EP0325931A1 - Method and apparatus for the oscillation of a continuous-casting mould - Google Patents

Method and apparatus for the oscillation of a continuous-casting mould Download PDF

Info

Publication number
EP0325931A1
EP0325931A1 EP89100324A EP89100324A EP0325931A1 EP 0325931 A1 EP0325931 A1 EP 0325931A1 EP 89100324 A EP89100324 A EP 89100324A EP 89100324 A EP89100324 A EP 89100324A EP 0325931 A1 EP0325931 A1 EP 0325931A1
Authority
EP
European Patent Office
Prior art keywords
oscillation
strand
lifting height
per minute
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89100324A
Other languages
German (de)
French (fr)
Other versions
EP0325931B1 (en
Inventor
Manfred Dr. Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clecim SAS
Davy Distington Ltd
Original Assignee
Clecim SAS
Davy Distington Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clecim SAS, Davy Distington Ltd filed Critical Clecim SAS
Publication of EP0325931A1 publication Critical patent/EP0325931A1/en
Application granted granted Critical
Publication of EP0325931B1 publication Critical patent/EP0325931B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/053Means for oscillating the moulds

Definitions

  • the invention relates to a method and a device for oscillating a steel continuous casting mold according to the preambles of claims 1 and 9.
  • continuous molds are oscillated in order to introduce lubricant between the strand crust and the mold wall, as a result of which sticking of the strand crust is to be avoided or reduced.
  • the invention is therefore based on the object of providing an oscillation method for continuous steel casting which, on the one hand, improves the strand surface with respect to oscillation marks or reduces surface defects and, at the same time, permits a large variability in the strand pull-out speed during casting and while a casting is in progress.
  • casting speeds should be made possible which go beyond the state of the art, e.g. 2 - 6 m / min for slabs or 4 - 10 m / min for billets and thin slabs.
  • the oscillation method according to the invention or the Oszil Lation device enable continuous casting with an improved strand surface, in particular if the strand pull-out speed has to be varied for procedural reasons or, for example, by predetermined cycle times in connection with the steel production.
  • the formation of oscillation marks is reduced.
  • Steel grades known as glue grades tend to reduce the tendency to crack in the oscillation marks in combination with appropriate lubricants.
  • Starting breakthroughs (bleedings) within the mold or breakthroughs outside the mold can be reduced.
  • the extrusion speeds known as casting speeds can be increased far beyond the conventional range with this method.
  • the oscillation frequency can be increased step by step in the first area etc. with the increasing strand withdrawal speed.
  • the oscillation frequency can be raised in the first area while maintaining the lifting height.
  • An essential feature of the non-sinusoidal oscillation is the widely variable speed of the mold up and down movement within an oscillation cycle or within a certain stroke height. In the sense of a further process example, it is recommended to increase the oscillation frequency in the first area while maintaining the lifting height between 2 mm and 5 mm and in the second area to increase the lifting height in proportion to the line withdrawal speed between 2 and 12 mm.
  • a negative strip time t N 0.1-0.2 t c is proposed in the first area, where t c represents the time for an oscillation cycle.
  • FIG. 1 an oscillation cycle t c is shown in FIG. 1 in the path-time diagram.
  • H is the lifting height and t is the time.
  • Fig. 2 is dash-dotted with V c on the same time scale Line withdrawal speed, with V N the mold downward speed, which is substantially greater than V c during the entire downward stroke, and with V P the mold upward speed, ie during the upward stroke.
  • a time period t N represents the negative strip time and a time period t P the positive strip time.
  • the solidifying strand crust is subjected to a compressive stress and during the time period t P to a tensile stress.
  • a frequency range f in cpm (cycles per minute) is shown in a hatched field as a function of different line pull-out speeds.
  • This frequency range includes the frequencies according to the invention for different steel qualities.
  • the frequencies for steel grades with strong adhesive properties, or in other words, with a weak strand shell lie in the area of the bathroom mirror. These steel grades are also referred to as "adhesive grades”.
  • a steel from the group of adhesive grades is oscillated in the area 1 (indicated by the dimensional arrow) along the boundary line x, ie up to a strand withdrawal speed between 0.1 and approximately 1.2 m / min between 60 and 120 strokes per minute (cpm).
  • the oscillation frequency f remains constant at approximately 120 strokes per minute.
  • the lifting height h is, for example, proportional to the strand withdrawal speed between 2 and 20 mm, preferably between 4 and 10 mm increased at constant oscillation frequency.
  • the negative strip time t N is approximately 0.1 seconds in areas 1 and 2.
  • the frequency is increased in the area 1 along the boundary line y in the area 1 from 0.1 m / min to approximately 1.2 m / min from 120 to approximately 200 strokes per minute.
  • the frequency f remains constant at approximately 200 strokes per minute.
  • the lifting height in area 2 is increased, for example, in proportion to the strand withdrawal speed between 2 and 10 mm, preferably between 2 and 8 mm at a constant oscillation frequency.
  • the negative strip time t N is in the order of 0.1 seconds in the areas 1 and 2.
  • a mold is suspended from two short levers 6 and 7 at 5 and guided in its oscillating movement according to arrow 8.
  • 10 shows a raised foundation or a corresponding steel structure.
  • the short lever 7 is connected at its extension 9 to a hydraulic oscillation drive 11, only shown schematically.
  • a controller 12 ensures that the oscillation frequency f and the lifting height h of the oscillation drive 11 are set according to the program during the casting operation according to the stored programs in the computer 14. From the hydraulic control 12 is feedback 21 about the lau
  • the measured oscillation force determined the friction in the mold 5 and compared it with a predetermined friction value 22 in the discriminator 15.
  • the comparison signal 23 obtained, the setting of the negative strip time t N and the ratio t N to t c , the lifting height, the frequency etc. can be continuously optimized in the predetermined frame.
  • the friction can also be measured directly on the mold or on the lever arms of the oscillation drive using known devices, such as accelerometers, pressure gauges and / or strain gauges, and a combination of
  • the mold 5 can be provided with a known breakthrough warning device 25.
  • a signal 26 of the breakthrough warning 25 can directly influence the strand pull-off speed via a controller 18 and thereby prevent a strand breakthrough.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

