EP0321480B1 - Echangeur de chaleur du type a plaques - Google Patents

Echangeur de chaleur du type a plaques Download PDF

Info

Publication number
EP0321480B1
EP0321480B1 EP19870905565 EP87905565A EP0321480B1 EP 0321480 B1 EP0321480 B1 EP 0321480B1 EP 19870905565 EP19870905565 EP 19870905565 EP 87905565 A EP87905565 A EP 87905565A EP 0321480 B1 EP0321480 B1 EP 0321480B1
Authority
EP
European Patent Office
Prior art keywords
plate
groove
exchanger
pair
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19870905565
Other languages
German (de)
English (en)
Other versions
EP0321480A1 (fr
Inventor
Gerhard Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0321480A1 publication Critical patent/EP0321480A1/fr
Application granted granted Critical
Publication of EP0321480B1 publication Critical patent/EP0321480B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media

Definitions

  • the invention relates to a plate heat exchanger which has at least three stacked exchanger plates, two successive exchanger plates each forming a flow path, which exchanger plates are made of sheet metal and to form flow channels between the plates and to support the plates with a pressed-in flow path overlapping wave pattern are provided, which forms transverse to the wave direction and obliquely to the flow center line, the surface of the wave pattern of each exchanger plate consists of a number of adjoining partial areas, the grooves in the individual partial areas each forming a family of mutually parallel groove sections which on the Limits of the relevant area end, and the coulters of the groove sections of different partial areas run obliquely to each other and each partial area of the wave pattern of an exchange cherplatte a same-sized portion of the wave pattern of another exchanger plate, which forms a flow path with the first-mentioned plate, opposite one another.
  • Plate heat exchangers enable the transfer of large amounts of heat from one medium to another medium with a comparatively small space requirement and are used and find, in addition to pure heat transport tasks, for heating or cooling substances before or after a chemical or physical treatment of them or before or after storing them frequently used in the execution of chemical and / or physical treatments or chemical reactions of flowable substances. Maintaining a certain temperature profile of the media passing through the plate heat exchanger in the course of the flow is often of great importance. Also of great importance is the possibility of being able to easily select or design the flow resistance in the flow channels in accordance with the respective application for each of the media flowing through such a plate heat exchanger.
  • the plate heat exchanger according to the invention of the type mentioned at the outset is characterized in that, in the case of at least one pair of exchanger plates which form a flow path with one another, the wave crests of the one plate are located only in the region of the ends of the groove sections of this plate on the opposite wave crests of the other plate of the pair, and likewise support in the area of the ends of the groove sections of said other plate and freely span the distance between these support points.
  • a preferred embodiment of the plate heat exchanger according to the invention is characterized in that the wave apexes running along the groove sections of the partial regions of the wave pattern of the one exchanger plate of a pair of plates forming a flow path, which wave apexes face the other plate of this pair of plates, have one end at the end of one of the plate pairs support a plate facing the wave crest of the other plate and with its other end at the end of a parallel wave crest of the other plate adjacent to the latter wave crest and freely spanning the valley groove in between of the wave pattern of the other plate.
  • This training has the advantage of a particularly favorable flow behavior.
  • An advantageous variant is characterized in that the wave pattern of the exchanger plates is formed by more than two sections abutting one another at separating lines, the groove sections forming groove trains adjoining one another via the separating lines, and in the course of such groove trains between a support point located in a groove section and one in another support section located one or more groove sections, in which the groove trains of the two plates of a pair of exchanger plates follow one another and run without mutual support.
  • This training results in a further improvement in the flow behavior and is particularly suitable in those cases in which work is carried out at relatively low pressures, so that the mutual support of the exchanger plates forming a flow channel with one another can be provided at greater intervals.
  • a second preferred embodiment of the aforementioned embodiment of the plate heat exchanger according to the invention is characterized in that the wave pattern of the exchanger plates has an even number of partial areas which follow one another in the direction of flow or transversely thereto, with the groove sections at a first angle to one half of the number of partial areas Flow direction, and in the other half of the number of sub-areas, the groove sections run at a second angle to the flow direction, the longitudinal extent of the individual sub-areas measured in the direction of the sequence of the sub-areas being the same, and when such an exchange plate is placed one on top of the other, the same trained heat exchanger plate, which is rotated by 180 ° about an axis perpendicular to the geometric center of the plate, the partial areas at a first angle to the flow direction ng extending groove sections of one plate opposite the part areas with groove sections running at a second angle to the flow direction of the other plate and here the wave apex of the wave pattern of the second pattern plate facing the first-mentioned plate in the individual partial areas
  • This embodiment has the advantage of the proposed division of the wave pattern that the in the individual sub-areas compensate for differences in thermal behavior (thermal length) well in their sum and thus overall a balanced thermal behavior is achieved, and the further advantage that in this configuration of the wave pattern such a simple plate from two Exchanger plate pair can be formed, wherein one plate of this pair is pivoted with respect to the other plate by 180 ° about a geometric axis running through the geometric center of the plates perpendicular to the plane of the plate.
  • a plate heat exchanger of the abovementioned design which is advantageous with regard to the flow properties is characterized in that the wave pattern of the exchanger plates is formed by four or more partial areas, viewed in the flow direction, lying adjacent to one another in pairs and abutting on separation lines, the groove sections forming groove trains adjoining one another via the separation lines , which run from one longitudinal edge of the wave pattern to the other longitudinal edge of the wave pattern and wherein in the groove trains the groove sections follow one another in zigzag fashion and in each case a pair of groove sections which run more obliquely to the flow direction follows and follows each other on a pair of groove sections which run more obliquely to the flow direction the tips of the more oblique groove portions of one plate of a pair of exchanger plates on the tips of the less oblique leaves supported on the groove portions of the other plate of this pair and conversely the tips of the more inclined groove portions of the other plate of a pair are supported on the tips of the less inclined groove portions of the one plate of the pair
  • a further embodiment of the above-mentioned design of a plate heat exchanger according to the invention which allows a particularly low flow resistance to be achieved, is characterized in that the wave pattern of the exchanger plates is formed by four or more partial areas, viewed in the flow direction, lying side by side, butting against one another on parting lines, the groove sections over the dividing lines next to one another form grooves which run from one longitudinal edge of the wave pattern to the other longitudinal edge of the wave pattern, and wherein the groove sections in the groove sections follow one another in a zigzag fashion and at least one pair of groove sections which run more obliquely to the flow direction is provided on the several pairs of less oblique groove sections follow and the tips of the more oblique groove sections of one plate e Support a pair of exchanger plates on tips of the less inclined groove portions of the other plate of the pair and the tips of the more inclined groove portions of the other plate of the pair on the tips of less inclined groove portions of the one plate of the pair, and that between the support points in the train of a
