EP0316853A1 - Cableless danger signal system - Google Patents

Cableless danger signal system Download PDF

Info

Publication number
EP0316853A1
EP0316853A1 EP88118986A EP88118986A EP0316853A1 EP 0316853 A1 EP0316853 A1 EP 0316853A1 EP 88118986 A EP88118986 A EP 88118986A EP 88118986 A EP88118986 A EP 88118986A EP 0316853 A1 EP0316853 A1 EP 0316853A1
Authority
EP
European Patent Office
Prior art keywords
infra
room
control center
infrared
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88118986A
Other languages
German (de)
French (fr)
Other versions
EP0316853B1 (en
Inventor
Friedrich Dr.-Ing. Schumacher
Walter Dipl.-Ing. Freter (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT88118986T priority Critical patent/ATE102727T1/en
Publication of EP0316853A1 publication Critical patent/EP0316853A1/en
Application granted granted Critical
Publication of EP0316853B1 publication Critical patent/EP0316853B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B1/00Systems for signalling characterised solely by the form of transmission of the signal
    • G08B1/08Systems for signalling characterised solely by the form of transmission of the signal using electric transmission ; transformation of alarm signals to electrical signals from a different medium, e.g. transmission of an electric alarm signal upon detection of an audible alarm signal
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/02Monitoring continuously signalling or alarm systems
    • G08B29/06Monitoring of the line circuits, e.g. signalling of line faults