Beim Oszillieren einer Stahlstranggiesskokille wird in Abhängigkeit der Strangabzugsgeschwindigkeit die Hubhöhe eingestellt. Zur Verbesserung der Strangoberfläche und zur Verhütung von Oberflächenfehlern und Durchbrüchen bei Klebergüten, insbesondere beim Giessen mit hohen Strangabzugsgeschwindigkeiten, soll eine sägezahnartige Oszillationsbewegung, die im wesentlichen während der ganzen Abwärtsbewegung den Strang überholt, eingesetzt werden. In einem ersten Bereich mit Strangabzugsgeschwindigkeiten bis 0,8 - 1,2 m/min soll die Oszillationsfrequenz von etwa 60 - 120 Hüben pro Minute auf 120 - 200 Hübe pro Minute angehoben werden. Bei einer weiteren Erhöhung der Strangabzugsgeschwindigkeit über 0,8 - 1,2 m/min in einem zweiten Bereich soll die Oszillationsfrequenz konstant gehalten und die Hubhöhe zur Strangabzugsgeschwindigkeit unter Beibehaltung einer Negativstripzeit von etwa 0,1 s vergrössert werden.When a steel continuous casting mold oscillates, the lifting height is set depending on the line withdrawal speed. To improve the surface of the strand and to prevent surface defects and breakthroughs in adhesive grades, especially when casting at high strand withdrawal speeds, a sawtooth-like oscillation movement which essentially overtakes the strand during the entire downward movement should be used. In a first area with line take-off speeds of up to 0.8-1.2 m / min, the oscillation frequency is to be increased from approximately 60-120 strokes per minute to 120-200 strokes per minute. If the strand take-off speed is further increased by more than 0.8-1.2 m / min in a second area, the oscillation frequency should be kept constant and the lifting height to the strand take-off speed should be increased while maintaining a negative strip time of about 0.1 s.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Oszillieren einer Stahlstranggiesskokille gemäss den Oberbegriffen der Ansprüche 1 und 9.The invention relates to a method and a device for oscillating a steel continuous casting mold according to the preambles of claims 1 and 9.

Beim Stranggiessen, insbesondere beim Stranggiessen von Stahl, werden Durchlaufkokillen oszilliert, um Schmiermit­tel zwischen Strangkruste und Kokillenwand einzubringen, wodurch ein Kleben der Strangkruste vermieden bzw. redu­ziert werden soll.In continuous casting, in particular in the continuous casting of steel, continuous molds are oscillated in order to introduce lubricant between the strand crust and the mold wall, as a result of which sticking of the strand crust is to be avoided or reduced.

Für das Stahlstranggiessen sind verschiedene Oszillations­einrichtungen und Oszillationsverfahren vorgeschlagen wor­den. Weite Anwendung haben mechanische Oszillationsantrie­be mit sinusförmiger Bewegungscharakteristik gefunden. Bei niedrigen und mittleren Giessgeschwindigkeiten hat sich die sinusförmige Oszillationsbewegung gut bewährt. Aus der DE-AS 2'002'366 ist es bei einer Anpassung sinusförmiger Oszillationsbewegungen an hohe Geschwindigkeiten bekannt, die Hubhöhe proportional zur Strangabzugsgeschwindigkeit zu erhöhen. In anderen Literaturen wird aber auch vorge­schlagen, die Frequenz in Abhängigkeit von der Strangab­zugsgeschwindigkeit zu erhöhen. Werden bei hohen Strangab­zugsgeschwindigkeiten, z.B. zwischen 2 und 6 m/min die Be­wegungsverhältnisse zwischen einer sinusförmigen Kokillen­bewegung und einer bewegten Strangkruste proportional über­tragen, so muss entweder ein entsprechend langer Hub oder eine entsprechend hohe Frequenz bzw. eine Kombination ei­ner Vergrösserung beider Bemessungsgrössen gewählt werden. Mit dieser Art der Strangoszillation konnten insbesondere bei schwierig zu vergiessenden Strangqualitäten, sogenann­ten Klebergüten, keine befriedigenden Ergebnisse erzielt werden.Various oscillation devices and oscillation methods have been proposed for continuous steel casting. Mechanical oscillation drives with sinusoidal motion characteristics have found wide application. The sinusoidal oscillation movement has proven itself well at low and medium casting speeds. From DE-AS 2'002'366 it is known, when adapting sinusoidal oscillatory movements to high speeds, to increase the lifting height in proportion to the line withdrawal speed. However, other literature also suggests increasing the frequency as a function of the line withdrawal speed. If the movement ratios between a sinusoidal mold movement and a moving strand crust are transmitted proportionally at high strand withdrawal speeds, for example between 2 and 6 m / min, either a correspondingly long stroke or a correspondingly high frequency or a combination of an enlargement of both design parameters can be selected. With this type of strand oscillation, it was not possible to achieve satisfactory results, particularly in the case of strand qualities which are difficult to cast, so-called adhesive grades.

