EP0325701A1 - Antennenstruktur - Google Patents

Antennenstruktur Download PDF

Info

Publication number
EP0325701A1
EP0325701A1 EP88117439A EP88117439A EP0325701A1 EP 0325701 A1 EP0325701 A1 EP 0325701A1 EP 88117439 A EP88117439 A EP 88117439A EP 88117439 A EP88117439 A EP 88117439A EP 0325701 A1 EP0325701 A1 EP 0325701A1
Authority
EP
European Patent Office
Prior art keywords
elements
antenna
conducting
heat
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88117439A
Other languages
English (en)
French (fr)
Other versions
EP0325701B1 (de
Inventor
Rudolf Dr.-Ing. Zahn
Günter Dr.-Ing. Helwig
Hans-Wolfgang Dr. rer. nat. Schröder
Christian Dipl.-Ing. Borgwardt
Albert Dipl.-Ing. Braig
Kay Dipl.-Ing. Dittrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier GmbH
Original Assignee
Dornier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier GmbH filed Critical Dornier GmbH
Publication of EP0325701A1 publication Critical patent/EP0325701A1/de
Application granted granted Critical
Publication of EP0325701B1 publication Critical patent/EP0325701B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/02Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the weight factor is of crucial importance for aerospace applications.
  • high dimensional stability is always required for both applications. This means that the antenna must be resistant to deformation against loads (aerodynamic loads, acceleration at start), against low-frequency vibrations or the thermal loads that occur in space.
  • the integration of elements that conduct electromagnetic waves can relate, for example, to the field of low-frequency currents.
  • An example of this are feed lines. These are realized by embedding conductive wires or conductive strips in or on the structures made of non-conductive plastic.
  • An advantage is the elimination of additional weights due to insulation and connecting elements.
  • the integration can also be carried out to such an extent that entire parts of the supporting structure are designed as electronic boards. This can be done, for example, by producing the relevant structural parts from non-conductive high-performance fibers such as SiC, aramid or PE.
  • the conductor tracks and fastenings of the components can be carried out using customary techniques.
  • the advantage is, in turn, the additional weight savings due to the elimination boards.
  • signal lines can be made by embedding the line together with an insulating jacket in a CFRP structure.
  • the insulation is designed, for example, as a load-bearing element with a reinforcement made of non-conductive fibers.
  • the structure can be, for example, like a coaxial cable or like a waveguide. If the screening effect of the CFRP is not sufficient, the insulation can be done, for example, with metallized fibers with high high-frequency conductivity, whereby these fibers can also be designed to be load-bearing.
  • electromagnetic wave guiding elements can also relate to the optical wave range.
  • own fiber optic cables as optical signal lines are superfluous.
  • this is done by embedding the signal-carrying glass fiber in the structure, which consists of fiber-reinforced plastics.
  • the implementation can be facilitated, for example, by incorporating the glass fiber into rovings or fabric made from the supporting fibers. Again, additional weight due to the sheaths of the glass fiber cable is advantageously eliminated.

Abstract

Tragende Struktur (4) einer aktiven Antenne (8) für Luft-oder Raumfahrtanwendungen aus faserverstärktem Kunststoff mit einer Integration von wärmeleitenden Elementen und/oder elektromagnetische Wellen leitenden Elementen (9, 10, 11, 12) in die tragende Struktur (4).