Definitions

  • the invention relates to a wireless hazard detection system, consisting of at least one room control center, a building control center, which is connected to the room control center via existing power lines, and several infrared transmission devices arranged in a respective room, each of which is connected to at least one hazard detector and which an IR transmission device in the room control center.
  • a device for hazard reporting with individual detectors and a signaling center in one room is already known from European laid-open specification 0 125 387. There, the signal transmission between the individual detectors and the signaling center takes place alternately with the aid of infrared radiation transmission.
  • the individual detectors are periodically requested by the signal center with an interrogation signal to transmit. The individual detectors respond after different time delays characteristic of the individual hazard detectors, from which the detector in question, ie its address, can be determined.
  • Such a device for hazard reporting has also been proposed in order to reduce or avoid the not inconsiderable installation outlay, in particular when a hazard alarm system has to be installed subsequently.
  • the individual detectors are therefore battery-powered and should therefore have low energy consumption.
  • the individual detectors are also disadvantageously equipped with an infrared receiver and are therefore constantly switched on and ready to receive, and nevertheless cause considerable energy consumption in this way.
  • the object of the present invention is therefore to avoid the disadvantages listed above and to enable interference-free and sabotage-proof signal transmission with the lowest possible energy consumption of the individual hazard detectors and transmitting devices for a wireless hazard detection system as described at the beginning.
  • the individual detectors and transmitters should be constantly monitored for their functionality.
  • the infrared transmission devices for one or more detectors have only one infrared transmitter, which sends data to the room control center with a relatively low expenditure of energy.
  • the emitting diodes of the individual infrared transmitters which are provided with simple optics, require a low transmission energy due to the orientation towards the room center.
  • the received data from the individual infrared transmitters are processed and processed in the room control center using a microprocessor system and transmitted via a network transmission device via the existing line network to a common building control center, which evaluates the corresponding messages and issues an alarm message in the event of a dangerous state.
  • the hazard detection system according to the invention can have an all-round infrared receiving device in the central room.
  • this has the advantage that a single infrared receiving device must be provided, which is non-directional and therefore has no special optics, but which on the other hand has a decoding device in order to determine the individually coded signals of the individual transmitters according to their origin.
  • the room control center has a plurality of infrared receivers, each of which is associated with an optical receiving system with a very extreme beam bundling.
  • This beam bundling can be less than two degrees, for example.
  • Each of these infrared receiving devices with the optics is aligned with a corresponding infrared transmitter.
  • this has the advantage that all infrared transmitters can be of identical design and therefore do not require individual coding.
  • This has the additional advantage that, due to the exact alignment, a very low transmission energy is sufficient to receive a sufficiently strong transmission signal with a large signal-to-noise ratio.
  • this arrangement has the decisive advantage that, with the extremely narrow beam bundling and exact alignment, it is extremely difficult to deceive or disrupt the infrared receivers of the room control center with extraneous light or specifically during sabotage treatment.
  • the infrared transmitters regularly emit pulse telegrams with different pulse intervals, at least four different message states being able to be transmitted.
  • the respective state is determined from the different pulse intervals by real-time measurement.
  • an evaluation program can be provided in the microprocessor system of the room control center, which program determines the corresponding state from the pulse intervals determined. If, for example, no pulses are received, the transmission is disturbed. If impulses are received at a certain predetermined distance, the transmission is OK and an idle state can be signaled continuously. If the impulses are transmitted with a different pulse interval, the transmission is also OK and the status is interpreted in response to a danger message. If a lot of impulses occur, a foreign transmitter interference is recognized.
  • double pulses can be generated, both the spacing of the pulses between a double pulse and the different spacing of the pulse pairs being able to be used for the various status information. This further increases the security of transmission and the number of message states.
  • An expedient embodiment of the invention for reducing the power consumption of the individual transmitters consists in that, in the alarm state, a series of alarm pulses with a smaller pulse interval compared to the Ruheim pulses is emitted immediately and then automatically switched over to a power-saving continuous alarm pulse transmission, the pulse interval for the permanent alarm transmission in the area of the pulse interval for the Ruheim pulses, for example a slightly larger pulse interval.
  • This is particularly advantageous for intrusion detectors because certain areas, e.g. during the day, the formwork is defocused at the headquarters. Alarm messages that are triggered by the contacts of such monitoring devices lead to a status message and transmission for alarm, but are not forwarded as an official alarm in the control center for the duration of the disarming.
  • an alarm state is continuously transmitted from the relevant infrared transmitter via the associated room control center to the building control center, but is not reported there as an alarm because of the disarming. Since there is no information transfer from the room control center to the infrared transmitter for reasons of energy saving, the automatic switchover to the permanent alarm according to the invention ensures that the hazard detector in question is monitored in a manner similar to the transmission of the idle state if no alarm is given, but the functionality of the hazard detector, the infrared transmitter, is Transmission route and the room control center is continuously checked.
  • the pulser IC can be controlled in each infrared transmitter in such a way that a high pulse sequence with, for example, 20 to 50 ms pulse spacing is emitted.
  • this state can be output as analog DC voltage via a digital-analog converter and thus the tone frequency of a loudspeaker can be modulated so that the respective optics can be aligned quickly and precisely on the basis of the pitch.
  • the room control center can advantageously be battery-backed, so that monitoring of dangerous states is ensured at all times even in the event of a power failure.
  • the building control center is equipped with a mains-independent power supply anyway, if necessary.
  • a wireless hazard detection system with directional infrared transmission is shown schematically.
  • the building control center can be a conventional danger control center which, as only indicated here, indicates faults ST and alarm AL, but which has a suitable network transmission for data exchange.
  • a network transmission NUB is shown in block diagram form in the room control center RZ1. It is controlled by the MPS microprocessor system.