  • the wave pattern of the exchanger plates is formed by two partial regions lying adjacent to one another in the flow direction and abutting on a dividing line, the geometrical extension of the groove sections of the one partial region being at the dividing line with a covers the beginning of the groove section of the other partial area and leaves this groove section at an angle at the outer edge of the other partial area parallel to the dividing line with a groove section adjacent to this grooved section and also the geometrical extension of the groove sections of the other partial area at the dividing line with a groove section starting there of a partial area and leaving this groove section obliquely on the outer edge parallel to the dividing line of the one partial area with a groove section to this Cut adjacent groove section comes to cover, and that the two plates of a pair of exchanger plates support each other at these cover points.
  • the groove sections are parts of zigzag-shaped groove trains, the zigzag groove sections preferably running approximately perpendicular to one another such that the groove sections of the groove trains are two different ones Have lengths that differ by the width of one or two grooves, and that the groove portions of one plate of the exchanger plate a pair of each overlap in alignment with a groove section of the other plate, a shorter groove section of one plate overlapping with a longer groove section of the other plate and a shorter groove section of the other plate overlapping with a longer groove section of one plate.
  • An embodiment is particularly favorable in terms of production technology, which is characterized in that the wave pattern of one type of exchanger plate is geometrically related to the wave pattern of the other type of exchanger plate, the one pattern being different from the other by pivoting through 180 ° in the plane of the pattern lying and preferably passing through the center of the geometric axis and / or by interchanging partial areas of the pattern with each other. It is furthermore advantageous in the interest of a uniform flow if the intersections of the groove sections of the wave patterns of two plates lying next to one another and forming a flow path lie symmetrically with respect to a center line of the plates lying approximately in the plane of the plate.
  • Plate heat exchangers as is shown schematically in FIGS. 1 and 2, have a number of packet-like stacked exchanger plates, with two successive exchanger plates 1 in the packet layering, a flow path 3 or 4 for one of the media to be passed through the heat exchanger between where the heat exchange takes place.
  • a flow path 3 or 4 for one of the media to be passed through the heat exchanger between where the heat exchange takes place.
  • Usually two media are passed through the heat exchanger and flow paths 3 are provided in alternating order for one medium and flow paths 4 for the other medium.
  • These flow paths 3, 4 each lie between successive exchanger plates, wherein in the case shown in FIG. 1 a pair of exchanger plates of the same type, that is a plate pair 1, 1 or 2, 2, form the flow paths 3 for the one medium, and Form plate pairs from exchanger plates of different types, ie plate pairs 1, 2 or 2, 1, flow paths 4 for the other medium.
  • the exchanger plates 1, 2 are provided with a wave pattern 5, the surface of the wave pattern 5 of each exchanger plate 1, 2 consisting of a number of adjoining partial areas 5a, 5b, 5c, 5d.
  • the flow of the media which are passed through the heat exchanger, runs from one of the connection openings 6 of such a heat exchanger plate to another connection opening 6 thereof, the flow path 3, 4 in question being covered by the wave pattern 5 and in the area of the wave pattern essentially the flow center line 7 follows or as the arrows 8 indicate, runs parallel to this.
  • the wave pattern forms grooves 9, 10 which are transverse to the wave direction 11 and oblique to the flow line 7 run.
  • the grooves 9, 10 form in the individual sections 5a, 5b, 5c, 5d of the wave pattern 5 a group of groove sections 12 which run parallel to one another and which end at the boundaries 14 of the relevant section.
  • the groups of the groove sections 12 of different partial areas run obliquely to one another.
  • Each sub-area of the wave pattern of one exchanger plate is flush with an equally large sub-area of the wave pattern of another exchanger plate, which forms a flow path 3, 4 with the first-mentioned plate.
  • the wave patterns of the two exchanger plates forming a flow path lie against one another at individual points, so that these plates are supported against one another, which with regard to pressure differences which are present in the individual flow paths 3, 4 and cause forces which act on the plates in the transverse direction 15 , is important.
  • the wave crests 17 of one plate of a pair of exchanger plates forming a flow path are supported on the opposite wave crests 18 of the other plate of the pair.
  • the support points 20, as shown in FIG. 3, in which a part of such a pair of plates is shown in plan view, are only in the area of the ends 21 of the groove sections 12.
  • the lower wave crests 17 drawn in full lines in FIG. 3 lie at the top Exchanger plate at the mentioned support points 20 on the upper wave crests 18 shown in broken lines in FIG. 3 of the exchanger plate underneath, and the wave crests 17, 18 span the distance between the support points 20, resulting in flow paths between the plates which result in a favorable flow - And have heat transfer properties with low flow resistance.
  • the valley groove of the wave pattern of one plate lying between the support points 20 is thus freely spanned by the wave apex of the other plate.
  • FIG. 6a shows, in a representation analogous to FIG. 3, an embodiment in which two exchanger plates are arranged one above the other, the lower wave apex 17 of the wave pattern of the upper exchanger plate in full lines and the (upper) wave apex 18 of the wave pattern of the lower one facing this plate Exchanger plate are shown in dashed lines.
  • the overhead crest of the top plate and the crest of the bottom plate of the bottom plate of the pair of exchanger plates are not shown in FIG. 6a.
  • a single plate 1 of this type is shown in FIG. 6b, analogously to the illustration in FIG.
  • the lower wave apex 17 of the wave pattern is drawn with solid lines and the upper wave apex 17a of the wave pattern is drawn with dashed lines.
  • two plates according to FIG. 6b are placed one on top of the other, the bottom plate being rotated with respect to the top plate of the pair by 180 ° about a geometric axis perpendicular to the geometric center 30 of the plate (s) .
  • the wave pattern 5 of the plates has an even number, namely four, subregions 5a, 5b, 5c, 5d. These partial areas follow one another in the illustrated case in direction 7 of the flow center line. However, this wave pattern can also be provided offset by 90 ° with respect to the illustration in FIG. 6a, in which case the subregions then follow one another transversely to the flow direction.
  • the groove sections 12 run at a first angle a to the flow direction 7 and in the other two sections 5c, 5d of the wave pattern, the groove sections 12 run at a second angle ⁇ to the flow direction.
  • the longitudinal extent 29 measured in the direction of the sequence of the partial areas is practically the same for all partial areas.
  • the position of the lower plate of the pair of plates shown in FIG. 6a rotated by 180 ° with respect to the upper plate thereof means that partial areas 5a, 5b of the upper plate, in which the groove sections 12 run at an angle a to the direction 7, Subareas 5c, 5d of the lower plate, in which the groove sections 12 run at an angle ⁇ to the direction 7, opposite, and subareas 5c, 5d of the upper plate lie opposite areas 5a, 5b of the lower plate.
  • the wave crests 18 of the lower plate come with the wave crests 17 of the upper plate only at the ends 21 of the groove sections 12 located in the partial areas for mutual support, and the wave crests 17, 18 span the valleys lying between the support points of the crests opposite the relevant crest Plate free.
  • the plate shown in FIG. 6c is a modification of the plate according to FIG. 6b, and the wave pattern 5 'of the plate 2 according to FIG. 6c is obtained by turning the wave pattern 5 of the plate 1 according to FIG. 6b by one following the direction 7 , through the plate center 30 extending geometric axis through 180 °.
  • the wave pattern 5 'according to FIG. 6c can thus be pressed into flat plate material with the same tool as the wave pattern 5 according to FIG. 6b; 6c, two plates 2 according to FIG. 6c can be put together to form a pair of plates, as described above for two plates 1 according to FIG. 6b, which forms a flow path with the same properties as the plate pair shown in FIG. 6a.