Description

  • Die Erfindung betrifft eine tragende Struktur einer Antenne für Luft- und Raumfahrtanwendungen, insbesondere für eine aktive Mikrowellenantenne aus faserverstärktem Kunststoff.
  • Für Luft- und Raumfahrtanwendungen kommt dem Faktor des Gewichts eine entscheidende Bedeutung zu. Für beiden An­wendungen ist daneben stets eine hohe Dimensionsstabilität gefordert. Das heißt, die Antenne muß gegenüber den Lasten (aerodynamische Lasten, Beschleunigung beim Start), gegen­über niederfrequenten Schwingungen oder den thermischen Be­lastungen, wie sie im Weltall auftreten, verformungsstabil sein.
  • Aufgabe der Erfindung ist es daher, eine faserverstärkte tragende Struktur zu schaffen, die es erlaubt, eine dimen­sionsstabile Antenne, insbesondere eine aktive Antenne, noch leichter zu bauen als bisher.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch eine Inte­gration vom wärmeleitenden und/oder elektromagnetische Wellen leitenden Elementen in die tragende Struktur.
  • Ausführungen der Erfindung sind Gegenstände von Unteran­ sprüchen.
  • Die Integration wärmeleitender Schichten in die tragende Struktur kann dadurch erfolgen, daß wärmeleitende Schich­ten, die ebenfalls aus faserverstärkten Materialen wie CFK bestehen, in die tragende Struktur integriert werden oder diese bilden. Die bisher üblichen wärmeabführenden Elemente, wie Wärmerohre, Dopplerbleche oder Strahlungs­flächen entfallen, wodurch Gewicht gespart wird. Durch breite Versteifungsstege und durchgehende Fasern wird die Wärmeleitung erhöht. Eine Verteilung "heißer" Bauteile über die ganze Antennenfläche fördert die Abstrahlung bei rela­tiv gleichmäßiger Temperatur. Durch Beschichtung mit Ther­mallack kann der Wärmeaustausch durch Strahlung innerhalb der hohlen Räume zwischen den Stegen vergrößert werden.
  • Die Integration von Elementen, die elektromagnetische Wellen leiten, kann sich zum Beispiel auf das Gebiet der niederfrequenten Ströme beziehen. Ein Beispiel dafür sind Speiseleitungen. Diese werden realisiert durch Einbettung von leitfähigen Drähten oder von leitfähigen Streifen in oder auf die aus nichtleitendem Kunststoff bestehenden Strukturen. Als Vorteil ist der Wegfall von Zusatzgewich­ten durch Isolation und Verbindungselemente zu nennen. Die Integration kann auch so weit geführt werden, daß ganze Teile der tragenden Struktur als Elektronikplatinen ausge­führt werden.
    Dies kann zum Beispiel dadurch erfolgen, daß die relevanten Strukturteile aus nichtleitenden Hochleistungsfasern wie zum Beispiel SiC, Aramid oder PE hergestellt werden. Die Leiterbahnen und Befestigungen der Bauelemente können mit üblichen verfügbaren Techniken erfolgen. Der Vorteil ist wiederum die Gewichtsersparnis durch den Wegfall zusätz­ licher Platinen.
    Ein weiteres Beispiel einer erfindungsgemäßen Integration ist der Einbau von hochfrequenz-leitenden Strukturen in die tragende Struktur. So können zum Beispiel Signalleitungen durch Einbettung der Leitung samt einer isolierenden Um­hüllung in eine CFK-Struktur erfolgen. Die Isolierung wird zum Beispiel als mittragendes Element mit einer Verstärkung aus nichtleitenden Fasern ausgelegt. Der Aufbau kann zum Beispiel wie ein Koaxkabel oder wie ein Hohlleiter sein. Falls die Abschirmwirkung des CFK nicht ausreicht, kann die Isolierung zum Beispiel mit metallisierten Fasern hoher Hochfrequenzleitfähigkeit erfolgen., wobei diese Fasern auch wieder mittragend ausgelegt werden können.
  • Ein weiteres Beispiel für die Integration ist zum Beispiel der Einbau eines gehäuselosen Gerätes, wie eines Senders oder Empfängers, in ein durch die Struktur gebildetes abge­schlossenes Fach, dessen Innenseite mit einer dünnen Be­schichtung (zum Beispiel 10 µm) mit einem hochleitfähigem Metall (zum Beispiel Gold) versehen ist. Als Vorteil ergibt sich wiederum eine Gewichtsersparnis.