  • Infrared receivers IRE1 to IRE8 are connected to the microprocessor system MPS.
  • the infrared receivers are each connected to an infrared transmitter IRS1 to IRS8, which is arranged in the same room, for example in the area of a window, via an infrared transmission link.
  • IRS1 to IRS8 which is arranged in the same room, for example in the area of a window, via an infrared transmission link.
  • the reception optics of the room control center are aligned with the transmission optics of the infrared transmitter.
  • FIG. 1 only two further infrared transmitters IRS2 and IRS3 are indicated.
  • two danger detectors GM and a door contact TK are connected to the infrared transmitter IRS2.
  • a motion detector BM is connected to the third infrared transmitter IRS3 as a hazard detector GM.
  • the infrared transmitter IRS1 has, for example, two hazard detectors, a window contact FK and a glass break detector GBM.
  • a battery-powered (BAT) pulse generator IC (PIC) which is explained in more detail in principle with reference to FIG. 3, feeds an LED transmitter, which can have, for example, two transmitter diodes SD, which are not shown here.
  • the wireless hazard detection system allows the various intrusion signal sources within a room to be wirelessly connected to the room control center.
  • not only eight but also sixteen infrared transmitters can be connected to a room control center. All infrared transmitters transmit the status information that is present at their hazard detectors, for example alarm contacts, to the room control center, which receives these signals from the individual infrared transmitters.
  • Each infrared transmitter has a battery-operated, free-running, quartz-controlled transmitter that emits periodic patterns of pulses.
  • the individual pulse can be formed by a very short, for example 1.5 ⁇ s long, but have a high pulse current, for example up to 2 amps.
  • the infrared transmitter can, for example, regularly send an impulse described above at intervals of 250 ms.
  • This pulse sequence is received in the room control center and interpreted as the detector's idle state, so that a wire connection is present in accordance with a quiescent current monitoring.
  • the pulses received in the room control center RZ via the individual infrared receivers IRE1 to IRE8 are processed by means of an MPS microprocessor system.
  • a computational evaluation is provided.
  • the real-time measurement of the pulse intervals is carried out, for example, using a 24-bit synchronous counter, which is counted up by a 2 MHz quartz oscillator.
  • the connected computer ie the MPS microprocessor system, reads the data from the buffer memory and uses an evaluation program to find the respective status information of the infrared transmitters or the danger detectors connected to them from the pulse intervals determined. At least four status information are provided for each transmission channel: No pulses means that the transmission is disturbed (STu). Pulses with a defined interval for rest (RUP), for example 10 seconds, means that the transmission is OK and the connected hazard detectors are at rest.
  • URP defined interval for rest
  • impulses arrive at a much shorter pulse interval (ALP), for example at a interval of 250 ms, this means that the transmission is OK, but a hazard detector has responded and an alarm message is therefore available.
  • ALP pulse interval
  • STf third-party transmitter
  • the pulse generator IC PIC is formed by a synchronization and changeover logic SUL, a changeover switch UMS, several dividers (EIT, TL, VOT) and a pseudo random generator ZGE.
  • the synchronization and switchover logic SUL has, for example, four GMEG hazard detection inputs: A glass break detector input GBM with an associated reset input RGBM and three contact inputs, for example window contacts FK.
  • the synchronization and switchover logic SUL has a set input SEE for setting up the optics and for setting the pseudo additional sequence. To set up the optics, a very high pulse sequence ARP is generated via this set input SEE.
  • the pulse is generated, for example, with a simple clock quartz UQ and a downstream prescaler VOT, which, for example, divides the vibrations of 32 kHz down to a ratio of 32: 1, so that a 1 ms cycle arises, which on the one hand is based on an adjustable divider EIT and on the other hand on the random number generator CGU arrives.
  • the random generator ZGE can be controlled via a reset input R by the synchronization and switching logic component SUL.
  • the clock pulses generated are, on the one hand, via the adjustable divider EIT, which is also controlled by the synchronizing and switching logic SUL, and via a further divider TL and one from the synchronizing and switching logic controlled switching device UNS via a pulse driver PTR.
  • the Ruheim pulses RUP which are emitted at a pulse interval of, for example, 10 seconds, are obtained from the pulses, which are divided down again via the divider TL, and reach the transmitter diode SD via the changeover switch UMS on the normally closed contact RU.
  • the pulses present at the output of the adjustable divider EIT which for example have a spacing of 250 ms, are given to the transmitter diode SD via the switch contact AL of the switch UMS.
  • the pseudo pulses PS which can have a pulse interval of approximately 70 seconds, pass from the random generator ZGE via the changeover contact SS to the transmitter diode SD.
  • the basic circuit diagram illustrates the mode of operation of the hazard detection system according to the invention, the necessary switching elements in the pulse generator IC PIC being implemented in the infrared transmitter IRS.
  • FIG. 3 shows time diagrams of the infrared transmission pulses. Three different pulse telegrams are shown in the first diagram and the pulse sequence in the event of an alarm in the pulse telegram shown below.
  • a high pulse sequence ARP with, for example, a pulse interval of 20 ms is generated, which is controlled for the alignment via the set input (SEE to SUL) in the infrared transmitter.
  • Ruheim pulses RUP with a pulse interval of 10 sec. Are regularly transmitted from the infrared transmitters to the room control center, for example.
  • pseudo pulses PS are also initiated via the set input (SEE) in the synchronization and switchover logic (SUL) according to FIG. 2, which may have a pulse interval of approximately 70 seconds, for example.
  • SEE set input
  • SUL synchronization and switchover logic
  • an alarm pulse delivery ALP is generated immediately, which has a pulse interval of, for example, 250 ms. Has. This pulse is emitted, for example, sixteen times, then - as already explained above - an alarm message is automatically switched over to save electricity in such a way that the alarm pulse is given as a permanent alarm DALP with a substantially larger pulse interval, which may be, for example, close to the usual home pulse intervals.
  • a pulse interval of 9 seconds is provided here, for example.
  • a larger pulse interval can also be selected, for example 12 seconds, which is then greater than the interval for Ruheim pulses.
  • an average power consumption of less than 3 ⁇ A is achieved, so that a capacity for five years can be guaranteed with the long-term batteries provided there. Therefore, such a battery capacity design is certainly sufficient for such hazard detection systems, so that additional monitoring of the capacity of the battery is not necessary.
  • One too early decrease in battery capacity would in any case be reported as a fault if the specified pulse sequences no longer arrive at the room control center in time and can be interpreted accordingly by the evaluation there.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Alarm Systems (AREA)
  • Burglar Alarm Systems (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

