EP0324201A1 - Control process of steam generation in a combustion plant - Google Patents

Control process of steam generation in a combustion plant Download PDF

Info

Publication number
EP0324201A1
EP0324201A1 EP88202774A EP88202774A EP0324201A1 EP 0324201 A1 EP0324201 A1 EP 0324201A1 EP 88202774 A EP88202774 A EP 88202774A EP 88202774 A EP88202774 A EP 88202774A EP 0324201 A1 EP0324201 A1 EP 0324201A1
Authority
EP
European Patent Office
Prior art keywords
water vapor
combustion
combustion zone
heat exchanger
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88202774A
Other languages
German (de)
French (fr)
Other versions
EP0324201B1 (en
Inventor
Alfred Dr. Karbach
Georg Dr. Schaub
Rolf Dr. Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6345257&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0324201(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Priority to AT88202774T priority Critical patent/ATE63626T1/en
Publication of EP0324201A1 publication Critical patent/EP0324201A1/en
Application granted granted Critical
Publication of EP0324201B1 publication Critical patent/EP0324201B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0084Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed with recirculation of separated solids or with cooling of the bed particles outside the combustion bed

Definitions

  • the invention relates to a method for regulating the generation of water vapor in a plant for burning solid, fine-grained and dusty fuels with air in the combustion zone of a circulating fluidized bed, with a heat exchanger in the upper region of the combustion zone, with a water vapor accumulator connected to the heat exchanger and with one Steam feed line from the steam storage to a turbine.
  • the method is also suitable for an incinerator, which includes a fluidized bed cooling with several chambers, to which part of the combustion residue is added.
  • the amount of water vapor generated in the fluid bed cooling is added to the amount of water vapor generated in the combustion zone.
  • the pressure and temperature above and below the heat exchanger in the combustion zone and the temperature in the chambers belonging to the evaporators are expediently measured, the heat transfer coefficients (K values) of the evaporators in a control system are calculated taking these measurements into account, and the temperature in the water vapor storage is measured and calculates the associated heat flows and the total amount of water vapor currently generated, taking into account the K values for the evaporators.
  • This calculated total quantity is compared with the target value in at least one controller and the supply of fuel and combustion air is changed according to the difference.
  • the plant for generating the water vapor consists of a circulating fluidized bed (1) with a separating cyclone (2), fluid bed cooling (3), heat exchanger (4) and water vapor storage (5).
  • the heat exchanger (4) is located in the upper area of the combustion zone (7), e.g. from vertical, parallel tubes (4a).
  • the tubes are preferably arranged in a ring on the inside of the wall of the combustion zone.
  • the fine-grained and dust-like fuel in particular coal
  • Pre-heated primary air conveys the blower (13) into the lower end of the fluidized bed and secondary air is supplied through the blower (14).
  • Solids and gases leave combustion through the channel (15) and are separated in the cyclone (2), the gases in line (17) being drawn off and being fed to a gas cleaning device (not shown).
  • the separated solids are partly returned to the combustion zone (7) through lines (18) and (19), the remaining solids are fed through line (20) to the fluid bed cooling (3).
  • the fluid bed cooling (3) is divided by partition walls (8) into several, only partially closed chambers (3a, 3b, 3c). Solids and gases can pass from one chamber to the other.
  • a blower (22) feeds air to each chamber, which keeps the solids in a swirling motion.
  • Heat exchangers (6a, 6b, 6c) belong to each chamber. If you put water in these heat exchangers to evaporate it, they are called “evaporators”below; the heat exchanger (s) to which water vapor is added to overheat them are called “superheaters”.
  • the heated exhaust air from the fluidized bed cooling (3) is fed into the combustion zone (7) in line (23), and part of the cooled solids is also conducted back through line (24) into the combustion zone (7), excess solids are drawn off in line (25).
  • the evaporators in the fluid bed cooling (3) also contribute to the steam production, the temperature must be monitored in each chamber which contains an evaporator. Chambers with superheaters are not monitored.
  • the chamber (3a) has a heat exchanger (6a), which works as a superheater, whereas the heat exchangers (6b) and (6c) of the chambers (3b) and (3c) of the evaporation of water serve.
  • the chamber (3c) therefore has the temperature monitor TV (1) and the chamber (3b) contains the temperature monitor TV (2).
  • the number of chambers in the fluid bed cooling (3) can fluctuate, and one or more of these chambers can also contain evaporators.
  • FIG. 2 shows how the various measuring points shown in FIG. 1, namely T1, T2, T4, T5, p1, p2, TV (1) and TV (2), transmit their information via signal lines to a control system ( 40) feed.
  • This control system can be tailored to the calculations described below, but it can also be a computer.
  • the control system (40) continuously calculates the currently generated amount of water vapor in the system and gives this information as an actual value to the controllers (41) and (42).
  • the regulators are also given the setpoint m of the amount of water vapor required by the turbine (34) and brought up in the line (33).
  • the output of the controller (41) leads via the signal line (45) to the fuel supply device (10) and ensures that if the steam production is too low, more fuel is fed into the combustion (7).
  • the controller (42) controls the blower (13) via the signal line (46) and the blower (14) via the signal line (47). It ensures that when there is an increased fuel requirement in combustion (7), sufficient combustion air is introduced.
  • the following formulas are used, in which the temperature in ° C and the pressure in mbar are to be used:
  • K value: K a * (p2-p1) - b + c * (T1 + T2) + d * T4
  • a 4 to 6
  • b 75.9 to 121
  • c 0.082 to 0.123
  • d 0.104 to 0.157
  • the exact value of a coefficient is to be determined during the trial operation of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Incineration Of Waste (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The production of water vapor is controlled in a plant for combusting fine-grained and dustlike solid fuels together with air in a combustion zone of a heat exchanger in the upper region of the combustion zone, a water vapor accumulator, which communicates with the heat exchanger, and a water vapor feed line leading from the water vapor accumulator to a turbine. The rate at which water vapor is produced is continually calculated and is compared with the desired value which is required by the turbine and the rates at which fuel and combustion air are supplied to the combustion zone are adjusted in accordance therewith. The combustion plant may comprise a fluidized bed cooler for cooling a part of the part of the combustion residue. That cooler may comprise a plurality of chambers provided with heat exchangers for an evaporation of feed water or for a super heating of water vapor. Any water vapor which is produced from feed water in said chambers will also be taken into account in the calculation of the total rate at which water vapor is produced in the combustion plant.