  • Die Integration von elektromagnetische Wellen leitenden Elementen kann sich auch auf den optischen Wellenbereich beziehen. In diesem Fall werden eigene Glasfaserkabel als optische Signalleitungen überflüssig. Erfindungsgemäß er­folgt dies durch Einbettung der signalführenden Glasfaser in die Struktur, die aus faserverstärkten Kunststoffen be­steht. Die Durchführung kann zum Beispiel dadurch erleich­tert werden, daß die Glasfaser in Rovings oder Gewebe aus den tragenden Fasern eingearbeitet ist. Vorteilhaft fällt hier wiederum Zusatzgewicht durch die Umhüllungen des Glas­faserkabels weg.
  • Die Integration kann auch soweit gehen, daß ganze Hoch­frequenzkomponenten in die tragende Struktur integriert werden. Als Beispiel wird eine ganze Mikrostripantenne in Mesa- oder Wannenbauweise in die Struktur integriert. In dieser Ausführung kann das Mikrostrip- oder Antennendielek­trikum in faserverstärktem Kunststoff hoher Festigkeit und Steifigkeit ausgeführt sein (zum Beispiel aus polyethylen- faserverstärktem Polyethylen) und selbst eine Außenseite des, sich dann selber tragenden, Hohlkastens bilden.
  • Die Erfindung wird anhand von zwei Figuren näher erläutert
    • Figur 1 zeigt eine Ausführung einer Antenne für ein Synthe­tik-Apertur-Radar (SAR) mit ihrem Träger. Die Antenne be­steht hier aus der Antennenaußenschicht 1 mit Strahlerele­menten (patches), einem elektrisch isolierenden Substrat 2 (mit ε r≈ 1), in das Zuleitungen (Mikrostrips) integriert sind und einer elektrisch leitenden Grundplatte 3. Die elek­trische Verbindung zwischen dem Strahlerelement und der Zu­leitung kann zum Beispiel durch lokale Erhöhung von εr im Substrat 2 im Bereich zwischen diesen beiden Elementen er­folgen. Die tragende Struktur 4 ist hier in Kastenbauweise mit den Hohlräumen 5 realisiert. In den Hohlräumen 5 können elektrische Module 6 und Elektronikplatinen 7 enthalten sein. Die tragende Struktur 4 ist hier aus kohlefaserver­stärktem Kunststoff ausgeführt, der an seiner Oberseite zur elektrischen Abschirmung metallisiert ist. Die wärmeabgeben­den Bauteile wie die elektrischen Module 6 und die Elektro­nikplatinen 7 sind bevorzugt über die gesamte Antennenfläche verteilt und an den Trägern, die zur Antennenvorderseite führen, wärmeleitend angeschlossen. Die in der Struktur 4 gezeigten Pfeile zeigen den Fluß der Wärme durch das aus wärmeleitendem Kunststoff hergestellte Trägermaterial 4.
    • Figur 2 zeigt eine Ausführung mit Integration von elektro­magnetische Wellen leitenden Elementen in der Struktur 4, die hier aus CFK bestehen kann, das an seiner Oberseite metallisiert ist. Auf der Außenseite der Struktur 4 befindet sich die Antenne 8, die zum Beispiel Substratdicken im Be­reich eines mm und Erhebungen im mm-Bereich aufweist. Inner­halb der Struktur 4 sind elektronische Module 6 und Elektro­nikplatinen 7 angeordnet. Integriert in die tragende Struk­tur 4 ist auch ein Phasenschiebernetzwerk 9, das direkt unter jedem einzelnen Strahlerelement (patch) der Gruppen­antenne 8 angeordnet ist. Integriert ist ebenso die Zulei­tung (microstrip) 10 zu jedem einzelnen Strahlerelement (patch) oder die elektrische Zuleitung 12 zu den Bauteilen 6 und 7. Gezeichnet ist weiter die Glasfaser 11, die das elektrische Modul 6 als Signalleitung mit einer nicht ge­zeigten Zentralelektronik verbindet. Leitung 11 ist hier ein kurzes Stück diskret gezeigt und verläuft dann als Glasfaser in der Struktur 4 integriert (durch den dickeren Strich angedeutet). Die Pfeile in der Struktur 4 deuten die Wärmeleitung an.