A cableless danger signalling system having at least one room CPU (RZ) which is connected via existing mains lines (NL) to a building CPU, and having a plurality of infra-red transmission devices arranged in a respective room, having in each case at least one danger signalling system (GM) connected thereto, the latter being in communication with an infra-red transmission device of the room CPU (RZ). The infra-red transmission device for sensors has a battery-fed infra-red transmitter (IRS) with a quartz-controlled pulse generator IC (PIC), to which a plurality of danger sensors (SD) are connected. One or more transmitting diodes (SD) with a relatively simple optical system are aligned with the room CPU (RZ). The room CPU (RZ) has at least one infra-red receiver (IRE) and one microprocessor system (MPS) which processes the received data and prepares it for mains transmission to the building CPU (GB) by means of an assigned mains transmission device (NUB). The room CPU (RZ) can have a non- directional all-round infra-red receiver (IRE) and the individual infra-red transmitters (IRS) can each have an individual transmitter coding. The room CPU (RZ) can also have a plurality of infra-red receivers (IRE) to which in each case a receiving optical system with an extreme beam concentration (e.g. < 2 DEG ) is assigned, in each case an infra-red receiver (IRE) being aligned with an infra-red transmitter (IRS) and the infra-red transmitters (IRS) being identical. The infra- red transmitters regularly transmit pulse spacing-modulated pulse telegrams, different status information items being transmitted. <IMAGE>