Description

Die Erfindung betrifft ein Verfahren zum Regeln der Erzeugung von Wasserdampf in einer Anlage zum Verbrennen fester, feinkörniger und staubförmiger Brennstoffe mit Luft in der Verbrennungszone einer zirkulierenden Wirbelschicht, mit einem Wärmeaustauscher im oberen Bereich der Verbrennungszone, mit einem mit dem Wärmeaustauscher verbundenen Wasserdampfspeicher und mit einer Wasserdampf-Speiseleitung vom Wasserdampfspeicher zu einer Turbine.The invention relates to a method for regulating the generation of water vapor in a plant for burning solid, fine-grained and dusty fuels with air in the combustion zone of a circulating fluidized bed, with a heat exchanger in the upper region of the combustion zone, with a water vapor accumulator connected to the heat exchanger and with one Steam feed line from the steam storage to a turbine.

Dampferzeugungsanlagen mit Verbrennung in der zirkulierenden Wirbelschicht und mit Fließbettkühlern zum Ausnutzen der im Verbrennungsrückstand enthaltenen Wärmeenergie sind bekannt und z.B. im Europa-Patent 0 046 406 sowie in der unter Nummer 0 033 713 veröffentlichten Europa-Anmeldung beschrieben. Einzelheiten dieser Anlagen kennt man auch aus den US-Patenten 3 672 069, 4 111 158 und 4 165 717.Steam generating plants with combustion in the circulating fluidized bed and with fluid bed coolers to utilize the thermal energy contained in the combustion residue are known and are e.g. in European patent 0 046 406 and in the European application published under number 0 033 713. Details of these systems are also known from U.S. Patents 3,672,069, 4,111,158 and 4,165,717.

Wenn man den in diesen Anlagen erzeugten Wasserdampf zur Stromerzeugung im Kraftwerk nutzt, ist es wichtig, daß man Veränderungen, welche die Dampfproduktion beeinflussen, frühzeitig feststellt, um Regeleingriffe schnell vornehmen zu können, damit man die Dampfproduktion möglichst konstant hält. Die Turbine verlangt nämlich bei konstanter Leistung die Zufuhr von Wasserdampf in einer Menge, die praktisch konstant sein soll. Beim eingangs genannten Verfahren wird dies erfindungsgemäß dadurch erreicht, daß man die Menge des im Wärmeaustauscher erzeugten Wasserdampfs laufend berechnet, mit dem von der Turbine benötigten Sollwert vergleicht und die Zufuhr von Brennstoff und Verbrennungsluft zur Verbrennungszone danach einstellt.If you use the steam generated in these systems to generate electricity in the power plant, it is important to identify changes that affect steam production at an early stage in order to be able to intervene quickly so that steam production is kept as constant as possible. The turbine requires the supply of water vapor in an amount that is supposed to be practically constant at constant power. In the method mentioned at the outset, this is achieved according to the invention by continuously calculating the amount of water vapor generated in the heat exchanger, comparing it with the desired value required by the turbine and supplying Then set fuel and combustion air to the combustion zone.

Das Verfahren ist auch für eine Verbrennungsanlage geeignet, zu der eine Fließbettkühlung mit mehreren Kammern gehört, welcher man einen Teil des Verbrennungsrückstandes zuführt. Die Menge des Wasserdampfs, die in der Fließbettkühlung erzeugt wird, addiert man der in der Verbrennungszone erzeugten Menge an Wasserdampf hinzu.The method is also suitable for an incinerator, which includes a fluidized bed cooling with several chambers, to which part of the combustion residue is added. The amount of water vapor generated in the fluid bed cooling is added to the amount of water vapor generated in the combustion zone.

