 2016-05-03 | Suncore Photovoltaics, Inc. | Concentrated photovoltaic system modules using III-V semiconductor solar cells |
JP2009283479A (en) * | 2008-05-19 | 2009-12-03 | Sharp Corp | Solar battery cell, solar battery module, and manufacturing method of solar battery cell |
US8293568B2 (en) * | 2008-07-28 | 2012-10-23 | Day4 Energy Inc. | Crystalline silicon PV cell with selective emitter produced with low temperature precision etch back and passivation process |
DE102008047162A1 (en) * | 2008-09-15 | 2010-03-25 | Institut Für Solarenergieforschung Gmbh | Rear contact solar cell with integrated bypass diode and manufacturing method thereof |
US8507837B2 (en) * | 2008-10-24 | 2013-08-13 | Suncore Photovoltaics, Inc. | Techniques for monitoring solar array performance and applications thereof |
US9012771B1 (en) | 2009-09-03 | 2015-04-21 | Suncore Photovoltaics, Inc. | Solar cell receiver subassembly with a heat shield for use in a concentrating solar system |
US9806215B2 (en) | 2009-09-03 | 2017-10-31 | Suncore Photovoltaics, Inc. | Encapsulated concentrated photovoltaic system subassembly for III-V semiconductor solar cells |
US8809671B2 (en) * | 2009-12-08 | 2014-08-19 | Sunpower Corporation | Optoelectronic device with bypass diode |
JP2011165837A (en) * | 2010-02-09 | 2011-08-25 | Sharp Corp | Solar cell string, solar cell module, and solar cell |
US8604330B1 (en) | 2010-12-06 | 2013-12-10 | 4Power, Llc | High-efficiency solar-cell arrays with integrated devices and methods for forming them |
US8134217B2 (en) * | 2010-12-14 | 2012-03-13 | Sunpower Corporation | Bypass diode for a solar cell |
DE102011115340A1 (en) | 2011-10-07 | 2013-04-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Semiconductor component in the multilayer structure and the module formed therefrom |
AU2012344723A1 (en) * | 2011-11-30 | 2014-06-19 | Solar Systems Pty Ltd | Semiconductor substrate for a photovoltaic power module |
US8581242B2 (en) * | 2012-02-21 | 2013-11-12 | Atomic Energy Council—Institute of Nuclear Energy Research | Apparatus combining bypass diode and wire |
US9219171B2 (en) | 2012-10-16 | 2015-12-22 | Solexel, Inc. | Systems and methods for monolithically integrated bypass switches in photovoltaic solar cells and modules |
US10153388B1 (en) | 2013-03-15 | 2018-12-11 | Solaero Technologies Corp. | Emissivity coating for space solar cell arrays |
CN105261662B (en) * | 2015-10-23 | 2017-07-07 | 天津三安光电有限公司 | A kind of solar cell chip with diffusion junctions bypass diode |
US10847992B2 (en) | 2017-05-22 | 2020-11-24 | Gary Osborne | Apparatus for a solar pathway light |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4533933A (en) * | 1982-12-07 | 1985-08-06 | The United States Of America As Represented By The Secretary Of The Air Force | Schottky barrier infrared detector and process |
JPS6167968A (en) * | 1984-09-11 | 1986-04-08 | Sharp Corp | Gaas solar cell element |
US4846896A (en) * | 1987-07-08 | 1989-07-11 | Mitsubishi Denki Kabushiki Kaisha | Solar cell with integral reverse voltage protection diode |
JPH01205472A (en) * | 1988-02-10 | 1989-08-17 | Mitsubishi Electric Corp | Solar battery cell |
DE68923061T2 (en) | 1988-11-16 | 1995-11-09 | Mitsubishi Electric Corp | Solar cell. |
JPH0324768A (en) * | 1989-06-22 | 1991-02-01 | Sharp Corp | Solar battery with bypass diode |
JP2593957B2 (en) * | 1990-11-09 | 1997-03-26 | シャープ株式会社 | Solar cell with bypass diode |
JP3032422B2 (en) * | 1994-04-28 | 2000-04-17 | シャープ株式会社 | Solar cell and method of manufacturing the same |
US5616185A (en) * | 1995-10-10 | 1997-04-01 | Hughes Aircraft Company | Solar cell with integrated bypass diode and method |
-
1998
- 1998-10-05 DE DE19845658A patent/DE19845658C2/en not_active Expired - Fee Related
-
1999
- 1999-09-28 US US09/787,857 patent/US6452086B1/en not_active Expired - Fee Related
- 1999-09-28 EP EP99970210A patent/EP1121718A1/en not_active Withdrawn
- 1999-09-28 JP JP2000575169A patent/JP2002527889A/en not_active Withdrawn
- 1999-09-28 WO PCT/DE1999/003103 patent/WO2000021138A1/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO0021138A1 * |
Also Published As
Publication number | Publication date |
---|---|
US6452086B1 (en) | 2002-09-17 |
DE19845658A1 (en) | 2000-04-13 |
JP2002527889A (en) | 2002-08-27 |
WO2000021138A1 (en) | 2000-04-13 |
DE19845658C2 (en) | 2001-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19845658C2 (en) | Solar cell with bypass diode | |
EP1977442B1 (en) | Method for fabricating a semiconductor component having regions with different levels of doping | |
EP1056137B1 (en) | Solar cell with a protection diode and its manufacturing method | |
DE68923061T2 (en) | Solar cell. | |
EP1421629B1 (en) | Solar cell and method for production thereof | |
EP2223344A2 (en) | Rear-contact solar cell having large rear side emitter regions and method for producing the same | |
WO2010029180A1 (en) | Rear contact solar cell with an integrated bypass diode, and method for producing same | |
DE102013219561A1 (en) | Process for producing a photovoltaic solar cell with at least one heterojunction | |
DE102004050269A1 (en) | Process for the contact separation of electrically conductive layers on back-contacted solar cells and solar cell | |
WO1993015527A1 (en) | Integrated-circuit stacked-cell solar module | |
DE112015002554T5 (en) | Relative doping concentration levels in solar cells | |
DE3819671C2 (en) | ||
DE3903837A1 (en) | SOLAR CELL AND METHOD FOR THE PRODUCTION THEREOF | |
WO2024008455A1 (en) | Back-contact solar cell comprising passivated contacts, and manufacturing method | |
WO2014128032A1 (en) | Semiconductor component, more particularly solar cell, and method for producing a metallic contact-making structure of a semiconductor component | |
WO2009074468A2 (en) | Rear-contact solar cell having an integrated bypass diode function and method for producing the same | |
EP3857617A1 (en) | Method for singulating a semiconductor component having a pn junction and semiconductor component having a pn junction | |
DE102013219565A1 (en) | Photovoltaic solar cell and method for producing a photovoltaic solar cell | |
DE3880109T2 (en) | SUN CELL FOR LOW LIGHT LEVEL. | |
WO2020064670A1 (en) | Semiconductor component and method for singulating a semiconductor component having a pn junction | |
DE112012004680T5 (en) | Bypass diode | |
DE69001016T2 (en) | METHOD FOR PRODUCING TUNGSTEN ANTIMONE OHMIC CONTACTS WITH LOW RESISTANCE ON III-IV SEMICONDUCTOR MATERIALS. | |
EP4147277B1 (en) | Back-side contact solar cell | |
WO2016023780A1 (en) | Method for producing doping regions in a semiconductor layer of a semiconductor component | |
DE1966243C3 (en) | Method of manufacturing a Schottky diode for use as an impedance element in integrated circuits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010425 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE GB IT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EADS ASTRIUM GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20050401 |