  • a plate pair according to FIG. 6d is obtained; in this pair of plates, the individual groove sections of the wave pattern of both plates each cross over a plurality of groove sections of the opposite plate, the shaft apex 17 of the upper one Successively rest the plate on a series of wave crests 18 of the lower plate; analogous to FIG. 6a, the wave crests 17 of the upper plate facing the lower plate are drawn with full lines in FIG. 6d and the wave crests 18 of the lower plate facing the upper plate are drawn with dashed lines; in the case shown in FIG. 6d, the upper plate of the plate pair is a plate according to FIG.
  • FIG. 6b and the lower plate is a plate according to FIG. 6c.
  • the intersecting course of the groove sections and the mutual contact of the shaft crests 17, 18 of the plates of the plate pair shown in FIG. 6d at a plurality of crossing points or support points results in a substantially higher flow resistance than is present in the plate pair according to FIG. 6a.
  • the crossing points are distributed over the longitudinal extent of the groove sections. In this way, flow paths with different flow resistance or different thermal lengths can be provided in a simple manner in a heat exchanger and thus an adaptation to different properties of the media between which the heat exchange is to take place can be achieved. If plate pairs consisting of two plates 1 according to FIG. 6b and plate pairs consisting of two plates 2 according to FIG.
  • FIG. 6c are arranged alternately in succession, one obtains a structure according to FIG. 1 in which flow paths 3 with low flow resistance, which are located between mutually identical plates according to FIG 6b or 6c are present, alternating with flow paths 4 with high flow resistance which are present between different plates according to FIGS. 6b and 6c.
  • the flow paths 3 can be assigned to one and the flow paths 4 to the other of the two media flowing through the heat exchanger.
  • the wave pattern 5, 5 'provided in the plates according to FIGS. 6b and 6c can, if desired, be provided several times in succession both in direction 7 of the flow center line and transversely thereto in order to achieve a larger wave pattern area on the exchanger plates.
  • FIGS. 7a and 7b which is similar to the embodiment according to FIGS. 6a and 6b, the wave pattern of the exchanger plates is mirror-inverted with respect to a central dividing line 25.
  • the wave pattern which can be seen more clearly from FIG. 7b, which shows a plate of this embodiment, has a number that can be divided by four, eight in the illustrated case, partial areas 5a ', 5b', 5c ', 5d', 5a ", 5b” , 5c ", 5d", which lie successively in two surface strips 26, 27 running on both sides of the dividing line 25.
  • Fig. 7a and also in Figs. 8a to 13a analogously to Fig.
  • the lower crests 17 of the upper plate are drawn with full lines and the upper crests 18 of the lower plate with dashed lines and in Fig. 7b and further 8b to 13b, corresponding to FIG. 6b, the top crests of the plate in question are dashed and the bottom crests of the plate in question are drawn with solid lines.
  • the groove sections 12 extend in the partial areas 5a ', 5c' and 5a ", 5c" at a first angle a to the flow direction 7 and in In the partial areas 5b ', 5d' and 5b ", 5d", the groove sections 12 extend at a second angle ⁇ to the flow direction 7.
  • the longitudinal extent 29 of the partial areas, seen in the direction of the sequence of these areas in the surface strips 26, 27, is in all partial areas practically the same.
  • the wave pattern can also be provided offset by 90 ° with respect to the illustration in FIG.
  • the lower plate with respect to the upper plate is also perpendicular to the plate plate according to FIG. 7a and the plate pairs shown in FIGS. 8a to 13a to be described geometric axis, which runs through the plate center 30, rotated by 180 °.
  • the plate 2 shown in FIG. 7c is a modification of the plate 1 according to FIG. 7b, and the wave pattern shown in FIG. 7c is obtained by interchanging the two strips 26, 27 of the wave pattern according to FIG. 7b with one another and twisting the resultant Formed about a geometric axis perpendicular to the plane.
  • This modification can also be produced with a tool, which can be obtained by simply changing the tool used to form a wave pattern according to FIG. 7b.
  • FIGS. 8b to 13b and 8c to 13c The same applies to the plates to be described according to FIGS. 8b to 13b and 8c to 13c.
  • a plate pair according to FIG. 7d is obtained, the flow path of which has a higher flow resistance and a different thermal length than the plate pair according to FIG. 7a.
  • flow paths with different properties can also be easily formed in the heat exchanger by a modification of the wave pattern, which can be carried out easily in terms of production technology.
  • a plate stratification can be provided both when building the heat exchangers from a single plate type and when building up from two plate types, in which the mutually identical pairs of exchanger plates have the same position or orientation in the exchanger, as explained in connection with FIGS. 6a to 6d is.
  • e.g. 7d shows an approximately symmetrical position of the crossings or support points 20 'of the groove sections of the wave pattern of such plate pairs.
  • the wave pattern of two superimposed exchange plates which form a flow path with one another is formed by subregions which, viewed in the flow direction 7, lie in pairs next to one another and abut one another at separating lines 25 ', 25 "which run in the flow direction
  • eight such subregions 5a to 5h are provided, which form four pairs of subregions.
  • the groove sections 12 present in the individual subregions form, via the dividing lines 25 ', 25 ", adjoining one another, which run from one longitudinal edge 22 of the wave pattern to the other longitudinal edge 23 of the wave pattern, and the groove sections 12 follow one another in a zigzag fashion in the groove trains 24 thus formed.
  • the tips 16, formed by a pair of the more inclined groove sections 12a, 12b, of one plate (FIG. 8b) of the pair of exchanger plates shown in FIG. 8a are based on the pair of the less inclined groove sections 12c, 12d of the other plate of the Pair of formed tips 31 and vice versa the tips 31 ', which are formed by less inclined groove sections 12c, 12d of the first-mentioned plate, on tips 16', which are embodied by more inclined groove sections 12a, 12b of the second-mentioned plate.
  • the second-mentioned plate which lies below the first-mentioned plate in the plate pair shown in FIG. 8a, is designed in the same way as the first-mentioned plate according to FIG. 8b and is rotated by 180 ° with respect to the first-mentioned plate.
  • the plate 2 shown in FIG. 8c has a wave pattern 5 'which results from the wave pattern 5 of the plate 1 according to FIG. 8b by interchanging the two halves of the wave pattern 5.
  • the wave pattern of the exchanger plates similarly to the embodiment according to FIGS. 8a and 8b, has a number, namely eight, subareas 5a to 5h which, viewed in the flow direction 7, lie in pairs next to one another and on dividing lines 25 ', 25 ".
  • the groove sections of the partial areas of the wave pattern adjoin one another via the dividing line, which run from one longitudinal edge 22 of the wave pattern to the other longitudinal edge 23 of the wave pattern.
  • the groove sections follow one another in a zigzag fashion, and at least one pair of groove sections 12a, 12b extending more obliquely to the direction of flow 7 is provided, followed by several pairs of groove sections 12c, 12d which run less obliquely to the direction of flow 7.
  • Analogous to the embodiment according to FIGS Support by strength r oblique groove portions 12a, 12b formed tips 16 are provided on tips 31 of the less oblique groove portions of the other plate of the pair.
  • there are a plurality of groove sections 12 ' which follow the parallel parallel groove sections 12 "of the other plate of the plate pair, wherein there is no mutual support of the plates in these groove sections.
  • the modified plate 2 according to Fig. 9c has a wave pattern which results from the wave pattern of the plate 1 according to Fig. 9b by turning around a geometric axis lying in the plate plane.
  • the plate 9c can thus be changed slightly of a tool used for the production of the plate according to Fig. 9.
  • Stacking a plate according to Fig. 9b and a plate according to Fig. 9c leads to a plate pair according to Fig. 9d, which has a higher flow resistance and a different thermal length than that Has plate pair according to Fig. 9a.
  • the wave pattern of the exchanger plates is formed by two partial areas 5a, 5b lying next to one another in the flow direction, which abut one another on a dividing line 25.