Zweckmäßigerweise mißt man laufend den Druck und die Temperatur oberhalb und unterhalb des Wärmeaustauschers in der Verbrennungszone sowie die Temperatur in den zu Verdampfern gehörenden Kammern, berechnet unter Berücksichtigung dieser Messungen die Wärmedurchgangskoeffizienten (K-Werte) der Verdampfer in einem Leitsystem, mißt die Temperatur im Wasserdampfspeicher und berechnet unter Berücksichtigung der K-Werte zu den Verdampfern die zugehörigen Wärmeströme und daraus die Gesamtmenge des momentan erzeugten Wasserdampfs. Diese berechnete Gesamtmenge vergleicht man in mindestens einem Regler mit dem Sollwert und verändert die Zufuhr von Brennstoff und Verbrennungsluft der Differenz entsprechend.The pressure and temperature above and below the heat exchanger in the combustion zone and the temperature in the chambers belonging to the evaporators are expediently measured, the heat transfer coefficients (K values) of the evaporators in a control system are calculated taking these measurements into account, and the temperature in the water vapor storage is measured and calculates the associated heat flows and the total amount of water vapor currently generated, taking into account the K values for the evaporators. This calculated total quantity is compared with the target value in at least one controller and the supply of fuel and combustion air is changed according to the difference.

Einzelheiten des Regelungsverfahrens werden mit Hilfe der Zeichnung erläutert. Es zeigt:

  • Fig. 1 eine Ausführungsform der zu regelnden Anlage in schematischer Darstellung und
  • Fig. 2 die Verarbeitung der Meßwerte.
Details of the control procedure are explained with the help of the drawing. It shows:
  • Fig. 1 shows an embodiment of the system to be controlled in a schematic representation
  • 2 shows the processing of the measured values.

Die Anlage zum Erzeugen des Wasserdampfs besteht im vorliegenden Fall aus einer zirkulierenden Wirbelschicht (1) mit Abscheidezyklon (2), Fließbettkühlung (3), Wärmeaustauscher (4) und Wasserdampfspeicher (5). Der Wärmeaustauscher (4) befindet sich im oberen Bereich der Verbrennungszone (7), er besteht z.B. aus senkrechten, parallel angeordneten Rohren (4a). Die Rohre sind bevorzugt ringförmig an der Innenseite der Wand der Verbrennungszone angeordnet.In the present case, the plant for generating the water vapor consists of a circulating fluidized bed (1) with a separating cyclone (2), fluid bed cooling (3), heat exchanger (4) and water vapor storage (5). The heat exchanger (4) is located in the upper area of the combustion zone (7), e.g. from vertical, parallel tubes (4a). The tubes are preferably arranged in a ring on the inside of the wall of the combustion zone.

Der feinkörnige und staubförmige Brennstoff, insbesondere Kohle, wird über eine Zufuhreinrichtung (10) und die Leitung (11) in den unteren Bereich der Verbrennungszone (7) eingetragen und zwar bevorzugt eingeblasen. Vorerhitzte Primärluft fördert das Gebläse (13) in das untere Ende der Wirbelschicht und Sekundärluft wird durch das Gebläse (14) zugeführt. Feststoffe und Gase verlassen die Verbrennung durch den Kanal (15) und werden im Zyklon (2) getrennt, wobei die Gase in der Leitung (17) abziehen und einer nicht dargestellten Gasreinigung zugeführt werden. Die abgeschiedenen Feststoffe werden durch die Leitungen (18) und (19) zum Teil in die Verbrennungszone (7) zurückgeführt, die restlichen Feststoffe gibt man durch die Leitung (20) der Fließbettkühlung (3) auf.The fine-grained and dust-like fuel, in particular coal, is introduced via a feed device (10) and the line (11) into the lower region of the combustion zone (7) and is preferably blown in. Pre-heated primary air conveys the blower (13) into the lower end of the fluidized bed and secondary air is supplied through the blower (14). Solids and gases leave combustion through the channel (15) and are separated in the cyclone (2), the gases in line (17) being drawn off and being fed to a gas cleaning device (not shown). The separated solids are partly returned to the combustion zone (7) through lines (18) and (19), the remaining solids are fed through line (20) to the fluid bed cooling (3).

Die Fließbettkühlung (3) ist durch Zwischenwände (8) in mehrere, nur teilweise geschlossene Kammern (3a,3b,3c) unterteilt. Feststoffe und Gase können von einer Kammer in die andere gelangen. Durch ein Gebläse (22) wird jeder Kammer Luft zugeführt, welche die Feststoffe in wirbelnder Bewegung hält. Zu jeder Kammer gehören Wärmeaustauscher (6a,6b,6c). Wenn man in diese Wärmeaustauscher Wasser einleitet, um es zu verdampfen, werden sie nachfolgend "Verdampfer" genannt; der oder die Wärmeaustauscher, denen man Wasserdampf zuführt, um ihn zu überhitzen, seien "Überhitzer" genannt.The fluid bed cooling (3) is divided by partition walls (8) into several, only partially closed chambers (3a, 3b, 3c). Solids and gases can pass from one chamber to the other. A blower (22) feeds air to each chamber, which keeps the solids in a swirling motion. Heat exchangers (6a, 6b, 6c) belong to each chamber. If you put water in these heat exchangers to evaporate it, they are called "evaporators"below; the heat exchanger (s) to which water vapor is added to overheat them are called "superheaters".