Neben der sinusoidalen Oszillationsbewegung sind beispiels­weise in der JP-OS 61-162 256 auch andere Oszillationsbewe­gungen bekannt geworden. Diese nicht sinusoidalen Oszil­lationsbewegungen haben zwischen dem Ab-und Aufwärtshub in der Regel ein ungleiches Zeitverhältnis, z.B. 1 : 3. Im Weg-Zeit-Diagramm haben solche Oszillationen eine sägezahn­förmige Bewegungslinie. Der Antrieb kann über hydraulische oder äquivalente Kraftgeräte erfolgen. Solche nicht si­nusoidalen Oszillationsantriebe sind leicht regulierbar bezüglich Hub und Frequenz. Trotzdem ist die Qualität der Strangoberfläche bezüglich Oszillationsmarken, Strangdurch­brüchen in der Kokille bei hohen Giessgeschwindigkeiten, insbesondere bei Stahlqualitäten, die als Klebergüten be­kannt sind, noch unbefriedigend.In addition to the sinusoidal oscillation movement, other oscillation movements have also become known, for example, in JP-OS 61-162 256. These non-sinusoidal oscillatory movements usually have an uneven time ratio between the down and up stroke, e.g. 1: 3. In the path-time diagram, such oscillations have a sawtooth-shaped movement line. The drive can take place via hydraulic or equivalent power devices. Such non-sinusoidal oscillation drives are easily adjustable in terms of stroke and frequency. Nevertheless, the quality of the strand surface with regard to oscillation marks, strand breakthroughs in the mold at high casting speeds, in particular in the case of steel qualities known as adhesive grades, is still unsatisfactory.

Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Os­zillationsverfahren für das Stahlstranggiessen zu schaf­fen, das einerseits die Strangoberfläche bezüglich Oszil­lationsmarken verbessert bzw. Oberflächenfehler vermindert und gleichzeitig eine grosse Variabilität der Strangaus­ziehgeschwindigkeit beim Angiessen und während eines lau­fenden Gusses zulässt. Darüber hinaus sollen auch Klebergü­ten mit verbesserter Strangoberfläche und, bei hoher Durch­bruchsicherheit, dem Giesszyklus angepassten Giessgeschwin­digkeiten herstellbar sein. Weiter sollen Giessgeschwindig­keiten ermöglicht werden, die über den Stand der Technik hinausführen, z.B. 2 - 6 m/min bei Brammen bzw. 4 - 10 m/min bei Knüppeln und Dünnbrammen.The invention is therefore based on the object of providing an oscillation method for continuous steel casting which, on the one hand, improves the strand surface with respect to oscillation marks or reduces surface defects and, at the same time, permits a large variability in the strand pull-out speed during casting and while a casting is in progress. In addition, it should also be possible to produce adhesive grades with an improved strand surface and, with a high level of breakdown resistance, casting speeds adapted to the casting cycle. Furthermore, casting speeds should be made possible which go beyond the state of the art, e.g. 2 - 6 m / min for slabs or 4 - 10 m / min for billets and thin slabs.

Das erfindungsgemässe Oszillationsverfahren bzw. die Oszil­ lationsvorrichtung ermöglichen ein Stranggiessen mit ver­besserter Strangoberfläche und zwar insbesondere, wenn die Strangausziehgeschwindigkeit aus verfahrenstechnischen Gründen oder auch beispielsweise durch vorbestimmte Takt­zeiten im Zusammenhang mit der Stahlherstellung variiert werden muss. Die Ausbildung von Oszillationsmarken wird dabei vermindert. Stahlgüten, die als Klebergüten bekannt sind, neigen bei diesem Verfahren in Kombination mit ent­sprechenden Schmiermitteln zu verminderter Rissneigung in den Oszillationsmarken. Beginnende Durchbrüche (Bleedings) innerhalb der Kokille bzw. Durchbrüche ausserhalb der Ko­kille können dadurch reduziert werden. Die als Giessge­schwindigkeiten bekannten Strangausziehgeschwindigkeiten können mit diesem Verfahren weit über den konventionellen Bereich gesteigert werden.The oscillation method according to the invention or the Oszil Lation device enable continuous casting with an improved strand surface, in particular if the strand pull-out speed has to be varied for procedural reasons or, for example, by predetermined cycle times in connection with the steel production. The formation of oscillation marks is reduced. Steel grades known as glue grades tend to reduce the tendency to crack in the oscillation marks in combination with appropriate lubricants. Starting breakthroughs (bleedings) within the mold or breakthroughs outside the mold can be reduced. The extrusion speeds known as casting speeds can be increased far beyond the conventional range with this method.

Die Oszillationsfrequenz kann im ersten Bereich schritt­weise etc. mit der ansteigenden Strangabzugsgeschwindig­keit angehoben werden. Gemäss einem weiteren Verfahrens­beispiel kann im ersten Bereich mit zusätzlichem Vorteil die Oszillationsfrequenz von etwa 60 - 120 Hüben pro Minu­te beim Start proportional auf 120 - 200 Hübe pro Minute hochgefahren werden, wobei eine Proportionalität f = K · V

Figure imgb0001
gewählt und n < 0,5, K = 100 - 200 cpm eingesetzt wird. Die Oszillationsfrequenz kann dabei im ersten Bereich unter Beibehaltung der Hubhöhe hochgefahren werden.The oscillation frequency can be increased step by step in the first area etc. with the increasing strand withdrawal speed. According to a further example of the method, the oscillation frequency of approximately 60-120 strokes per minute can be increased proportionally to 120-200 strokes per minute in the first area, with a proportionality f = K · V
Figure imgb0001
selected and n <0.5, K = 100 - 200 cpm is used. The oscillation frequency can be raised in the first area while maintaining the lifting height.

Ein wesentliches Merkmal der nicht sinusoidalen Oszilla­tion ist die in weiten Grenzen variierbare Geschwindigkeit der Kokillenauf- und abwärtsbewegung innerhalb eines Oszil­lationszyklusses oder innerhalb einer bestimmten Hubhöhe. Im Sinne eines weiteren Verfahrensbeispieles wird empfoh­len, im ersten Bereich die Oszillationsfrequenz unter Bei­behaltung der Hubhöhe zwischen 2 mm und 5 mm hochzufahren und im zweiten Bereich die Hubhöhe proportional zur Strang­abzugsgeschwindigkeit zwischen 2 und 12 mm zu erhöhen.An essential feature of the non-sinusoidal oscillation is the widely variable speed of the mold up and down movement within an oscillation cycle or within a certain stroke height. In the sense of a further process example, it is recommended to increase the oscillation frequency in the first area while maintaining the lifting height between 2 mm and 5 mm and in the second area to increase the lifting height in proportion to the line withdrawal speed between 2 and 12 mm.