Description

Die Erfindung bezieht sich auf ein kabelloses Gefahrenmelde­system, bestehend aus mindestens einer Raumzentrale, einer Gebäudezentrale, die mit der Raumzentrale über vorhandene Netzleitungen verbunden ist, und mehreren, in einem jeweiligen Raum angeordneten Infrarot-Übertragungseinrichtungen an die jeweils zumindest ein Gefahrenmelder angeschlossen ist und die mit einer IR-Übertragungseinrichtung in der Raumzentrale in Verbindung stehen.The invention relates to a wireless hazard detection system, consisting of at least one room control center, a building control center, which is connected to the room control center via existing power lines, and several infrared transmission devices arranged in a respective room, each of which is connected to at least one hazard detector and which an IR transmission device in the room control center.

Eine Einrichtung zur Gefahrenmeldung mit einzelnen Meldern und einer Signalzentrale in einem Raum ist bereits aus der europäischen Offenlegungsschrift 0 125 387 bekannt. Dort erfolgt die Signalübertragung zwischen den einzelnen Meldern und der Signalzentrale wechselseitig mit Hilfe einer Infrarot-­Strahlungs-Übertragung. Bei dieser bekannten Einrichtung werden die einzelnen Melder periodisch von der Signalzentrale mit einem Abfragesignal aufgefordert, zu senden. Dabei antworten die einzelnen Melder nach unterschiedlichen, für die einzelnen Gefahrenmelder charakteristischen Zeitverzögerungen, aus denen der betreffende Melder, d.h. seine Adresse, ermittelt werden kann. Eine derartige Einrichtung zur Gefahrenmeldung wurde auch deshalb vorgeschlagen, um den nicht unerheblichen Installations­aufwand zu verringern bzw. zu vermeiden, insbesondere dann, wenn nachträglich eine Gefahrenmeldeanlage zu errichten ist. Die einzelnen Melder sind daher batteriegespeist und sollen deshalb einen geringen Energieverbrauch aufweisen. Bei der bekannten Einrichtung sind die einzelnen Melder in nachteiliger Weise auch mit einem Infrarotempfänger ausgerüstet und daher ständig angeschaltet und empfangsbereit und verursachen auf diese Weise dennoch einen nicht unbeträchtlichen Energieverbrauch.A device for hazard reporting with individual detectors and a signaling center in one room is already known from European laid-open specification 0 125 387. There, the signal transmission between the individual detectors and the signaling center takes place alternately with the aid of infrared radiation transmission. In this known device, the individual detectors are periodically requested by the signal center with an interrogation signal to transmit. The individual detectors respond after different time delays characteristic of the individual hazard detectors, from which the detector in question, ie its address, can be determined. Such a device for hazard reporting has also been proposed in order to reduce or avoid the not inconsiderable installation outlay, in particular when a hazard alarm system has to be installed subsequently. The individual detectors are therefore battery-powered and should therefore have low energy consumption. In the known device, the individual detectors are also disadvantageously equipped with an infrared receiver and are therefore constantly switched on and ready to receive, and nevertheless cause considerable energy consumption in this way.

Bei der bekannten Einrichtung wurde zur Senkung des Energie­verbrauchs bereits vorgeschlagen, aufgrund eines Abfragesignals nicht jedes Mal ein Antwortsignal, das den Meldezustand beinhaltet, zu senden. Dabei soll das Überspringen von Antwort­signalen in Abhängigkeit vom Meldezustand erfolgen. Beispiels­weise soll im Gefahrenzustand nach jedem Abfragesignal ein Antwortsignal ausgesendet werden, hingegen im Normalzustand erst nach mehreren Abfragesignalen. Diese Maßnahme führt sicherlich zu einer Energieersparnis, wie oben schon angeführt, es ist aber allein schon wegen der zusätzlichen Empfangsein­richtungen im Melder ein höherer Energieverbrauch unumgänglich. Außerdem ist von Nachteil, daß im Gefahrenzustand ein Melder erst eine Gefahrenmeldung absetzen kann, und dies auch noch entsprechend seiner individuellen Zeitverzögerung, wenn er von der Signalzentrale zur Abgabe eines Antwortsignals aufgefor­dert worden ist.In the known device, in order to reduce the energy consumption, it has already been proposed not to send a response signal, which includes the message status, each time due to an interrogation signal. The response signals are to be skipped depending on the status of the message. For example, a response signal should be sent out after each interrogation signal in the dangerous state, but only after several interrogation signals in the normal state. This measure certainly leads to energy savings, as already mentioned above, but higher energy consumption is inevitable simply because of the additional receiving devices in the detector. It is also disadvantageous that, in the event of a hazard, a detector can only issue a hazard message, and this also according to its individual time delay, when the signaling center has asked it to issue a response signal.