Die erwärmte Abluft aus der Fließbettkühlung (3) gibt man in der Leitung (23) in die Verbrennungszone (7), ebenso führt man einen Teil der gekühlten Feststoffe durch die Leitung (24) zurück in die Verbrennungszone (7), überschüssige Feststoffe zieht man in der Leitung (25) ab.The heated exhaust air from the fluidized bed cooling (3) is fed into the combustion zone (7) in line (23), and part of the cooled solids is also conducted back through line (24) into the combustion zone (7), excess solids are drawn off in line (25).

Aus dem Wasserdampfspeicher (5) gibt man Wasser durch die Leitung (28) in das untere Ende des Wärmeaustauschers (4), zieht den erzeugten Wasserdampf durch die Leitung (29) ab und gibt sie dem Speicher (5) auf. Durch die Leitung (30) führt man dem Speicher Speisewasser zu, das bevorzugt vorgewärmt ist und zieht den erzeugten Wasserdampf durch die Leitung (31) ab. In einem Überhitzer (32), der mehrstufig ausgebildet sein kann, überhitzt man den Wasserdampf und speist ihn durch die Leitung (33) in die Entspannungsturbine (34) ein. Abgekühlter Wasserdampf bzw. Kondensat verläßt die Turbine in der Leitung (35), Kondensat kann nach einer nicht dargestellten Aufbereitung durch die Leitung (30) in den Speicher (5) zurückgeführt werden.From the water vapor store (5), water is fed through line (28) into the lower end of the heat exchanger (4), the water vapor generated is drawn off through line (29) and passed on to the store (5). Feed water, which is preferably preheated, is fed through line (30) to the reservoir and the water vapor generated is drawn off through line (31). In a superheater (32), which can be designed in several stages, the water vapor is overheated and fed through the line (33) into the expansion turbine (34). Cooled water vapor or condensate leaves the turbine in line (35). Condensate can be returned to line (30) after storage (5).

Es ist ersichtlich, daß Schwankungen in der Produktion des Wasserdampfs nur mit großer Verzögerung in der zur Turbine (34) führenden Speiseleitung (33) ankommen und frühzeitig regulierend eingegriffen werden muß, wenn man den Dampfstrom in der Leitung (33) dem Bedarf der Turbine entsprechend konstant halten will. Zu diesem Zweck ist die Anlage mit verschiedenen Meßeinrichtungen ausgerüstet, nämlich:

  • T1 mißt die Temperatur im oberen Bereich der Verbrennungszone in der Nähe des Kanals (15),
  • T2 mißt die Temperatur in der Verbrennungszone etwas unterhalb des unteren Endes des Wärmeaustauschers (4),
  • T4 mißt die Sattdampf-Temperatur im Wasserdampfspeicher (5),
  • T5 mißt die Temperatur des dem Speicher (5) in der Leitung (30) zufließenden Wassers,
  • p1 mißt den Druck am oberen Ende der Verbrennungszone oberhalb des Wärmeaustauschers (4) und
  • p2 mißt den Druck wenig unterhalb des Wärmeaustauschers (4) in der Verbrennungszone (7).
It can be seen that fluctuations in the production of water vapor arrive only with great delay in the feed line (33) leading to the turbine (34) and must be intervened in a regulating manner at an early stage if the steam flow in the line (33) is appropriate to the requirements of the turbine wants to keep constant. For this purpose, the system is equipped with various measuring devices, namely:
  • T1 measures the temperature in the upper area of the combustion zone near the duct (15),
  • T2 measures the temperature in the combustion zone slightly below the lower end of the heat exchanger (4),
  • T4 measures the saturated steam temperature in the water vapor storage (5),
  • T5 measures the temperature of the water flowing to the reservoir (5) in the line (30),
  • p1 measures the pressure at the top of the combustion zone above the heat exchanger (4) and
  • p2 measures the pressure a little below the heat exchanger (4) in the combustion zone (7).