Als zusätzliche Eingrenzung wird im ersten Bereich eine Ne­gativstripzeit tN = 0,1 - 0,2 tc vorgeschlagen, wobei tc die Zeit für einen Oszillationszyklus darstellt.As an additional limitation, a negative strip time t N = 0.1-0.2 t c is proposed in the first area, where t c represents the time for an oscillation cycle.

Im zweiten Bereich wird bei konstant gehaltener Frequenz im Sinne zusätzlicher Verfahrensbeispiele das Geschwindig­keitsverhältnis

Figure imgb0002
vorgeschlagen und die Negativstripzeit tN nach folgender Gleichung eingestellt:
tN = 0,2 - 0,33 tc wobei tc die Zeit für einen Oszillationszyklus beträgt.In the second area, the frequency ratio is kept at a constant frequency in the sense of additional process examples
Figure imgb0002
proposed and the negative strip time t N set according to the following equation:
t N = 0.2 - 0.33 t c where t c is the time for an oscillation cycle.

Im nachfolgenden soll anhand von Diagrammen und Verfahrens­beispielen die Erfindung zusätzlich erläutert werden. Es zeigen:

  • Fig. 1 ein Weg-Zeit-Diagramm einer sägezahnartigen Os­zillationsbewegung,
  • Fig. 2 ein Geschwindigkeits-Zeit-Diagramm gemäss der Oszillationsbewegung von Fig. 1,
  • Fig. 3 ein Frequenz-Strangabzugsgeschwindigkeits-Dia­gramm,
  • Fig. 4 ein Hubhöhe-Strangabzugsgeschwindigkeits-Dia­gramm
  • Fig. 5 eine schematische Darstellung einer Oszilla­tionseinrichtung.
In the following, the invention is to be further explained using diagrams and process examples. Show it:
  • 1 is a path-time diagram of a sawtooth-like oscillation movement,
  • 2 shows a speed-time diagram according to the oscillation movement of FIG. 1,
  • 3 is a frequency-strand withdrawal speed diagram,
  • Fig. 4 is a lifting height-strand withdrawal speed diagram
  • Fig. 5 is a schematic representation of an oscillation device.

Zur Erläuterung einer sägezahnartigen Oszillationsbewegung einer Stranggiesskokille wird in Fig. 1 im Weg-Zeit-Dia­gramm ein Oszillationszyklus tc dargestellt. Mit h ist die Hubhöhe und mit t die Zeit bezeichnet. In Fig. 2 ist im gleichen Zeitmassstab strichpunktiert mit Vc die Strangabzugsgeschwindigkeit, mit VN die Kokillenabwärts­geschwindigkeit, die im wesentlichen während des ganzen Abwärtshubes grösser ist als Vc, und mit VP die Kokil­lenaufwärtsgeschwindigkeit, d.h. während des Aufwärtshu­bes, gezeichnet. Ein Zeitabschnitt tN stellt die Negativ­stripzeit und ein Zeitabschnitt tP die Positivstripzeit dar. Während dem Zeitabschnitt tN wird die erstarrende Strangkruste einer Druckbeanspruchung und während dem Zeit­abschnitt tP einer Zugbeanspruchung ausgesetzt. In Fig.3 ist in einem schraffierten Feld ein Frequenzbereich f in cpm (cycles per minute) in Abhängigkeit von unterschiedli­chen Strangausziehgeschwindigkeiten dargestellt. Dieser Frequenzbereich schliesst die erfindungsgemässen Frequen­zen für unterschiedliche Stahlqualitäten ein. Entlang der mit x bezeichneten Begrenzungslinie liegen die Frequenzen für Stahlqualitäten mit starker Klebeeigenschaft, oder an­ders ausgedrückt, mit schwacher Strangschale im Badspiegel­bereich. Diese Stahlgüten werden auch mit "Klebergüten" bezeichnet.To explain a sawtooth-like oscillation movement of a continuous casting mold, an oscillation cycle t c is shown in FIG. 1 in the path-time diagram. H is the lifting height and t is the time. In Fig. 2 is dash-dotted with V c on the same time scale Line withdrawal speed, with V N the mold downward speed, which is substantially greater than V c during the entire downward stroke, and with V P the mold upward speed, ie during the upward stroke. A time period t N represents the negative strip time and a time period t P the positive strip time. During the time period t N , the solidifying strand crust is subjected to a compressive stress and during the time period t P to a tensile stress. In FIG. 3, a frequency range f in cpm (cycles per minute) is shown in a hatched field as a function of different line pull-out speeds. This frequency range includes the frequencies according to the invention for different steel qualities. Along the boundary line marked x, the frequencies for steel grades with strong adhesive properties, or in other words, with a weak strand shell lie in the area of the bathroom mirror. These steel grades are also referred to as "adhesive grades".

Entlang der mit y bezeichneten Begrenzungslinie in Fig. 3 liegen die Frequenzen für Stahlqualitäten mit ausgeprägter Einziehungs- und Oszillationsmarkenbildung, d.h. diese Stähle bilden schon im Badspiegelbereich eine starke Strangschale, und erhalten dadurch tiefe Oszillations­marken bzw. Einziehungen (depressions).Along the boundary line denoted by y in Fig. 3 are the frequencies for steel grades with pronounced indentation and oscillation mark formation, i.e. these steels already form a strong strand shell in the area of the bathroom mirror, and thereby receive deep oscillation marks or depressions.