Claims (6)

1. Tragende Struktur (4) einer aktiven Antenne (8) für Luft- oder Raumfahrtanwendungen aus faserverstärktem Kunststoff, gekennzeichnet durch eine Integration von wärmeleitenden Elementen und/oder elektromagnetische Wellen leitenden Elementen (9, 10, 11, 12) in die tragende Struktur(4).
2. Struktur (4) nach Anspruch 1, dadurch gekennzeichnet, daß die wärmeleitenden Elemente aus Metall oder aus Kohlefaserverbundwerkstoff, zum Beispiel P 100 bestehen und zwischen wärmeabgebenden Bauteilen - die bevorzugt über die Antennenfläche verteilt angeordnet sind - und der Außenseite der Antenne liegen oder daß die gesamte Struktur aus wärmeleitendem Material besteht.
3. Struktur (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die elektromagnetische Wellen leitenden Elemente NF-Ströme leiten, wie Drähte, Streifen, Mikrostrips, Fasern, Kabel, oder Zuleitungen (10) und in oder auf Strukturelementen aus nichtleiten­dem Material angeordnet sind, die als Isolationen, Platinen (7) oder Gehäuse ausgebildet sein können.
4. Struktur (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die elektromagnetische Wellen leitenden Elemente HF-Ströme leiten, wie Koax­kabel oder Hohlleiter und von HF-abschirmenden Struktur­teilen, wie Abschirmungen oder Gehäusen, umgeben sein können.
5. Struktur (4) nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, daß die elektromagnetische Wellen leitenden Elemente lichtleitende Fasern (11) sind, die als Signalleitungen zwischen optischen oder opto-elektronischen Bauteilen angeordnet sind.
6. Struktur (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die elektromagnetische Wellen leitenden Elemente und die isolierenden Elemente der Struktur bereits als strahlende Antennenfläche einer Gruppenantenne ausgebildet sind.
EP88117439A 1987-11-13 1988-10-19 Antennenstruktur Expired - Lifetime EP0325701B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873738506 DE3738506A1 (de) 1987-11-13 1987-11-13 Antennenstruktur
DE3738506 1987-11-13

Publications (2)

Publication Number Publication Date
EP0325701A1 true EP0325701A1 (de) 1989-08-02
EP0325701B1 EP0325701B1 (de) 1993-08-25

Family

ID=6340386

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88117439A Expired - Lifetime EP0325701B1 (de) 1987-11-13 1988-10-19 Antennenstruktur

Country Status (4)

Country Link
US (1) US4987425A (de)
EP (1) EP0325701B1 (de)
JP (1) JPH01155702A (de)
DE (1) DE3738506A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0445694A1 (de) * 1990-03-09 1991-09-11 Alcatel Espace Aktives Antennensystem in gedruckter Schaltungstechnik mit hohem Wirkungsgrad für ein gesteuertes Weltraum-Radargerät
EP0497249A1 (de) * 1991-02-01 1992-08-05 Alcatel Espace Gruppenantenne, insbesondere zur Verwendung im Weltraum
EP0523770A1 (de) * 1991-07-15 1993-01-20 Matsushita Electric Works, Ltd. Abwärtsumwandlerblock mit geringem Rauschen zur Anwendung in einer ebenen Antenne für doppelt polarisierte elektromagnetische Wellen
EP0634808A1 (de) * 1993-07-13 1995-01-18 Ball Corporation Erhohte Streifenleitungsantenne
FR2710195A1 (fr) * 1993-09-14 1995-03-24 Thomson Csf Assemblage antenne-circuit électronique.
EP0766336A1 (de) * 1995-09-29 1997-04-02 Telefonaktiebolaget Lm Ericsson Gerät zur Kühlung von elektronischen Einheiten