Da im vorliegenden Fall auch die Verdampfer in der Fließbettkühlung (3) zur Dampfproduktion beitragen, muß auch hier in jeder Kammer, welche einen Verdampfer enthält, die Temperatur überwacht werden. Kammern mit Überhitzer werden nicht überwacht. Im Beispiel der Fig. 1 wird angenommen, daß die Kammer (3a) einen Wärmeaustauscher (6a) aufweist, der als Überhitzer arbeitet, wogegen die Wärmeaustauscher (6b) und (6c) der Kammern (3b) und (3c) der Verdampfung von Wasser dienen. Die Kammer (3c) weist deshalb die Temperaturüberwachung TV(1) auf und die Kammer (3b) enthält die Temperaturüberwachung TV(2). In der Praxis kann die Zahl der Kammern in der Fließbettkühlung (3) schwanken, auch können eine oder mehrere dieser Kammern Verdampfer enthalten. Beträgt die Zahl der Verdampfer-Kammern n, so gibt es die Temperatur-Meßstellen TV(1), TV(2), ... und TV(n). Die Beiträge dieser verschiedenen Verdampfer zur Dampferzeugung müssen in den nachfolgend beschriebenen Berechnungen aufsummiert werden. Die von den Meßstellen erhaltenen Informationen (Druck oder Temperatur) werden nachfolgend der Einfachheit halber genauso wie die jeweilige Meßstelle bezeichnet.Since in the present case the evaporators in the fluid bed cooling (3) also contribute to the steam production, the temperature must be monitored in each chamber which contains an evaporator. Chambers with superheaters are not monitored. In the example of Fig. 1 it is assumed that the chamber (3a) has a heat exchanger (6a), which works as a superheater, whereas the heat exchangers (6b) and (6c) of the chambers (3b) and (3c) of the evaporation of water serve. The chamber (3c) therefore has the temperature monitor TV (1) and the chamber (3b) contains the temperature monitor TV (2). In practice, the number of chambers in the fluid bed cooling (3) can fluctuate, and one or more of these chambers can also contain evaporators. If the number of evaporator chambers is n, see above there are the temperature measuring points TV (1), TV (2), ... and TV (n). The contributions of these various evaporators to the steam generation must be summed up in the calculations described below. The information received from the measuring points (pressure or temperature) is referred to below for the sake of simplicity just like the respective measuring point.

In Fig. 2 ist dargestellt, wie die verschiedenen Meßstellen, die in Fig. 1 gezeigt sind, nämlich T1, T2, T4, T5, p1, p2, TV(1) und TV(2), ihre Informationen über Signalleitungen einem Leitsystem (40) zuführen. Dieses Leitsystem kann speziell auf die nachfolgend beschriebenen Berechnungen zugeschnitten sein, es kann sich aber auch um einen Rechner handeln. Das Leitsystem (40) berechnet laufend die momentan erzeugte Menge an Wasserdampf in der Anlage und gibt diese Information als Ist-Wert den Reglern (41) und (42) auf. Den Reglern gibt man auch den Sollwert m der von der Turbine (34) benötigten, in der Leitung (33) herangeführten Wasserdampfmenge ein. Der Ausgang des Reglers (41) führt über die Signalleitung (45) zur Brennstoffzufuhreinrichtung (10) und sorgt dafür, daß bei zu geringer Dampfproduktion mehr Brennstoff in die Verbrennung (7) geführt wird. Der Regler (42) steuert das Gebläse (13) über die Signalleitung (46) und das Gebläse (14) über die Signalleitung (47). Er sorgt dafür, daß bei erhöhtem Brennstoffbedarf in der Verbrennung (7) genügend Verbrennungsluft herangeführt wird.2 shows how the various measuring points shown in FIG. 1, namely T1, T2, T4, T5, p1, p2, TV (1) and TV (2), transmit their information via signal lines to a control system ( 40) feed. This control system can be tailored to the calculations described below, but it can also be a computer. The control system (40) continuously calculates the currently generated amount of water vapor in the system and gives this information as an actual value to the controllers (41) and (42). The regulators are also given the setpoint m of the amount of water vapor required by the turbine (34) and brought up in the line (33). The output of the controller (41) leads via the signal line (45) to the fuel supply device (10) and ensures that if the steam production is too low, more fuel is fed into the combustion (7). The controller (42) controls the blower (13) via the signal line (46) and the blower (14) via the signal line (47). It ensures that when there is an increased fuel requirement in combustion (7), sufficient combustion air is introduced.

Im Leitsystem (40) werden durch Rechenschaltungen oder ein Rechenprogramm die K-Werte (Wärmedurchgangskoeffizienten) des Wärmeaustauschers (4) und der Verdampfer (6b) und (6c), die Wärmeströme in diesen Anlagenteilen und daraus dann die Gesamtmenge des tatsächlich erzeugten Dampfes berechnet. Dabei benutzt man folgende Formeln, in welche die Temperatur in °C und der Druck in mbar einzusetzen sind:
Für den Wärmeaustauscher (4):
K-Wert: K = a · (p2-p1) - b + c · (T1+T2) + d · T4
Wärmestrom: W = K · F · (0,5 · (T1+T2)-T4)
Es bedeuten:
F = Wärmeaustauschfläche des Wärmeaustauschers (4) in m².
In the control system (40), the K-values (heat transfer coefficients) of the heat exchanger (4) and the evaporators (6b) and (6c), the heat flows in these parts of the system and then the total amount of the steam actually generated are calculated using arithmetic circuits or a computer program calculated. The following formulas are used, in which the temperature in ° C and the pressure in mbar are to be used:
For the heat exchanger (4):
K value: K = a * (p2-p1) - b + c * (T1 + T2) + d * T4
Heat flow: W = K · F · (0.5 · (T1 + T2) -T4)
It means:
F = heat exchange surface of the heat exchanger (4) in m².