  • the geometric extension 35 of the groove sections 36a of the one partial area 5a coincides at the dividing line 25 with a groove section 36b of the other partial area 5b beginning there and extends from the dividing line 25 to the outer edge 23 of the other partial area 5b parallel to the dividing line 25, this being geometrical Extension 35 of the groove section 36a leaves the groove section 36b at an angle and comes to coincide with a groove section 36b 'adjacent to the groove section 36b.
  • the geometric extension 40 of the groove sections 36b of the partial area 5b coincides with a groove section 36a of the partial area 5a starting at the dividing line 25 and extends the groove section 36a obliquely to an adjacent groove section 36a ', with which it extends on the outer edge 22 of the parallel to the dividing line Subarea 5a comes to cover.
  • the upper plate of the plate pair is thus supported with its lower wave vertices 17 of the wave pattern, which are drawn in full lines in FIG.
  • FIG. 10a at the ends 42 of this wave apex located at the outer longitudinal edges 22, 23 of the wave pattern and along the dividing line 25 located points 41 of this wave crest on the wave crests 18 facing this plate of the underlying plate of the plate pair, these wave crests 18 of the underlying plate of the plate pair, which face the first-mentioned plate, are shown in broken lines in FIG. 10a.
  • the wave pattern of the modified plate 2 shown in FIG. 10c results from the wave pattern of the plate 1 according to FIG. 10b by turning around a geometric axis lying in the plane of the plate and by pivoting about a geometric axis perpendicular to the plane of the plate by 180 °.
  • 10c can thus be produced with a tool which can be obtained by changing over a tool used for producing a plate according to FIG. 10b.
  • Stacking a plate according to FIG. 10b and a plate according to FIG. 10c results in a plate pair according to FIG. 10d.
  • 10b are supported at a plurality of points 43, which are distributed over the length of the groove sections, on the shaft apexes 18 of the underlying plate according to FIG. 10c.
  • this again results in an increased flow resistance and a different thermal length.
  • the groove sections are parts of zigzag-shaped groove trains, the groove sections being approximately perpendicular to one another.
  • the groove sections 45, 46 of the groove trains 47 of the upper plate in FIG. 11a and the groove sections 45 ', 46' of the groove trains 47 'of the lower plate in FIG. 11a have two different lengths, which differ by the width of such a groove.
  • the groove sections 45, 46 of the upper plate of the exchanger plate pair in FIG. 11a overlap each with one groove section of the other plate, that is to say the lower plate in FIG.
  • the support is provided in that the lower wave crests 17 of the upper plate shown in full lines in FIG. 11 a are supported only on support points 52 on the wave crests 18 of the lower plates facing the upper plate in FIG. 11 a, which close to the ends of the groove portions of the partial regions 51 of the wave pattern located at the dividing lines 50.
  • the wave pattern of the modified plate 2 shown in FIG. 11c results from the wave pattern of the plate 1 according to FIG.
  • FIGS. 12a and 12b A similar type of support geometry as in the embodiment according to FIGS. 11a and 11b is also present in the embodiment shown in FIGS. 12a and 12b, in which the groove sections 55 parts are zigzagged in the case of both exchanger plates shown in FIG. 12a, forming a flow path with one another are zigzag-shaped grooves 56, the grooves 56 as a whole run in the direction of flow 7, and these grooves 56 of the two plates forming a pair of exchanger plates have identical shape and dimensions; the groove trains 56 of the upper plate are offset in relation to the groove trains 56 'of the lower plate by half a groove width in the flow direction 7.
  • the support is carried out similarly to the embodiment according to FIGS. 11a and 11b at points 57 which are located at the ends of the groove sections 55 located at the dividing lines 50 of the partial regions 51 of the wave pattern.
  • FIGS. 13a and 13b A similar type of support is also given in the embodiment according to FIGS. 13a and 13b, in which, in the case of both exchanger plates which form a flow path with one another, the groove sections 60 are parts of groove trains 61 which run transversely to the flow direction 7, and there are the partial areas 62 of the Wave pattern adjacent to each other, in the flow direction 7 surface strips with different widths; the groove trains 61 of the upper plate are offset in relation to the groove trains of the lower plate of the plate pair to form mutual support points 63 in the flow direction 7 and transversely to the flow direction.
  • the support points 63 lie, similar to the embodiments according to FIGS. 11 a and 12 a, in the vicinity of the ends of the groove sections 60 located at the dividing lines 64.
  • the wave pattern of the modified plate 2 belonging to the embodiment according to FIGS. 12a and 12b and shown in FIG. 12c results from the wave pattern of the plate 1 according to FIG. 12b by simply shifting in the flow direction 7.
  • Stacking a plate according to FIGS. 12b and a plate according to FIG. 12c results in a plate pair according to FIG. 12d.
  • This has a higher flow resistance and a different thermal length than the plate pair according to Fig. 12a.
  • the wave crests 17 of the one plate rest not only on the ends 57 of the groove sections, but also at locations 58 in the middle of the groove sections on the shaft crests 18 of the other plate of the plate pair.
  • the wave pattern of the modified plate shown in FIG. 13c results from the wave pattern of the plate according to FIG. 13b by interchanging the two halves of the wave pattern which follow one another in the flow direction 7. Placing a plate according to FIG. 13b and a plate according to FIG. 13c on top of one another results in a plate pair according to FIG. 13d, which has a higher flow resistance and a different thermal length in comparison to a plate pair according to FIG. 13a.
  • the wave crests 17 of the longer groove sections of one plate of this pair of plates lie at their ends 63 and at points 65 in the middle of their longitudinal extent on the wave crests 18 of this plate pair facing this plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Echangeur de chaleur du type à plaques, possédant au moins trois plaques d'échanges de chaleur (1, 2) superposées, chaque paire de plaques successives (1, 2) formant un passage traversant (3, 4). Les plaques (1, 2) sont constituées de tôle et, afin de former entre elles des canaux traversants et d'assurer entre elles un support mutuel, comportent un motif ondulé embouti qui recouvre le passage traversant (3, 4), ledit motif formant des gorges (9, 10) s'étendant transversalement par rapport au sens (11) des ondulations et obliquement par rapport à l'axe médian (7) du passage traversant. La surface du motif ondulé (5) de chaque plaque est constituée d'un certain nombre de régions partielles (5a, 5c) mutuellement adjacentes, et les gorges (9, 10) forment, dans les régions partielles (5a, 5c) individuelles, des sections de gorge (12) s'étendant parallèlement les unes aux autres dans chaque groupe, lesdites sections se terminant aux limites (14) de ladite région partielle; les groupes des sections de gorge (12) des différentes régions partielles (5a, 5c) s'étendent transversalement les uns aux autres. Directement en face de chaque région partielle (5a, 5c) du motif ondulé (5) d'une plaque (1, 2) se trouve une région partielle (5a, 5c), de mêmes dimensions, du motif ondulé (5) d'une autre plaque (1, 2) qu forme avec la première plaque précitée (1, 2) un passage traversant (3, 4). Dans au moins une paire de plaques (1, 2) formant mutuellement un passage traversant (3, 4), les sommets (17) des ondes d'une plaque (1, 2) sont supportés, uniquement dans la région des extrémités (21) des sections de gorge (12) de cette plaque, sur les sommets (18) des ondes de l'autre plaque (1, 2) de la paire, et de la même manière dans la région des extrémités des sections de gorge (12) de ladite autre plaque (1, 2), et couvrent librement la distance séparant ces points de support (20). En particulier, les sommets des ondes (17) d'une plaque (1, 2) d'une paire de plaques formant mutuellement un passage traversant (3, 4) sont portées, par l'une de leurs extrémités, sur l'extrémité d'un sommet d'ondulation (18), en regard de cette plaque, de l'autre plaque (1, 2), et par leur autre extrémité, sur l'extrémité d'un sommet (18) parallèle, adjacent au dernier sommet (18) des ondulations, de l'autre plaque (1, 2), et passent librement au-dessus du creux intermédiaire du motif ondulé (5) de l'autre plaque (1, 2).