Ein Stahl aus der Gruppe der Klebergüten wird im Bereich 1 (mit Masspfeil bezeichnet) entlang der Begrenzungslinie x, d.h. bis zu einer Strangabzugsgeschwindigkeit zwischen 0,1 und etwa 1,2 m/min zwischen 60 und 120 Hüben pro Minute (cpm) oszilliert. Im Bereich 2, d.h. bei einer Strangab­zugsgeschwindigkeit ab etwa 0,8 - 1,2 m/min , bleibt die Oszillationsfrequenz f bei etwa 120 Hüben pro Minute kon­stant. Wie aus Fig. 4 hervorgeht, wird im Bereich 2 die Hubhöhe h beispielsweise proportional zur Strangabzugsge­schwindigkeit zwischen 2 und 20 mm, vorzugsweise zwischen 4 und 10 mm bei konstanter Oszillationsfrequenz erhöht. Die Negativstripzeit tN ist in den Bereichen 1 und 2 etwa 0,1 Sek.A steel from the group of adhesive grades is oscillated in the area 1 (indicated by the dimensional arrow) along the boundary line x, ie up to a strand withdrawal speed between 0.1 and approximately 1.2 m / min between 60 and 120 strokes per minute (cpm). In area 2, ie at a line withdrawal speed from approximately 0.8-1.2 m / min, the oscillation frequency f remains constant at approximately 120 strokes per minute. As can be seen from FIG. 4, in region 2 the lifting height h is, for example, proportional to the strand withdrawal speed between 2 and 20 mm, preferably between 4 and 10 mm increased at constant oscillation frequency. The negative strip time t N is approximately 0.1 seconds in areas 1 and 2.

Bei einer Stahlqualität mit ausgeprägter Oszillationsmar­kenbildung wird in Fig. 3 im Bereich 1 entlang der Begren­zungslinie y die Frequenz zwischen 0,1 m/min bis etwa 1,2 m/min von 120 auf etwa 200 Hübe pro Minute angehoben. Im Bereich 2, d.h. bei Strangabzugsgeschwindigkeiten über etwa 1,2 m/min bleibt die Frequenz f bei etwa 200 Hüben pro Minute konstant. Wie aus Fig. 4 hervorgeht, wird im Bereich 2 die Hubhöhe beispielsweise proportional zur Strangabzugsgeschwindigkeit zwischen 2 und 10 mm, vorzugs­weise zwischen 2 und 8 mm bei konstanter Oszillationsfre­quenz erhöht. Die Negativstripzeit tN ist in den Berei­chen 1 und 2 in der Grössenordnung von 0,1 Sek. Die Nega­tivstripzeit tN wird im weiteren im ersten Bereich auf Werte zwischen 0,1 und 0,2 tc eingestellt, wobei tc die Zeit für einen Oszillationszyklus darstellt. Im Be­reich 2 mit Strangabziehgeschwindigkeiten über etwa 1,2 m/min soll die Negativstripzeit tN = 0,2 - 0,33 tc betragen.In the case of a steel quality with pronounced oscillation mark formation, the frequency is increased in the area 1 along the boundary line y in the area 1 from 0.1 m / min to approximately 1.2 m / min from 120 to approximately 200 strokes per minute. In area 2, ie at line withdrawal speeds above approximately 1.2 m / min, the frequency f remains constant at approximately 200 strokes per minute. As can be seen from FIG. 4, the lifting height in area 2 is increased, for example, in proportion to the strand withdrawal speed between 2 and 10 mm, preferably between 2 and 8 mm at a constant oscillation frequency. The negative strip time t N is in the order of 0.1 seconds in the areas 1 and 2. The negative strip time t N is further set in the first area to values between 0.1 and 0.2 t c , where t c is the time for represents an oscillation cycle. In area 2 with strand pulling speeds above approximately 1.2 m / min, the negative strip time t N = 0.2-0.33 t c .

In Fig. 5 ist mit 5 eine Kokille an zwei kurzen Hebeln 6 und 7 aufgehängt und bei ihrer Oszillationsbewegung gemäss Pfeil 8 geführt. Mit 10 ist ein hochgezogenes Fundament bzw. eine entsprechende Stahlstruktur dargestellt. Der kur­ze Hebel 7 ist an seiner Verlängerung 9 mit einem nur sche­matisch dargestellten hydraulischen Oszillationsantrieb 11 verbunden. Eine Steuerung 12 sorgt für eine programmgemäs­se Einstellung der Oszillationsfrequenz f und der Hubhöhe h des Oszillationsantriebes 11 während des Giessbetriebes gemäss den gespeicherten Programmen im Rechner 14. Es sind beispielsweise Oszillationsprogramme 20 für unterschiedli­che Stahlqualitäten, Giessformate, Schmiermittel, Strangab­zugsgeschwindigkeiten etc. gespeichert. Von der hydrauli­schen Steuerung 12 wird als Rückmeldung 21 über die lau­ fend gemessene Oszillationskraft die Reibung in der Kokil­le 5 festgestellt und mit einem vorbestimmten Reibungswert 22 im Diskriminator 15 verglichen. Ueber das erhaltene Ver­gleichssignal 23 kann die Einstellung der Negativstripzeit tN und das Verhältnis tN zu tc, die Hubhöhe, die Fre­quenz etc. im vorbestimmten Rahmen laufend optimiert wer­den. Die Reibung kann auch direkt an der Kokille oder an den Hebelarmen des Oszillationsantriebes mit bekannten Vorrichtungen gemessen werden, wie Beschleunigungsmesser, Druckmessdose und/oder Dehnmessstreifen sowie aus einer Kombination dieser Messvorrichtungen.5, a mold is suspended from two short levers 6 and 7 at 5 and guided in its oscillating movement according to arrow 8. 10 shows a raised foundation or a corresponding steel structure. The short lever 7 is connected at its extension 9 to a hydraulic oscillation drive 11, only shown schematically. A controller 12 ensures that the oscillation frequency f and the lifting height h of the oscillation drive 11 are set according to the program during the casting operation according to the stored programs in the computer 14. From the hydraulic control 12 is feedback 21 about the lau The measured oscillation force determined the friction in the mold 5 and compared it with a predetermined friction value 22 in the discriminator 15. Using the comparison signal 23 obtained, the setting of the negative strip time t N and the ratio t N to t c , the lifting height, the frequency etc. can be continuously optimized in the predetermined frame. The friction can also be measured directly on the mold or on the lever arms of the oscillation drive using known devices, such as accelerometers, pressure gauges and / or strain gauges, and a combination of these measuring devices.