Die Koeffizienten a, b, c und d haben je nach Anlage Werte in folgenden Bereichen:
a = 4 bis 6
b = 75,9 bis 121
c = 0,082 bis 0,123
d = 0,104 bis 0.157
Der genaue Wert eines Koeffizienten ist während des Probebetriebs der Anlage zu ermitteln.
Depending on the system, the coefficients a, b, c and d have values in the following areas:
a = 4 to 6
b = 75.9 to 121
c = 0.082 to 0.123
d = 0.104 to 0.157
The exact value of a coefficient is to be determined during the trial operation of the system.

Für die Verdampfer enthaltende Kammer i ( i = 1, 2, ..., n) gelten folgende Formeln:
K-Wert: K(i) = a(i) + c(i) · TV(i) + d(i) · T4
Wärmestrom: W(i) = K(i) · F(i) · (TV(i)-T4)
Es bedeuten:
F(i) = Wärmeaustauschfläche des Verdampfers der Kammer (i) in m²
Bereiche der Koeffizienten:
a(i) = 170 bis 285
c(i) = 0,162 bis 0,205
d(i) = 0,124 bis 0,156
Die Gesamtmenge M (in kg/sec) des in allen Verdampfern erzeugten Wasserdampfs ergibt sich aus der Formel:
M = X : Y

Figure imgb0001
Die Formeln gelten für verschiedene Anlagengrößen mit und ohne Fließbettkühlung.The following formulas apply to the chamber i (i = 1, 2, ..., n) containing the evaporators:
K value: K (i) = a (i) + c (i) * TV (i) + d (i) * T4
Heat flow: W (i) = K (i) F (i) (TV (i) -T4)
It means:
F (i) = heat exchange surface of the evaporator of the chamber (i) in m²
Ranges of the coefficients:
a (i) = 170 to 285
c (i) = 0.162 to 0.205
d (i) = 0.124 to 0.156
The total amount M (in kg / sec) of the water vapor generated in all evaporators results from the formula:
M = X: Y
Figure imgb0001
The formulas apply to various plant sizes with and without fluid bed cooling.

Claims (3)

1. Verfahren zum Regeln der Erzeugung von Wasserdampf in einer Anlage zum Verbrennen fester, feinkörniger und staubförmiger Brennstoffe mit Luft in der Verbrennungszone einer zirkulierenden Wirbelschicht, mit einem Wärmeaustauscher im oberen Bereich der Verbrennungszone, mit einem mit dem Wärmeaustauscher verbundenen Wasserdampfspeicher und mit einer Wasserdampf-Speiseleitung vom Wasserdampfspeicher zu einer Turbine, dadurch gekennziechnet, daß man die Menge des im Wärmeaustauscher erzeugten Wasserdampfs laufend berechnet, mit dem von der Turbine benötigten Sollwert vergleicht und die Zufuhr von Brennstoff und Verbrennungsluft zur Verbrennungszone danach einstellt.1. Method for regulating the generation of water vapor in a plant for burning solid, fine-grained and dusty fuels with air in the combustion zone of a circulating fluidized bed, with a heat exchanger in the upper region of the combustion zone, with a water vapor accumulator connected to the heat exchanger and with a water vapor Feed line from the water vapor accumulator to a turbine, characterized in that the quantity of water vapor generated in the heat exchanger is continuously calculated, compared with the setpoint required by the turbine, and then the supply of fuel and combustion air to the combustion zone is stopped. 2. Verfahren nach Anspruch 1, mit einer zur Verbrennungsanlage gehörenden, mehrere Kammern aufweisenden Fließbettkühlung für einen Teil des Verbrennungsrückstands, wobei die Kammern Wärmeaustauscher für die Verdampfung von Speisewasser oder für die Überhitzung von Wasserdampf enthalten, mit Zufuhr von Wirbelluft zu den Kammern der Fließbettkühlung, wobei aus der Fließbettkühlung Abluft und ein Teil des gekühlten Feststoffrückstands in die Verbrennungszone geleitet werden, dadurch gekennzeichnet, daß man die Gesamtmenge des in den Wasser verdampfenden Wärmeaustauschern (Verdampfern) in der Verbrennungszone und der Fließbettkühlung erzeugten Wasserdampfs laufend berechnet.2. The method according to claim 1, comprising a multi-chamber fluid bed cooling system belonging to the incineration plant for a part of the combustion residue, the chambers containing heat exchangers for the evaporation of feed water or for the superheating of water vapor, with the supply of fluidized air to the chambers of the fluid bed cooling, whereby exhaust air and a part of the cooled solid residue are passed into the combustion zone from the fluid bed cooling, characterized in that the total amount of the water vapor evaporating in the water evaporating in the combustion zone and the fluid bed cooling is continuously calculated. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man Druck und Temperatur oberhalb und unterhalb des Wärmeaustauschers in der Verbrennungszone sowie die Temperatur in den zu Verdampfern gehörenden Kammern laufend mißt, unter Berücksichtigung dieser Messungen die Wärmedurchgangskoeffizienten (K-Werte) der Verdampfer in einem Leitsystem berechnet, daß man die Temperatur im Wasserdampfspeicher mißt und unter Berücksichtigung der K-Werte zu den Verdampfern die zugehörigen Wärmeströme und daraus die Gesamtmenge des momentan erzeugten Wasserdampfs berechnet, die berechnete Gesamtmenge in mindestens einem Regler mit dem Sollwert vergleicht und bei einer Abweichung die Zufuhr von Brennstoff und Verbrennungsluft zur Verbrennungszone verändert.3. The method according to claim 2, characterized in that pressure and temperature above and below the heat exchanger in the combustion zone and the temperature in the chambers belonging to evaporators are continuously measured, taking these measurements into account the heat transfer coefficients (K values) of the evaporators in one The control system calculates that the temperature in the water vapor storage is measured and, taking into account the K values for the evaporators, the associated heat flows and the total amount of water vapor currently generated are calculated, the calculated total amount is compared with the setpoint in at least one controller and, if there is a deviation, the supply changed from fuel and combustion air to the combustion zone.
EP88202774A 1988-01-14 1988-12-05 Control process of steam generation in a combustion plant Expired - Lifetime EP0324201B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88202774T ATE63626T1 (en) 1988-01-14 1988-12-05 METHOD OF CONTROLLING THE GENERATION OF WATER STEAM IN AN INCINERATION PLANT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3800863 1988-01-14
DE3800863A DE3800863A1 (en) 1988-01-14 1988-01-14 METHOD FOR CONTROLLING THE PRODUCTION OF STEAM IN A COMBUSTION PLANT