Claims (16)

1. Echangeur thermique à plaques comprenant au moins trois plaques échangeuses (1, 2) empilées, deux plaques échangeuses successives formant ensemble une voie d'écoulement (3, 4), lesdites plaques échangeuses (1, 2) étant en tôle et portant pour former des canaux d'écoulement entre les plaques (1, 2) et pour assurer l'appui des plaques (1, 2) l'une sur l'autre un motif ondulé (5) formé à la presse sur toute la voie d'écolement qui constitue des rainures (9, 10) orientées transversalement à la direction de l'ondulation (11) et en biais par rapport à la direction de l'écoulement (7), où la surface du motif ondulé (5) de chaque plaque échangeuse (1, 2) est constituée d'un certain nombre de zones contiguës (5a, 5b, 5c, 5d), où les rainures (9, 10) forment dans chacune des zones une série de sections de rainures (12) parallèles entre elles et se terminant à la limite de la zone, les séries de sections de rainures (12) des différentes zones (5a, 5b, 5c, 5d) étant en biais les unes par rapport aux autres et chaque zone du motif ondulé (5) d'une plaque échangeuse (1) appliqué de manière affleurante sur une zone de même surface du motif ondulé d'une autre plaque échangeuse (2) formant avec la première plaque une voie d'écoulement (3, 4), caractérisé en ce que, sur au moins une paire de plaques échangeuses (1, 2) constituant ensemble une voie d'écoulement (3, 4), les sommets des ondes (17) d'une des plaques ne sont appuyés qu'au niveau des extrémités (21) des sections de rainures (12) de cette plaque sur les sommets de l'onde (18) opposés de l'autre plaque, également au niveau des extrémités (21) des sections de rainures (12) de ladite autre plaque et enjambent sans autre appui toute la distance entre ces points d'appui (20).
2. Echangeur thermique à plaque selon la revendication 1, caractérisé en ce que, le long des sections de rainure (12; 12a-12d; 12', 12"; 36a, 36b) des zones (5a-5d; 5a'-5d'; 5a"-5d"; 5a-5h; 5a, 5b) du motif ondulé (5, 5'.) de la première (1) des deux plaques échangeuses constituant ensemble une voie d'écoulement, les sommets des ondes (17) qui sont tournés vers les sommets des ondes de l'autre des plaques de la paire s'appuient par l'une de leurs extrémités (21) à l'extrémité (21) d'un sommet d'onde (18) de l'autre plaque (1) tourné vers la première plaque et, par l'autre de leurs extrémités à l'extrémité d'un sommet d'onde (18) de l'autre plaque parallèle et adjacent à ce dernier sommet d'onde (18) et enjambent sans appui la vallée du motif ondulé de l'autre plaque qui se trouve entre les deux.
3. Echangeur thermique à plaques selon la revendication 1, caractérisé en ce que le. motif ondulé des plaques échangeuses (1, 2) est subdivisé en plus de deux zones (5a-5h) aboutées à des lignes de séparation, les sections de rainures (12a-12d) formant par delà les lignes de séparation (25', 25") des trains de rainures (24) contingus et en ce que, sur ces trains de rainures (24) entre un point d'appui (20) situé dans une section de rainure et un point d'appui (20) situé dans une autre section de rainure se trouvent une ou plusieurs sections de rainures (12' ou 12") dans lesquelles les trains de rainures de deux plaques d'une paire de plaques échangeuses se suivent et ne sont pas appuyés.
4. Echangeur thermique selon la revendication 2, caractérisé en ce que le motif ondulé (5, 5') des plaques échangeuses (1, 2) présente un nombre pair de zones (5a-5d; 5a'-5d'; 5a"-5d"; 5a-5h; 5a, 5b) qui se succèdent dans la direction de l'écoulement (7) ou transversalement à celle-ci, où, dans la première moitié du nombre des zones, les sections de rainures (12; 12a, 12b; 36a, 36a') s'orientent selon un premier angle (a) par rapport à la direction d'écoulement, et où, dans la seconde moitié du nombre de zones, les sections de rainures (12; 12c, 12d; 36b, 36b') s'orientent selon un second angle ((3) par rapport à la direction de l'écoulement (7), où qui plus est la longueur cumulée (29) des différentes zones mesurée dans l'ordre de succession des zones (5a, 5b, 5c, 5d) est identique et où, en superposant une telle plaque échangeuse avec une seconde plaque, de même construction, mais pivotée de 180° autour de l'axe passant perpendiculairement par le centre géométrique (30) de la plaque, les zones (5a, 5b) de la première plaque (1) dont les sections de rainures suivent le premier angle (a) par rapport à la direction d'écoulement (7) sont superposées aux zones de la seconde plaque (2) dont les sections de rainures suivent le second angle (13) par rapport à la direction d'écoulement (7), si bien que les sommets des ondes (18) du motif ondulé de la seconde plaque (2) tournés vers la première plaque (1), dans les différentes zones (5c, 5d) du motif ondulé, ne reposent sur les sommets des ondes (17) du motif ondulé de la première plaque (1) tournés vers la seconde plaque qu'aux extrémités (21) des sections de rainures (12) des différentes zones (5a, 5b, 5c, 5d).
5. Echangeur thermique à plaques selon la revendication 4, caractérisé en ce que le motif ondulé des plaques échangeuses (1, 2) présente un nombre de zones divisible par quatre (5a', 5b', 5c', 5d', 5a", 5b", 5c", 5d") organisées en deux bandes (26, 27) qui sont séparées par une ligne de séparation (25) orientée dans la direction d'écoulement (7) ou transversalement à celle-ci, le motif ondulé étant réalisé en miroir dans les deux bandes (26, 27) par rapport à la ligne de séparation (25).
6. Echangeur thermique à plaques selon la revendication 2, caractérisé en ce que le motif ondulé (5, 5') des plaques échangeuses (1, 2) est constitué de quatre zones ou plus (5a-5h) qui, vues dans la direction de l'écoulement (7), sont juxtaposées par paires et s'aboutent aux lignes de séparation (25', 25"), les sections de rainures (12a, 12b) formant des trains de rainures juxtaposées traversant les lignes de séparation (25', 25") et s'étendant d'un grand côté (22) du motif ondulé (5) à l'autre grand côté (23) du motif ondulé (5) et les sections de rainures (12a, 12b, 12c, 12d) se succédant dans les trains de rainure à la manière d'un zigzag, une paire de sections (12a, 12b) orientée très en biais par rapport à la direction d'écoulement (7) étant suivie par une paire de sections de rainures (12c, 12d) formant un angle moindre avec la direction d'écoulement (7), où les pointes (16) des sections de rainures (12a, 12b) très en biais de la première (1) des deux plaques échangeuses reposent sur les pointes (31) des sections de rainures (12c, 12d) formant un angle moindre de l'autre plaque (2) et où inversement les pointes (16') des sections de rainures (12a, 12b) très en biais de l'autre plaque (2) de la paire reposent sur les pointes (31') des sections de rainures (12c, 12d) formant un angle moindre de la première (1) des deux plaques.