Aufgabe der vorliegenden Erfindung ist es daher, die oben auf­geführten Nachteile zu vermeiden und für ein kabelloses Gefahrenmeldesystem, wie es eingangs beschrieben ist, eine störungs- und sabotagesichere Signalübertragung bei möglichst geringem Energieverbrauch der einzelnen Gefahrenmelder und Sendeeinrichtungen zu ermöglichen. Dabei sollen jedoch die einzelnen Melder und Sender ständig auf ihre Funktionsfähigkeit hin überwacht werden.The object of the present invention is therefore to avoid the disadvantages listed above and to enable interference-free and sabotage-proof signal transmission with the lowest possible energy consumption of the individual hazard detectors and transmitting devices for a wireless hazard detection system as described at the beginning. However, the individual detectors and transmitters should be constantly monitored for their functionality.

Diese Aufgabe wird erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.This object is achieved with the characterizing features of claim 1.

Bei diesem kabellosen Gefahrenmeldesystem weisen die Infrarot-­Übertragungseinrichtungen für einen oder mehrere Melder lediglich einen Infrarotsender auf, der mit einem verhältnis­mäßig geringem Energieaufwand Daten zur Raumzentrale sendet. Die mit einer einfachen Optik versehenen Sendedioden der einzelnen Infrarotsender benötigen wegen der Ausrichtung auf die Raumzentrale hin eine geringe Sendeenergie.In this wireless hazard detection system, the infrared transmission devices for one or more detectors have only one infrared transmitter, which sends data to the room control center with a relatively low expenditure of energy. The emitting diodes of the individual infrared transmitters, which are provided with simple optics, require a low transmission energy due to the orientation towards the room center.

In der Raumzentrale werden die empfangenen Daten der einzelnen Infrarotsender mit Hilfe eines Mikroprozessorsystems verar­beitet und aufbereitet und über eine Netzübertragungseinrich­tung über das vorhandene Leitungsnetz zu einer gemeinsamen Gebäudezentrale übertragen, die die entsprechenden Meldungen auswertet und eine Alarmmeldung im Falle eines Gefahrenzustandes abgibt.The received data from the individual infrared transmitters are processed and processed in the room control center using a microprocessor system and transmitted via a network transmission device via the existing line network to a common building control center, which evaluates the corresponding messages and issues an alarm message in the event of a dangerous state.

Das erfindungsgemäße Gefahrenmeldesystem kann dabei eine Rundum-Infrarot-Empfangseinrichtung in der Raumzentrale auf­weisen. Das hat einerseits den Vorteil, daß hier eine einzige Infrarot-Empfangseinrichtung vorzusehen ist, die ungerichtet ist und daher keine besondere Optik aufweist, die aber andererseits eine Decodiereinrichtung aufweist, um die jeweils individuell codierten Signale der einzelnen Sender nach ihrer Herkunft zu ermitteln.The hazard detection system according to the invention can have an all-round infrared receiving device in the central room. On the one hand, this has the advantage that a single infrared receiving device must be provided, which is non-directional and therefore has no special optics, but which on the other hand has a decoding device in order to determine the individually coded signals of the individual transmitters according to their origin.