Im Sinne einer zusätzlichen Alternative kann die Kokille 5 mit einer bekannten Durchbruchwarneinrichtung 25 versehen sein. Ein Signal 26 der Durchbruchwarnung 25 kann über ei­ne Steuerung 18 direkt auf die Strangabziehgeschwindigkeit Einfluss nehmen und dadurch einen Strangdurchbruch verhin­dern.In the sense of an additional alternative, the mold 5 can be provided with a known breakthrough warning device 25. A signal 26 of the breakthrough warning 25 can directly influence the strand pull-off speed via a controller 18 and thereby prevent a strand breakthrough.

Claims (10)

1. Verfahren zum Oszillieren einer Stahlstranggiesskokil­le mittels einer Oszillationseinrichtung, wobei die Hubhöhe in Abhängigkeit von der Strangabzugsgeschwin­digkeit eingestellt wird, dadurch gekennzeichnet, dass bei einer sägezahnartigen Oszillationsbewegung die Ko­kille im wesentlichen während der ganzen Abwärtsbewe­gung den Strang überholt und in einem ersten Bereich mit niedrigen Strangabzugsgeschwindigkeiten bis etwa 0,8 - 1,2 m/min die Oszillationsfrequenz von etwa 60 - 120 Hüben pro Minute beim Start auf 120 - 200 Hübe pro Minute unter Beibehaltung einer Negativstripzeit tN von etwa 0,1 s hochgefahren wird und dass bei weiterer Erhöhung der Strangabzugsgeschwindigkeit über 0,8 - 1,2 m/min in einem zweiten Bereich die Oszillationsfre­quenz konstant gehalten und die Hubhöhe in Abhängig­keit zur Strangabzugsgeschwindigkeit unter Beibehal­tung der Negativstripzeit tN von etwa 0,1 s vergrös­sert wird.1. A method for oscillating a continuous steel casting mold by means of an oscillation device, the lifting height being set as a function of the strand withdrawal speed, characterized in that, in the case of a sawtooth-like oscillation movement, the mold overtakes the strand essentially during the entire downward movement and in a first region with low strand withdrawal speeds about 0.8 - 1.2 m / min the oscillation frequency of about 60 - 120 strokes per minute is started up to 120 - 200 strokes per minute while maintaining a negative strip time t N of about 0.1 s and that with a further increase in Strand withdrawal speed above 0.8-1.2 m / min in a second area the oscillation frequency is kept constant and the lifting height is increased depending on the strand withdrawal speed while maintaining the negative strip time t N of about 0.1 s. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass im ersten Bereich die Oszillationsfrequenz f von etwa 60 - 120 Hüben pro Minute beim Start proportional zur Strangabzugsgeschwindigkeit auf 120 - 200 Hübe pro Minute hochgefahren wird, wobei die Proportionalität f = K · V
Figure imgb0003
mit n < 0,5 gewählt wird.
2. The method according to claim 1, characterized in that the oscillation frequency f is ramped up from about 60-120 strokes per minute at the start in proportion to the strand withdrawal speed to 120-200 strokes per minute, the proportionality f = K · V
Figure imgb0003
is chosen with n <0.5.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich­net, dass im ersten Bereich die Oszillationsfrequenz unter Beibehaltung der Hubhöhe hochgefahren wird.3. The method according to claim 1 or 2, characterized in that the oscillation frequency is ramped up while maintaining the lifting height in the first region. 4. Verfahren nach einem der Ansprüche 1 - 3, dadurch ge­kennzeichnet, dass im ersten Bereich die Oszillations­frequenz unter Beibehaltung der Hubhöhe zwischen 2 mm und 5 mm hochgefahren wird.4. The method according to any one of claims 1-3, characterized in that the oscillation frequency is ramped up in the first range while maintaining the lifting height between 2 mm and 5 mm. 5. Verfahren nach einem der Ansprüche 1 - 4, dadurch ge­kennzeichnet, dass im ersten Bereich die Negativstrip­zeit tN = 0,1 - 0,2 tc beträgt, wobei tc die Zeit für einen Oszillationszyklus beträgt.5. The method according to any one of claims 1-4, characterized in that in the first area the negative strip time t N = 0.1 - 0.2 t c , where t c is the time for an oscillation cycle. 6. Verfahren nach einem der Ansprüche 1 - 5, dadurch ge­kennzeichnet, dass im zweiten Bereich die Hubhöhe pro­portional zur Strangabzugsgeschwindigkeit zwischen 2 und 12 mm erhöht wird.6. The method according to any one of claims 1-5, characterized in that the lifting height is increased proportionally to the strand withdrawal speed between 2 and 12 mm in the second region. 7. Verfahren nach einem der Ansprüche 1 - 6, dadurch ge­kennzeichnet, dass im zweiten Bereich das Giessge­schwindigkeitsverhältnis
Figure imgb0004
beträgt.
7. The method according to any one of claims 1-6, characterized in that the casting speed ratio in the second region
Figure imgb0004
is.
8. Verfahren nach einem der Ansprüche 1 - 7, dadurch ge ­kennzeichnet, dass im zweiten Bereich die Negativstrip­zeit tN
tN = 0,2 - 0,33 tc
beträgt, wobei tc die Zeit für einen Oszillationszy­klus darstellt.
8. The method according to any one of claims 1-7, characterized in that the negative strip time t N in the second region
t N = 0.2 - 0.33 t c
is, where t c represents the time for an oscillation cycle.
9. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 - 8, wobei eine Oszillationseinrich­tung für eine Stahlstranggiesskokille mit Frequenz- und Amplitudenverstelleinrichtungen versehen ist und über einen Antrieb für sägezahnartige Oszillationscha­rakteristik sowie eine Führungseinrichtung für die Os­zillationsbewegung verfügt, dadurch gekennzeichnet, dass die Oszillationseinrichtung mit einer Rechner­steuerung verbunden ist und der Rechner Speicher für unterschiedliche Stahlqualitäten, Giessgeschwindig­keiten, Oszillationsprogramme für den 1. und 2.Bereich aufweist und dass eine Vergleichsschaltung die Ist-Rei­bungsmessung zwischen Strang und Kokille mit der ge­speicherten Soll-Reibung vergleicht und die Oszilla­tionsprogramme laufend auf eine Minimierung der Ist-Reibung überprüft.9. An apparatus for performing the method according to any one of claims 1-8, wherein an oscillation device for a continuous steel casting mold is provided with frequency and amplitude adjustment devices and has a drive for sawtooth-like oscillation characteristics and a guide device for the oscillation movement, characterized in that the oscillation device with a computer control is connected and the computer memory for different steel qualities, casting speeds, oscillation programs for the 1st and 2nd range and that a comparison circuit compares the actual friction measurement between the strand and the mold with the stored target friction and continuously checks the oscillation programs for a minimization of the actual friction. 10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Führungseinrichtung für die Oszillationsbewe­gung aus zwei kurzen Hebeln (6, 7) besteht, wovon ei­ner dieser Hebel (7) mit einem hydraulischen Oszilla­tionsantrieb verbunden ist.10. The device according to claim 9, characterized in that the guide device for the oscillation movement consists of two short levers (6, 7), of which one of these levers (7) is connected to a hydraulic oscillation drive.
EP89100324A 1988-01-28 1989-01-10 Method and apparatus for the oscillation of a continuous-casting mould Expired - Lifetime EP0325931B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH305/88 1988-01-28
CH30588 1988-01-28