7. Echangeur thermique à plaques selon la revendication 3, caractérisé en ce que le motif ondulé des plaques échangeuses est formé par est constitué de quatre zones ou plus (5a-5h) qui, vues dans la direction de l'écoulement (7), sont juxtaposées par paires et s'aboutent aux lignes de séparation (25', 25"), les sections de rainures (12a, 12b, 12c, 12d) formant des trains de rainures juxtaposées traversant les lignes de séparation (24) et s'étendant d'un grand côté (22) du motif ondulé (5) à l'autre grand côté (23) du motif ondulé (5) et les sections de rainures se succédant dans les trains de rainures (24) à la manière d'un zigzag, une paire de sections (12a, 12b) orientée très en biais par rapport à la direction d'écoulement (7) étant suivie par une paire de sections de rainures (12c, 12d) formant un angle moindre avec la direction d'écoulement (7), où les pointes (16) des sections de rainures (12a, 12b) très en biais de la première (1) des deux plaques échangeuses reposent sur les pointes (31) des sections de rainures (12c, 12d) formant un angle moindre de l'autre plaque (2) et en ce que, entre les points d'appui (20) d'un train de rainures, il se trouve plusieurs sections de rainures (12') qui suivent des sections de rainures (12") parallèles de l'autre des deux plaques échangeuses et il n'y a pas d'appui entre les deux plaques de la paire.
8. Echangeur thermique à plaques selon la revendication 2, caractérisé en ce que le motif ondulé des plaques échangeuses est formé de deux zones (5a, 5b) qui, vues dans la direction de l'écoulement (7), sont juxtaposées et s'aboutent sur une ligne de séparation (25), où la prolongation géométrique (35) des sections de rainures (36a) de la première zone (5a) coïncide au niveau de la ligne de séparation (25) avec une section de rainure (36b) de l'autre zone (5b) qui y commence et où cette section de rainure (36b), partant an biais, coïncide au niveau du bord extérieur (23) parallèle à la ligne de séparation (25) de l'autre zone (5b) avec une section de rainure (36b') voisine de cette section (36b) et où également la prolongation géométrique (40) des sections de rainure (36b) de l'autre zone (5b) coïncide au niveau de la ligne de séparation (25) avec la section de rainure (36a) de la première zone (5a) qui y commence, cette section de rainure (36a), partant en biais, coïncidant au niveau du bord extérieur (22) parallèle à la ligne de séparation (25) avec une section de rainure (36a') voisine de cette section (36a), et en ce que les deux plaques d'une paire de plaques échangeuses s'appuient l'une sur l'autre en ces points de coïncidence.
9. Echangeur thermique à plaques selon la revendication 1, caractérisé en ce que, sur deux plaques échangeuses constituant ensemble une voie d'écoulement, les sections de rainures (45, 46, 45', 46') sont des éléments de trains de rainures en forme de zigzag (47, 47'), les sections de rainures en zigzag (45, 46, 45', 46') étant de préférence sensiblement perpendiculaires entre elles, en ce que les sections de rainures des trains de rainures (47, 47') possèdent deux longueurs différentes, ces deux longueurs différent de la valeur de la largeur d'une ou deux rainures, et en ce que les sections de rainures (45, 46) de la première des deux plaques échangeuses sont superposées et alignées sur une section de rainures de l'autre plaque, une section de rainures courtes (45) de la première plaque se superposant à une section de rainures longues (46') de la seconde plaque et une section de rainures courtes (45') de la seconde plaque se superposant à une section de rainures longues (46) de la première plaque.
10. Echangeur thermique à plaques selon la revendication 1, caractérisé en ce que, sur deux plaques échangeuses constituant ensemble une voie d'écoulement, les sections de rainures (55) sont les éléments de trains de rainures (56) en forme de zigzag, ces trains de rainures (56) étant orientés dans la direction de l'écoulement (7), les trains de rainures (56, 56') des deux plaques associées étant de forme et de dimensions identiques et les trains de rainures (56) de la première plaque étant décalés de la moitié de la largeur d'une rainure dans la direction de l'écoulement (7) par rapport aux trains de rainures (56') de la seconde plaque.
11. Echangeur thermique à plaques selon la revendication 1, caractérisé en ce que, sur deux plaques échangeuses constituant ensemble une voie d'écoulement, les sections de rainures (60) sont les éléments de trains de rainures (61) en forme de zigzag orientés transversalement par rapport à la direction de l'écoulement (7), les zones (62) du motif ondulé de bandes juxtaposées dans la direction de l'écoulement (7) sur la première (1) des deux plaques échangeuses étant décalées dans la direction de l'écoulement (7) et transversalement à celle-ci par rapport aux trains de rainures de la seconde plaque (2) afin de former des points d'appui (63) d'une plaque sur l'autre.
12. Echangeur thermique à plaques selon l'une des revendications 1 à 11, caractérisé en ce que lesdites paires de plaques échangeuses constituant ensemble une voie d'écoulement sont constituées de plaques identiques, la première plaque de cette paire étant pivotée par rapport à l'autre de 180° autour d'un axe passant perpendiculairement par le centre géométrique (30) des plaques.
13. Echangeur thermique à plaques selon la revendication 12, caractérisé en ce que l'échangeur thermique utilise deux types différentes de plaques échangeuses, deux plaques échangeuses de même type étant superposées pour former à chaque fois une voie d'écoulement pour le premier fluide et les différentes paires de plaques échangeuses se succédant alternativement, ce qui forme entre les plaques échangeuses différentes de deux paires successives appliquées l'une contre l'autre une voie d'écoulement pour l'autre fluide, où les sections de rainures du motif ondulé de la première des deux plaques échangeuses différentes appliquées l'une contre l'autre reposent en travers sur plusieurs sections de rainures de l'autre de ces deux plaques échangeuses différentes et où les sommets des ondes des sections de rainures de la première des plaques reposent sur les sommets des ondes opposés de l'autre plaque en une pluralité de points de contact distribués sur la longueur des sections de rainures.
14. Echangeur thermique à plaques selon la revendication 13, caractérisé en ce que le motif ondulé du premier type de plaque échangeuse est géométriquement apparenté à celui de l'autre type de plaque échangeuse, le premier motif étant dérivé du second en pivotant de 180° autour d'un axe géométrique situé dans le plan du motif et passant de préférence par son centre et/ou en échangeant des zones du motif ondulé.
15. Echangeur thermique à plaques selon la revendication 13 ou 14, caractérisé en ce que les croisements des sections de rainures du motif ondulé de deux plaques superposées et constituant ensemble une voie d'écoulement sont sensiblement symétriques par rapport à une ligne médiane située approximativement dans le plan de la plaque.
16. Echangeur thermique à plaques selon l'une des revendications 13 à 15, caractérisé en ce que les paires identiques entre elles de plaques échangeuses ont dans l'échangeur la même position ou orientation.
EP19870905565 1986-08-29 1987-08-28 Echangeur de chaleur du type a plaques Expired - Lifetime EP0321480B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT2344/86 1986-08-29
AT234486A AT388446B (de) 1986-08-29 1986-08-29 Plattenwaermeaustauscher