In einer zweckmäßigen Ausgestaltung der Erfindung weist die Raumzentrale mehrere Infrarotempfänger auf, denen jeweils eine Empfangsoptik mit einer sehr extremen Strahlbündelung zugeordnet ist. Diese Strahlbündelung kann beispielsweise kleiner als zwei Grad sein. Jede dieser Infrarot-Empfangsein­richtungen mit der Optik ist auf einen entsprechenden Infrarot­sender ausgerichtet. Das hat erstens den Vorteil, daß sämtliche Infrarotsender identisch ausgebildet sein können und daher keine individuelle Codierung erfordern. Das hat darüberhinaus den Vorteil, daß aufgrund der exakten Ausrichtung eine sehr geringe Sendeenergie ausreicht, um noch ein hinreichend starkes, mit großem Störabstand behaftetes Sendesignal zu empfangen. Darüber hinaus hat diese Anordnung den entscheiden­den Vorteil, daß bei der äußerst engen Strahlbündelung und exakten Ausrichtung es äußerst schwierig ist, mit Fremdlicht oder gezielt bei einer Sabotagehandlung die Infrarotempfänger der Raumzentrale zu täuschen oder zu stören.In an expedient embodiment of the invention, the room control center has a plurality of infrared receivers, each of which is associated with an optical receiving system with a very extreme beam bundling. This beam bundling can be less than two degrees, for example. Each of these infrared receiving devices with the optics is aligned with a corresponding infrared transmitter. Firstly, this has the advantage that all infrared transmitters can be of identical design and therefore do not require individual coding. This has the additional advantage that, due to the exact alignment, a very low transmission energy is sufficient to receive a sufficiently strong transmission signal with a large signal-to-noise ratio. In addition, this arrangement has the decisive advantage that, with the extremely narrow beam bundling and exact alignment, it is extremely difficult to deceive or disrupt the infrared receivers of the room control center with extraneous light or specifically during sabotage treatment.

Als besonders vorteilhaft hat es sich erwiesen, wenn die In­frarotsender regelmäßig Impulstelegramme mit unterschiedlichen Pulsabständen abstrahlen, wobei mindestens vier verschiedene Meldezustände übertragen werden können. In der Raumzentrale wird durch eine Echtzeitmessung aus den unterschiedlichen Puls­abständen der jeweilige Zustand ermittelt. Dazu kann in dem Mikroprozessorsystem der Raumzentrale ein Auswerteprogramm vor­gesehen sein, welches aus den ermittelten Pulsabständen den entsprechenden Zustand feststellt. Werden beispielsweise keine Impulse empfangen, so ist die Übertragung gestört. Werden Impulse in einem bestimmten vorgegebenen Abstand empfangen, so ist die Übertragung in Ordnung und es kann hiermit fortlaufend ein Ruhezustand signalisiert sein. Werden die Impulse mit einem anderen Pulsabstand übertragen, so ist die Übertragung ebenfalls in Ordnung und der Zustand wird auf eine Gefahren­meldung hin interpretiert. Treten viele Impulse auf, so wird auf eine Fremdsenderstörung erkannt.It has proven to be particularly advantageous if the infrared transmitters regularly emit pulse telegrams with different pulse intervals, at least four different message states being able to be transmitted. In the room control center, the respective state is determined from the different pulse intervals by real-time measurement. For this purpose, an evaluation program can be provided in the microprocessor system of the room control center, which program determines the corresponding state from the pulse intervals determined. If, for example, no pulses are received, the transmission is disturbed. If impulses are received at a certain predetermined distance, the transmission is OK and an idle state can be signaled continuously. If the impulses are transmitted with a different pulse interval, the transmission is also OK and the status is interpreted in response to a danger message. If a lot of impulses occur, a foreign transmitter interference is recognized.

In einer zweckmäßigen Ausgestaltung können Doppelimpulse erzeugt werden, wobei für die verschiedenen Zustands-In­formationen sowohl die Abstände der Pulse zwischen einem Doppelpuls als auch die unterschiedlichen Abstände der Impulspaare herangezogen werden können. Hierdurch läßt sich die Übertragungssicherheit und die Anzahl der Meldezustände zu­sätzlich steigern.In an expedient embodiment, double pulses can be generated, both the spacing of the pulses between a double pulse and the different spacing of the pulse pairs being able to be used for the various status information. This further increases the security of transmission and the number of message states.