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128689A (en) * 1990-09-20 1992-07-07 Hughes Aircraft Company Ehf array antenna backplate including radiating modules, cavities, and distributor supported thereon
IT1241834B (it) * 1990-11-22 1994-02-01 Sma Segnalamento Marittimo Ed Sensore radar veicolare per applicazioni a breve distanza
US5247309A (en) * 1991-10-01 1993-09-21 Grumman Aerospace Corporation Opto-electrical transmitter/receiver module
US5327152A (en) * 1991-10-25 1994-07-05 Itt Corporation Support apparatus for an active aperture radar antenna
JP2606521Y2 (ja) * 1992-02-27 2000-11-27 株式会社村田製作所 アンテナ装置
US5438697A (en) * 1992-04-23 1995-08-01 M/A-Com, Inc. Microstrip circuit assembly and components therefor
US5349362A (en) * 1992-06-19 1994-09-20 Forbes Mark M Concealed antenna applying electrically-shortened elements and durable construction
US5255738A (en) * 1992-07-16 1993-10-26 E-Systems, Inc. Tapered thermal substrate for heat transfer applications and method for making same
US5325103A (en) * 1992-11-05 1994-06-28 Raytheon Company Lightweight patch radiator antenna
SE470520B (sv) * 1992-11-09 1994-06-27 Ericsson Telefon Ab L M Radiomodul ingående i en primär radiostation jämte radiostruktur innehållande sådana moduler
US5293171A (en) * 1993-04-09 1994-03-08 Cherrette Alan R Phased array antenna for efficient radiation of heat and arbitrarily polarized microwave signal power
JP3185513B2 (ja) * 1994-02-07 2001-07-11 株式会社村田製作所 表面実装型アンテナ及びその実装方法
JP3141692B2 (ja) * 1994-08-11 2001-03-05 松下電器産業株式会社 ミリ波用検波器
US5969680A (en) * 1994-10-11 1999-10-19 Murata Manufacturing Co., Ltd. Antenna device having a radiating portion provided between a wiring substrate and a case
US5608414A (en) * 1995-06-30 1997-03-04 Martin Marietta Corp. Heat rejecting spacecraft array antenna
US5870063A (en) * 1996-03-26 1999-02-09 Lockheed Martin Corp. Spacecraft with modular communication payload
US5666128A (en) * 1996-03-26 1997-09-09 Lockheed Martin Corp. Modular supertile array antenna
US5911454A (en) * 1996-07-23 1999-06-15 Trimble Navigation Limited Microstrip manufacturing method
EP0974878A1 (de) * 1998-07-20 2000-01-26 Asulab S.A. Antenne und Positionsdetektor auf einem Substrat Kombinierende Untereinheit, insbesondere für Uhrwerke
JP3739230B2 (ja) * 1999-04-26 2006-01-25 株式会社日立製作所 高周波通信装置
NL1012278C2 (nl) * 1999-06-09 2000-12-12 Libertel Netwerk Bv Antennemodule.
US20040217472A1 (en) * 2001-02-16 2004-11-04 Integral Technologies, Inc. Low cost chip carrier with integrated antenna, heat sink, or EMI shielding functions manufactured from conductive loaded resin-based materials
JP3801884B2 (ja) * 2001-07-23 2006-07-26 株式会社日立製作所 高周波送受信装置
US6825817B2 (en) * 2002-08-01 2004-11-30 Raytheon Company Dielectric interconnect frame incorporating EMI shield and hydrogen absorber for tile T/R modules
US7511664B1 (en) 2005-04-08 2009-03-31 Raytheon Company Subassembly for an active electronically scanned array
US7456789B1 (en) * 2005-04-08 2008-11-25 Raytheon Company Integrated subarray structure
US7391382B1 (en) 2005-04-08 2008-06-24 Raytheon Company Transmit/receive module and method of forming same
DE102006005902B4 (de) * 2006-02-09 2007-12-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Mehrschichtige Werkstoffverbundstruktur und Verfahren zur Herstellung hierzu
JP5123493B2 (ja) * 2006-05-30 2013-01-23 新光電気工業株式会社 配線基板及び半導体装置
DE102007040011B4 (de) * 2007-08-24 2015-12-10 Bayerische Motoren Werke Aktiengesellschaft Verwendung von netzartig angeordneten, elektrisch leitfähigen Fasern, die in ein Bauteil aus einem Faserverbundwerkstoff integriert sind
DE102010039709A1 (de) * 2010-08-24 2012-01-19 Continental Automotive Gmbh Antennenmodul für ein Fahrzeug
EP3200278B1 (de) * 2014-09-25 2021-05-12 Nec Corporation Antennensystem
US10062950B2 (en) * 2016-04-20 2018-08-28 Chih-Yuan Wang Heat dissipater with an antenna structure
US11382205B2 (en) * 2020-09-16 2022-07-05 Aptiv Technologies Limited Heatsink shield with thermal-contact dimples for thermal-energy distribution in a radar assembly
CN113955081B (zh) * 2021-09-24 2023-11-28 中国航空工业集团公司西安飞机设计研究所 一种飞机蓄电池舱结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528492A (en) * 1967-04-03 1970-09-15 Texas Instruments Inc Solid state modular microwave system and cooling means therefor
DE2743647B2 (de) * 1977-09-28 1979-07-26 Siemens Ag, 1000 Berlin Und 8000 Muenchen Anordnung zur Kühlung von Bauelementen der elektrischen Nachrichten- und Meßtechnik
EP0048938A1 (de) * 1980-09-25 1982-04-07 Siemens Aktiengesellschaft Gehäuseloses, senkrecht steckbares Singel-in-line-Schaltungsmodul
EP0083538A1 (de) * 1981-12-31 1983-07-13 Thomson-Csf Verfahren zur Herstellung einer Kühlvorrichtung für gedruckte Schaltungsplatte, Verwendung dieses Verfahrens