Publications (2)

Publication Number Publication Date
EP0325931A1 true EP0325931A1 (en) 1989-08-02
EP0325931B1 EP0325931B1 (en) 1992-04-22

Family

ID=4183974

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89100324A Expired - Lifetime EP0325931B1 (en) 1988-01-28 1989-01-10 Method and apparatus for the oscillation of a continuous-casting mould

Country Status (8)

Country Link
US (1) US4883114A (en)
EP (1) EP0325931B1 (en)
JP (1) JP2727007B2 (en)
KR (1) KR960013877B1 (en)
CN (1) CN1012473B (en)
CA (1) CA1323483C (en)
DE (1) DE58901200D1 (en)
ES (1) ES2032609T3 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704788A1 (en) * 1993-05-04 1994-11-10 Clecim Sa Device for controlling the movements of an ingot mold.
WO1996027466A1 (en) * 1995-03-07 1996-09-12 Davy Distington Limited Continuous casting mould
WO1999059749A1 (en) * 1998-05-15 1999-11-25 Sms Demag Ag Method and device for drawing off a metal strand
AT517006B1 (en) * 2015-04-07 2018-08-15 Primetals Technologies Austria GmbH Continuous casting with optimized oscillation of the continuous casting mold

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219029A (en) * 1992-03-09 1993-06-15 Gunther Behrends Oscillator for continuous casting mold
US5823245A (en) * 1992-03-31 1998-10-20 Clecim Strand casting process
FR2689045B1 (en) * 1992-03-31 1994-06-24 Clecim Sa CONTINUOUS CASTING PROCESS.
JP3077006B2 (en) * 1992-05-21 2000-08-14 住友重機械工業株式会社 Horizontal vibration control device for mold in continuous casting equipment
CN1062203C (en) * 1997-08-07 2001-02-21 涟源钢铁集团有限公司 Method for keeping match of continuous casting drawing speed and mould vibration frequency
US5911268A (en) * 1997-10-16 1999-06-15 Custom Systems, Inc. Oscillating mold table assembly
DE19854329A1 (en) * 1998-11-25 2000-05-31 Schloemann Siemag Ag Method for oscillating a continuous casting mold using variable oscillation parameters
CN102274933B (en) * 2011-07-22 2013-04-17 中国科学院金属研究所 Method for effectively eliminating central defect of solidification blank and refining solidification structure
CN102688995B (en) * 2012-06-13 2013-12-11 鞍钢股份有限公司 Parameter control method for vibrating table of continuous casting crystallizer
CN107511465B (en) * 2017-07-13 2019-04-05 中冶连铸技术工程有限责任公司 A kind of process for realizing the high pulling rate of continuous casting by mode of vibration
RU2700979C1 (en) * 2018-10-23 2019-09-24 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Continuous steel casting method
CN109773146B (en) * 2019-01-11 2021-03-16 中冶赛迪技术研究中心有限公司 Vibration curve optimization control method for direct-drive electrohydraulic servo crystallizer
CN114918392A (en) * 2022-04-29 2022-08-19 重庆钢铁股份有限公司 Vibration control method for square billet continuous casting crystallizer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2002366B1 (en) * 1970-01-14 1971-01-21 Mannesmann Ag Sinusoidal mold movement during continuous casting
EP0031133A1 (en) * 1979-12-19 1981-07-01 Concast Holding Ag Device for oscillating a continuous casting mould
EP0144795A2 (en) * 1983-12-01 1985-06-19 Fried. Krupp Gesellschaft mit beschränkter Haftung Method of oscillating a horizontal continuous-casting mould for metals, especially steel
US4615375A (en) * 1983-04-18 1986-10-07 United States Steel Corporation Continuous casting mold friction monitor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021811B2 (en) * 1980-03-19 1985-05-29 新日本製鐵株式会社 Method for controlling lubrication between mold and slab in continuous casting
JPS57115948A (en) * 1981-01-09 1982-07-19 Nippon Steel Corp Continuous casting method
JPS59166358A (en) * 1983-03-14 1984-09-19 Sumitomo Metal Ind Ltd Continuous casting method
JPS606248A (en) * 1983-06-27 1985-01-12 Nippon Kokan Kk <Nkk> Oscillating method of continuous casting mold
JPS6087955A (en) * 1983-10-18 1985-05-17 Nippon Kokan Kk <Nkk> Oscillating method of vertical type mold for continuous casting
JPS6123559A (en) * 1984-07-12 1986-02-01 Nippon Kokan Kk <Nkk> Oscillating method of mold for continuous casting of steel
JPS61162256A (en) * 1985-01-08 1986-07-22 Nippon Kokan Kk <Nkk> Improvement of surface characteristic of continuous casting steel ingot
JPS62296945A (en) * 1986-06-16 1987-12-24 Nisshin Steel Co Ltd Continuous casting method for molten steel
JPH0687955A (en) * 1991-09-13 1994-03-29 Nippon Peroxide Co Ltd Polymerization of cyclohexene oxide
JP2816061B2 (en) * 1992-10-01 1998-10-27 シャープ株式会社 Flexible board mounting method
JPH06123559A (en) * 1992-10-12 1994-05-06 Mitsui Mining & Smelting Co Ltd Firing furnace of inside-outside simultaneous firing type for dome shaped ceramic product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2002366B1 (en) * 1970-01-14 1971-01-21 Mannesmann Ag Sinusoidal mold movement during continuous casting
EP0031133A1 (en) * 1979-12-19 1981-07-01 Concast Holding Ag Device for oscillating a continuous casting mould
US4615375A (en) * 1983-04-18 1986-10-07 United States Steel Corporation Continuous casting mold friction monitor
EP0144795A2 (en) * 1983-12-01 1985-06-19 Fried. Krupp Gesellschaft mit beschränkter Haftung Method of oscillating a horizontal continuous-casting mould for metals, especially steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 368 (M-543)[2425], 9. Dezember 1986; & JP-A-61 162 256 (NIPPON KOKAN K.K.) 22-07-1986 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704788A1 (en) * 1993-05-04 1994-11-10 Clecim Sa Device for controlling the movements of an ingot mold.
WO1994025201A1 (en) * 1993-05-04 1994-11-10 Clecim Device for controlling the motions of an ingot mold
WO1996027466A1 (en) * 1995-03-07 1996-09-12 Davy Distington Limited Continuous casting mould
CN1072046C (en) * 1995-03-07 2001-10-03 戴维-迪斯汀顿有限公司 Continuous casting mould
WO1999059749A1 (en) * 1998-05-15 1999-11-25 Sms Demag Ag Method and device for drawing off a metal strand
DE19823361A1 (en) * 1998-05-15 1999-11-25 Mannesmann Ag Continuous billet extraction
AT517006B1 (en) * 2015-04-07 2018-08-15 Primetals Technologies Austria GmbH Continuous casting with optimized oscillation of the continuous casting mold