Publications (2)

Publication Number Publication Date
EP0321480A1 EP0321480A1 (fr) 1989-06-28
EP0321480B1 true EP0321480B1 (fr) 1990-11-07

Family

ID=3532601

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870905565 Expired - Lifetime EP0321480B1 (fr) 1986-08-29 1987-08-28 Echangeur de chaleur du type a plaques

Country Status (4)

Country Link
EP (1) EP0321480B1 (fr)
AT (1) AT388446B (fr)
IN (1) IN171633B (fr)
WO (1) WO1988001722A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767933B2 (en) 2016-02-24 2020-09-08 Alfa Laval Corporate Ab Heat exchanger plate for a plate heat exchanger, and a plate heat exchanger

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4117778C1 (fr) * 1991-03-13 1992-09-10 Hans Dr. 3559 Battenberg De Viessmann
SE505225C2 (sv) * 1993-02-19 1997-07-21 Alfa Laval Thermal Ab Plattvärmeväxlare och platta härför
AUPN123495A0 (en) * 1995-02-20 1995-03-16 F F Seeley Nominees Pty Ltd Contra flow heat exchanger
GB2316027B (en) * 1996-08-10 1999-04-07 T & N Technology Ltd Forming a composite panel
GB2316028B (en) * 1996-08-10 1999-04-07 T & N Technology Ltd Heat shield panel
GB9616849D0 (en) * 1996-08-10 1996-09-25 T & N Technology Ltd Forming a composite panel
DE19709601C5 (de) * 1997-03-08 2007-02-01 Behr Industry Gmbh & Co. Kg Plattenwärmeübertrager
US5939212A (en) * 1997-06-09 1999-08-17 Atd Corporation Flexible corrugated multilayer metal foil shields and method of making
BR9809992A (pt) * 1997-06-09 2001-10-02 Atd Corp Protetores de chapa metálica de camadas múltiplas corrugadas flexìveis e processo para fabricação
JP3100371B1 (ja) * 1999-04-28 2000-10-16 春男 上原 蒸発器
JP3139681B2 (ja) * 1999-05-31 2001-03-05 春男 上原 凝縮器
CN1833153B (zh) 2003-08-01 2012-04-04 贝洱两合公司 热交换器及其制造方法
SE529916C2 (sv) 2005-07-22 2008-01-08 Swep Int Ab Kompakt lufttork
SE528886C2 (sv) * 2005-08-26 2007-03-06 Swep Int Ab Ändplatta
JP5733900B2 (ja) * 2010-02-26 2015-06-10 三菱電機株式会社 プレート式熱交換器の製造方法及びプレート式熱交換器
JP5710232B2 (ja) * 2010-12-09 2015-04-30 株式会社日阪製作所 プレート式熱交換器
WO2023274375A1 (fr) * 2021-06-30 2023-01-05 浙江雪波蓝科技有限公司 Échangeur de chaleur et procédé de fabrication associé
DE102022113336A1 (de) 2022-05-25 2023-11-30 smk systeme metall kunststoff gmbh & co. kg Plattenwärmeübertrager und Verfahren zum Herstellen eines Plattenwärmeübertragers