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396936A (en) * 1980-12-29 1983-08-02 Honeywell Information Systems, Inc. Integrated circuit chip package with improved cooling means
US4628407A (en) * 1983-04-22 1986-12-09 Cray Research, Inc. Circuit module with enhanced heat transfer and distribution
JPS6010806A (ja) * 1983-06-30 1985-01-21 Natl Space Dev Agency Japan<Nasda> マイクロストリツプアレ−アンテナ
US4682269A (en) * 1984-10-11 1987-07-21 Teradyne, Inc. Heat dissipation for electronic components on a ceramic substrate
EP0213426A1 (de) * 1985-08-30 1987-03-11 Siemens Aktiengesellschaft Gehäuse mit Bodenwanne und Aussendeckel für ein elektrisches Schaltungsbauteil
US4771294A (en) * 1986-09-10 1988-09-13 Harris Corporation Modular interface for monolithic millimeter wave antenna array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528492A (en) * 1967-04-03 1970-09-15 Texas Instruments Inc Solid state modular microwave system and cooling means therefor
DE2743647B2 (de) * 1977-09-28 1979-07-26 Siemens Ag, 1000 Berlin Und 8000 Muenchen Anordnung zur Kühlung von Bauelementen der elektrischen Nachrichten- und Meßtechnik
EP0048938A1 (de) * 1980-09-25 1982-04-07 Siemens Aktiengesellschaft Gehäuseloses, senkrecht steckbares Singel-in-line-Schaltungsmodul
EP0083538A1 (de) * 1981-12-31 1983-07-13 Thomson-Csf Verfahren zur Herstellung einer Kühlvorrichtung für gedruckte Schaltungsplatte, Verwendung dieses Verfahrens