Also Published As

Publication number Publication date
KR960013877B1 (en) 1996-10-10
KR890011650A (en) 1989-08-21
ES2032609T3 (en) 1993-02-16
CN1036157A (en) 1989-10-11
EP0325931B1 (en) 1992-04-22
US4883114A (en) 1989-11-28
JPH01224155A (en) 1989-09-07
CA1323483C (en) 1993-10-26
DE58901200D1 (en) 1992-05-27
JP2727007B2 (en) 1998-03-11
CN1012473B (en) 1991-05-01

Similar Documents

Publication Publication Date Title
EP0325931B1 (en) Method and apparatus for the oscillation of a continuous-casting mould
DE19720768C1 (en) Method and device for producing steel slabs
DE2953923C2 (en) Method for predetermining the volatility in an LD converter
DE3234918C2 (en) Method and device for forming sand piles for consolidating soft ground
DE69530567T2 (en) METHOD AND DEVICE FOR CONTINUOUSLY POURING METAL MELT
DE2743025B2 (en) Method for expanding the strand width of a steel strand in the strand
WO2002018077A1 (en) Continuous casting installation comprising a soft reduction section
EP0044291B1 (en) Means for measuring the frictional force between the mould and the strand at continuous casting
EP0992302B1 (en) Method and apparatus for continuously controlling the basic setting and oscillation parameters of a continuous casting mould
EP0144795B1 (en) Method of oscillating a horizontal continuous-casting mould for metals, especially steel
EP1307309B1 (en) Method for producing steel slabs
WO2004028725A1 (en) Method and device for commencing a casting process
DE2743579A1 (en) METAL CONTROL METHOD FOR CONTINUOUS CASTING
DE2002366B1 (en) Sinusoidal mold movement during continuous casting
EP0331612B1 (en) Method upon a casting plant for producing strands
EP1133370B1 (en) Method for oscillating a continuous-casting mould by means of variable oscillation parameters
DE102006047013B3 (en) Method for determining a liquid phase in the interior of a strand which has already solidified on its surface
DE102017106559B4 (en) Design or implementation of a movement task of a moving mass in a mechanical system along at least one axis of movement
EP1369192B1 (en) Method for determining the position of the liquidus tip of a continuous casting by applying an oscillation
EP1365873B1 (en) Method for determining the characteristics of an oscillation system in an oscillating continuous casting mould
DE60015507T2 (en) Method for smoothing a product in sheet form and smoothing tool
EP2849903B1 (en) Method and strand guide for influencing the solidification of the partially still liquid core during continuous casting
DE2640547A1 (en) METHOD AND DEVICE FOR THE PRODUCTION OF COVERED GLASS SLAB
DE1135620B (en) Method and device for casting steel in molds filled with liquid slag
AT210074B (en) Process for casting steel in molds filled with liquid slag

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19891201

17Q First examination report despatched

Effective date: 19910925

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 58901200

Country of ref document: DE

Date of ref document: 19920527

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2032609

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931214

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931217

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19931227

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940110

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950111

Ref country code: SE

Effective date: 19950111

EAL Se: european patent in force in sweden

Ref document number: 89100324.6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950131

BERE Be: lapsed

Owner name: DAVY (DISTINGTON) LTD

Effective date: 19950131

Owner name: CLECIM

Effective date: 19950131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951003

EUG Se: european patent has lapsed

Ref document number: 89100324.6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991213

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010928

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071218

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090109