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1153390B (de) * 1959-03-26 1963-08-29 Kyffhaeuserhuette Artern Veb M Waermeaustauschplatten fuer einen Stapelplattenwaermetauscher mit einer Wellung von gleichfoermiger Wellenlaenge
GB1288887A (fr) * 1970-01-26 1972-09-13
GB1339542A (en) * 1970-03-20 1973-12-05 Apv Co Ltd Plate heat exchangers
IT1055235B (it) * 1976-02-12 1981-12-21 Fischer H Scambiatore di calore a piastre formato da piastre aventi forme diverse
DE2616816C3 (de) * 1976-04-15 1983-12-01 Apparatebau Rothemühle Brandt + Kritzler GmbH, 5963 Wenden Heizblechpaket für regenerative Wärmetauscher
SE423750B (sv) * 1977-01-14 1982-05-24 Munters Ab Carl Anordning vid vermevexlare for sensibel och/eller latent vermeoverforing
DE2840522A1 (de) * 1977-10-05 1979-04-19 Alfa Laval Ab Plattenwaermetauscher
SE411952B (sv) * 1978-07-10 1980-02-11 Alfa Laval Ab Vermevexlare innefattande ett flertal i ett stativ inspenda vermevexlingsplattor
US4249597A (en) * 1979-05-07 1981-02-10 General Motors Corporation Plate type heat exchanger
SE420020B (sv) * 1980-01-09 1981-09-07 Alfa Laval Ab Plattvermevexlare
SE431793B (sv) * 1980-01-09 1984-02-27 Alfa Laval Ab Plattvermevexlare med korrugerade plattor
SE446562B (sv) * 1982-03-04 1986-09-22 Malte Skoog Plattvermevexlare med turbulensalstrande asar innefattande ett forsta slag av plattor der asarna bildar viss vinkel med plattans langsida och ett andra slag med en viss annan vinkel
FR2559575A1 (fr) * 1984-02-14 1985-08-16 Gea Ahlborn Gmbh Co Kg Echangeur de chaleur a plaques
AT380739B (de) * 1984-03-14 1986-06-25 Helmut Ing Fischer Zerlegbarer plattenwaermeaustauscher und presswerkzeug zur herstellung von waermeaustauschplatten dieses waermeaustauschers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767933B2 (en) 2016-02-24 2020-09-08 Alfa Laval Corporate Ab Heat exchanger plate for a plate heat exchanger, and a plate heat exchanger

Also Published As

Publication number Publication date
IN171633B (fr) 1992-11-28
WO1988001722A1 (fr) 1988-03-10
ATA234486A (de) 1988-11-15
EP0321480A1 (fr) 1989-06-28
AT388446B (de) 1989-06-26

Similar Documents

Publication Publication Date Title
EP0321480B1 (fr) Echangeur de chaleur du type a plaques
EP0069241B1 (fr) Garniture pour colonnes d'échange de matières et procédé de fabrication de la garniture
DE19528116B4 (de) Wärmeübertrager mit Platten-Sandwichstruktur
DE2207756C3 (de) Platte für einen Plattenwärmeaustauscher
EP0070920B1 (fr) Colonne pour échange de matière et pour échange directe de chaleur
EP0152560B1 (fr) Matrice pour réacteur catalytique pour purifier des gaz d'échappement
EP0401682B1 (fr) Elément de remplissage
DE2706003A1 (de) Waermetauscher mit platten
DE1601131B2 (de) Kuehlraster als rieseleinbau, insbesondere fuer kuehltuerme
EP0761303B1 (fr) Elément de garnissage pour colonnes d'échange de matière ou de chaleur
EP0332907A1 (fr) Garnissage pour le traitement de liquides et procédé pour sa fabrication
EP0361225A1 (fr) Elément de remplissage
EP0618003A1 (fr) Elément de remplissage destiné à l'échange ou à la transformation de matière sous la forme d'un élément d'échange de chaleur
EP2310756B1 (fr) Élément intégrable à intégrer dans un dispositif d'humidification, de nettoyage et/ou de refroidissement d'un fluide, en particulier d'un gaz comme l'air par exemple, et procédé de fabrication d'un corps intégrable avec un tel élément intégrable
DE69928590T2 (de) Prägewalze für dünne Metallplatten als Katalysator-Träger
DE1809545A1 (de) Plattenwaermetauscher
DE69820880T2 (de) Wärmetauscherwirbelerzeuger mit unterbrochenen wellungen
WO1998006996A1 (fr) Element integre pour echangeur de chaleur
DE2534445A1 (de) Gegenstromwaermeaustauscher
EP3433544A1 (fr) Module à insérer dans un dispositif d'humidification, de purification et/ou de refroidissement d'un fluide, en particulier d'un gaz comme l'air par exemple
DE19639114B4 (de) Wärmeübertrager mit Plattenstapelaufbau
DE2947271A1 (de) Waermetauscherlamelle
EP0372003B1 (fr) Chicanes pour colonnes d'echange de chaleur et de matieres
DE2747769C2 (de) Füllkörper aus Kunststoff für einen Tropfkörper einer biologischen Abwasserreinigungsanlage und für einen Operationsständer
EP0375986A1 (fr) Support pour un réacteur catalytique pour la purification des gaz d'échappement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19890918

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19901107

Ref country code: BE

Effective date: 19901107

Ref country code: SE

Effective date: 19901107

Ref country code: NL

Effective date: 19901107

Ref country code: FR

Effective date: 19901107

REF Corresponds to:

Ref document number: 58230

Country of ref document: AT

Date of ref document: 19901115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3766111

Country of ref document: DE

Date of ref document: 19901213

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910831

Ref country code: CH

Effective date: 19910831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19910831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970813

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970814

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970825

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980828

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980828

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601