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IBM TECHNICAL DISCLOSURE BULLETIN *
PATENT ABSTRACTS OF JAPAN *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0445694A1 (de) * 1990-03-09 1991-09-11 Alcatel Espace Aktives Antennensystem in gedruckter Schaltungstechnik mit hohem Wirkungsgrad für ein gesteuertes Weltraum-Radargerät
FR2659501A1 (fr) * 1990-03-09 1991-09-13 Alcatel Espace Systeme d'antenne imprimee active a haut rendement pour radar spatial agile.
US5206655A (en) * 1990-03-09 1993-04-27 Alcatel Espace High-yield active printed-circuit antenna system for frequency-hopping space radar
EP0497249A1 (de) * 1991-02-01 1992-08-05 Alcatel Espace Gruppenantenne, insbesondere zur Verwendung im Weltraum
FR2672438A1 (fr) * 1991-02-01 1992-08-07 Alcatel Espace Antenne reseau notamment pour application spatiale.
EP0523770A1 (de) * 1991-07-15 1993-01-20 Matsushita Electric Works, Ltd. Abwärtsumwandlerblock mit geringem Rauschen zur Anwendung in einer ebenen Antenne für doppelt polarisierte elektromagnetische Wellen
EP0634808A1 (de) * 1993-07-13 1995-01-18 Ball Corporation Erhohte Streifenleitungsantenne
FR2710195A1 (fr) * 1993-09-14 1995-03-24 Thomson Csf Assemblage antenne-circuit électronique.
EP0766336A1 (de) * 1995-09-29 1997-04-02 Telefonaktiebolaget Lm Ericsson Gerät zur Kühlung von elektronischen Einheiten
US5831830A (en) * 1995-09-29 1998-11-03 Telefonaktiebolaget Lm Ericsson Device for cooling of electronics units

Also Published As

Publication number Publication date
JPH01155702A (ja) 1989-06-19
EP0325701B1 (de) 1993-08-25
DE3738506A1 (de) 1989-06-01
DE3738506C2 (de) 1991-05-02
US4987425A (en) 1991-01-22

Similar Documents

Publication Publication Date Title
EP0325701A1 (de) Antennenstruktur
DE3738513C2 (de)
US3093805A (en) Coaxial transmission line
US8149177B1 (en) Slotted waveguide antenna stiffened structure
CA2616621C (en) Dual function composite system and method of making same
DE69823591T2 (de) Geschichtete Aperturantenne und mehrschichtige Leiterplatte damit
US6335664B1 (en) Branch circuit and its designing method, waveguide-microstrip transition, and application to HF circuit, antenna and communication system
DE102015112861A1 (de) Mikrowellen-Chipgehäusevorrichtung
EP0155599B1 (de) Radomwerkstoff
DE102013206206A1 (de) Substrat-integriertes Antennenmodul
DE60036227T2 (de) Wärmeisolierte signalübertragungseinheit und supraleitende signalübertragungsvorrichtung
EP0834242B1 (de) Verbindungssubstrat
DE2700231B2 (de) Abgleichbarer Koaxial-Microstrip-Übergang
KR20040073999A (ko) 도전성 부여 수지계 재료를 사용한, 저가 안테나 및송수신기 또는 전자 회로 패키지내의 전자기 흡수부 및 그제조 방법
US5264064A (en) Method and system for radio frequency energy transmission in an imperforate composite structure
DE3150236C2 (de)
EP0478962B1 (de) Mikrowellen-Streifen-Leitungsanordnung
CN213401527U (zh) 一种高超音速乘波体飞行器卫星导航天线
JP2844584B2 (ja) 電磁シールドされた回路基板
DE2249735A1 (de) Abschlussglied fuer uebertragungsleitungen
DE19636084A1 (de) Phasengesteuerte Antenne
DE102021118191A1 (de) Hochfrequenzradarmodul
CN117284467A (zh) 无人机隐身前缘及无人机
CA2036373A1 (en) Graphite composite structures exhibiting electrical conductivity
DE1791006C (de) Gemischt bestückter mikroelektronischer Schaltungsmodul für Mikrowellenschaltkreise und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT NL SE

17P Request for examination filed

Effective date: 19891102

17Q First examination report despatched

Effective date: 19920305

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930902

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88117439.5

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020925

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020930

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021002

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021009

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051019