Publications (2)

Publication Number Publication Date
EP0324201A1 true EP0324201A1 (en) 1989-07-19
EP0324201B1 EP0324201B1 (en) 1991-05-15

Family

ID=6345257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88202774A Expired - Lifetime EP0324201B1 (en) 1988-01-14 1988-12-05 Control process of steam generation in a combustion plant

Country Status (9)

Country Link
US (1) US4884408A (en)
EP (1) EP0324201B1 (en)
JP (1) JPH01219401A (en)
AT (1) ATE63626T1 (en)
AU (1) AU608112B2 (en)
CA (1) CA1326793C (en)
DE (2) DE3800863A1 (en)
ES (1) ES2022606B3 (en)
ZA (1) ZA89225B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444926A2 (en) * 1990-03-01 1991-09-04 Foster Wheeler Energy Corporation Fluidized bed combustion system and method having an integral recycle heat exchanger with inlet and outlet chambers
WO1995000804A1 (en) * 1993-06-24 1995-01-05 A. Ahlstrom Corporation Method of treating solid material at high temperatures

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102959A1 (en) * 1991-02-01 1992-08-13 Metallgesellschaft Ag METHOD FOR BURNING COAL IN THE CIRCULATING FLUID BED
DE19912035C2 (en) * 1998-03-27 2002-01-24 Harry Kraus Furnace for steam generation
JP2007271133A (en) * 2006-03-30 2007-10-18 Osaka Gas Co Ltd Steam generator provided with once-through boiler and accumulator
EP2165116B1 (en) * 2007-05-17 2016-09-14 Enero Inventions Immediate response steam generating method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072130A (en) * 1976-12-01 1978-02-07 The Ducon Company, Inc. Apparatus and method for generating steam
US4136642A (en) * 1976-10-13 1979-01-30 Ckd Dukla, Narodni Podnik Method of and apparatus for regulating steam and hot water boilers employing fluidized fuel
EP0068301A1 (en) * 1981-07-01 1983-01-05 Deutsche Babcock Anlagen Aktiengesellschaft Steam generator with circulating atmospheric or supercharged fluidised-bed combustion
WO1983003294A1 (en) * 1982-03-15 1983-09-29 STRÖMBERG, Lars, Ake Fast fluidized bed boiler and a method of controlling such a boiler
US4453495A (en) * 1983-03-23 1984-06-12 Electrodyne Research Corporation Integrated control for a steam generator circulating fluidized bed firing system
EP0156703A1 (en) * 1984-03-08 1985-10-02 Framatome Method and device for controlling heat transfer in a fluidized bed

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906731A (en) * 1973-01-24 1975-09-23 Lear Motors Corp Control system for vapor engines
US4039846A (en) * 1975-08-18 1977-08-02 Allied Chemical Corporation Control of a steam-heating power plant
JPS5928163Y2 (en) * 1975-11-04 1984-08-15 日産自動車株式会社 Steam generator fuel control device
US4064699A (en) * 1976-09-03 1977-12-27 Westinghouse Electric Corporation Boiler control providing improved operation with fuels having variable heating values
JPH0633766B2 (en) * 1984-01-13 1994-05-02 株式会社東芝 Power plant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136642A (en) * 1976-10-13 1979-01-30 Ckd Dukla, Narodni Podnik Method of and apparatus for regulating steam and hot water boilers employing fluidized fuel
US4072130A (en) * 1976-12-01 1978-02-07 The Ducon Company, Inc. Apparatus and method for generating steam
EP0068301A1 (en) * 1981-07-01 1983-01-05 Deutsche Babcock Anlagen Aktiengesellschaft Steam generator with circulating atmospheric or supercharged fluidised-bed combustion
WO1983003294A1 (en) * 1982-03-15 1983-09-29 STRÖMBERG, Lars, Ake Fast fluidized bed boiler and a method of controlling such a boiler
US4453495A (en) * 1983-03-23 1984-06-12 Electrodyne Research Corporation Integrated control for a steam generator circulating fluidized bed firing system
EP0156703A1 (en) * 1984-03-08 1985-10-02 Framatome Method and device for controlling heat transfer in a fluidized bed

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444926A2 (en) * 1990-03-01 1991-09-04 Foster Wheeler Energy Corporation Fluidized bed combustion system and method having an integral recycle heat exchanger with inlet and outlet chambers
EP0444926A3 (en) * 1990-03-01 1992-06-03 Foster Wheeler Energy Corporation Fluidized bed combustion system and method having an integral recycle heat exchanger with inlet and outlet chambers
WO1995000804A1 (en) * 1993-06-24 1995-01-05 A. Ahlstrom Corporation Method of treating solid material at high temperatures

Also Published As

Publication number Publication date
US4884408A (en) 1989-12-05
EP0324201B1 (en) 1991-05-15
CA1326793C (en) 1994-02-08
AU608112B2 (en) 1991-03-21
AU2847489A (en) 1989-07-20
DE3800863A1 (en) 1989-07-27
ES2022606B3 (en) 1991-12-01
ATE63626T1 (en) 1991-06-15
JPH01219401A (en) 1989-09-01
ZA89225B (en) 1990-09-26
DE3862858D1 (en) 1991-06-20

Similar Documents

Publication Publication Date Title
DE3125849C2 (en)
DE1170423B (en) Method and arrangement for regulating the steam temperatures in a once-through steam generator with two intermediate superheaters arranged in the flue gas duct
DE2408649A1 (en) METHOD AND DEVICE FOR FLOATING BED COMBUSTION OF COMBUSTIBLE MATERIALS
EP0181626B1 (en) Boiler plant for a combustion chamber comprising a plurality of fluid bed stages, and method for its control and regulation
EP0324201B1 (en) Control process of steam generation in a combustion plant
DE69002758T2 (en) SYSTEM AND METHOD FOR CONTROLLING THE TEMPERATURE OF THE STEAM IN CIRCULATING FLUID BEDS.
DE1601788A1 (en) Circulation arrangement for a steam generator
DE2805840A1 (en) WASTE HEAT RECOVERY PROCESS
DE68902394T2 (en) FUEL SYSTEM FOR COMBUSTION OF FUEL IN A FLUIDIZED BED AT OVERPRESSURE.
DE2621340C3 (en) Heat recovery steam generator
DE69725188T2 (en) METHOD AND DEVICE FOR CONTROLLING THE HEAT TRANSFER OF SOLID PARTICLES IN A FLUID BED
DE19734862C2 (en) Thermal power plant with a gas turbine and a steam generator for a multi-pressure steam turbine
DE4218016A1 (en) Method and device for controlling the flue gas temperature at the outlet of a steam generator
DE69108024T2 (en) METHOD FOR TEMPERATURE CONTROL OF THE COMBUSTION AIR IN A FLUIDIZED BED COMBUSTION PLANT WITH PRESSURING.
DE2916345A1 (en) System for part-load control of fluidised bed furnaces - varies bed material, as well as fuel and air quantity and quality
DE3407129C2 (en)
DE4129115A1 (en) Steam-generation method using waste heat - involves superheating saturated stream generated in both heating stages
DE1401381B2 (en) Steam generation plant for waste heat recovery
DE2551430A1 (en) PROCEDURE AND DEVICE FOR RAISING THE STEAM TEMPERATURE IN THE OVERHEATER OF A POWER PLANT
DE567925C (en) High pressure steam boiler
DE2132454B2 (en) Large steam generator to be operated with pulverized coal combustion
DE627513C (en) Superheater divided into sections on the steam side
AT242443B (en) Method for converting thermal energy into mechanical energy in a gas turbine and steam conversion process
DE2424394A1 (en) Steam-generator with heat-exchanger and fluidised beds - fuel beds have air passage for temp. regulation
AT255442B (en) Device for keeping the temperature of superheated or reheated steam constant in steam generators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19890815

17Q First examination report despatched

Effective date: 19900328

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 63626

Country of ref document: AT

Date of ref document: 19910615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3862858

Country of ref document: DE

Date of ref document: 19910620

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: DEUTSCHE BABCOCK AKTIENGESELLSCHAFT

Effective date: 19920214

NLR1 Nl: opposition has been filed with the epo

Opponent name: DEUTSCHE BABCOCK AG

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 19930318

EPTA Lu: last paid annual fee
NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940920

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941006

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941114

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19941115

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19941201

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19941219

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941231

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950118

Year of fee payment: 7

EAL Se: european patent in force in sweden

Ref document number: 88202774.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951205

Ref country code: GB

Effective date: 19951205

Ref country code: AT

Effective date: 19951205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19951231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960111

BERE Be: lapsed

Owner name: METALLGESELLSCHAFT A.G.

Effective date: 19951231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960830

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19970113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051205