Zur Sicherung gegen Sabotage kann es sehr zweckmäßig sein, zu­sätzliche Impulse, sogenannte Pseudoimpulse, außerhalb von den gegebenen Pulsabständen für die Zustandsmeldungen zu übertragen, wobei das zeitrichtige Eintreffen der Zusatz­impulse in der Raumzentrale erkannt und entsprechend gewertet wird. Es ist dadurch einem intelligenten Saboteur nicht möglich, die Impulsübertragung von den Sendern "abzuhören" bzw. auszulösen und dann gezielt Manipulationen vorzunehmen.To protect against sabotage, it can be very useful to transmit additional impulses, so-called pseudo impulses, outside the given pulse intervals for the status reports, the correct arrival of the additional impulses in the room control center being recognized and evaluated accordingly. It is therefore not possible for an intelligent saboteur to "listen" to or trigger the transmission of impulses from the transmitters and then to carry out targeted manipulations.

Eine zweckmäßige Ausgestaltung der Erfindung zur Herabsetzung des Stromverbrauchs der einzelnen Sender besteht darin, daß im Alarmzustand sofort eine Reihe von Alarmpulsen mit einem geringerem Pulsabstand gegenüber den Ruheimpulsen abgegeben wird und dann automatisch auf eine stromsparende Daueralarm­impulsgabe umgeschaltet wird, wobei der Impulsabstand für die Daueralarmgabe im Bereich des Pulsabstandes für die Ruhe­impulse, beispielsweise ein geringfügig größerer Pulsabstand, liegt. Dies ist insbesondere bei Einbruchmeldern vorteilhaft, weil bestimmte Bereiche, z.B. tagsüber, in der Zentrale unscharf geschalet werden. Alarmmeldungen, die durch die Kontakte von solchen Überwachungseinrichtungen ausgelöst werden, führen zu einer Zustandsmeldung und Übertragung für Alarm, werden jedoch in der Zentrale für die Dauer des Unscharfschaltens nicht als amtsüblicher Alarm weitergeleitet. In einem solchen Fall wird beispielsweise von einem geöffneten Fenster seitens des dadurch ausgelösten Fensterkontaktes ein Alarmzustand fortlaufend von dem betreffenden Infrarotsender über die zugehörige Raumzentrale zur Gebäudezentrale über­mittelt, dort jedoch wegen der Unscharfschaltung nicht als Alarm gemeldet. Da von der Raumzentrale zu dem Infrarotsender keine Informationsübertragung aus Energieersparnisgründen stattfindet, wird mit der erfindungsgemäßen automatischen Umschaltung auf Daueralarm erreicht, daß quasi eine Überwachung des betreffenden Gefahrenmelders ähnlich wie die Ruhezustands­übermittlung stattfindet, wenn keine Alarmgabe erfolgt, aber die Funktionsfähigkeit des Gefahrenmelders, des Infrarotsenders der Übertragungsstrecke und der Raumzentrale fortlaufend überprüft wird.An expedient embodiment of the invention for reducing the power consumption of the individual transmitters consists in that, in the alarm state, a series of alarm pulses with a smaller pulse interval compared to the Ruheim pulses is emitted immediately and then automatically switched over to a power-saving continuous alarm pulse transmission, the pulse interval for the permanent alarm transmission in the area of the pulse interval for the Ruheim pulses, for example a slightly larger pulse interval. This is particularly advantageous for intrusion detectors because certain areas, e.g. during the day, the formwork is defocused at the headquarters. Alarm messages that are triggered by the contacts of such monitoring devices lead to a status message and transmission for alarm, but are not forwarded as an official alarm in the control center for the duration of the disarming. In such a case, for example, from an open window on the part of the window contact triggered thereby, an alarm state is continuously transmitted from the relevant infrared transmitter via the associated room control center to the building control center, but is not reported there as an alarm because of the disarming. Since there is no information transfer from the room control center to the infrared transmitter for reasons of energy saving, the automatic switchover to the permanent alarm according to the invention ensures that the hazard detector in question is monitored in a manner similar to the transmission of the idle state if no alarm is given, but the functionality of the hazard detector, the infrared transmitter, is Transmission route and the room control center is continuously checked.

Zur Ausrichtung der Infrarotverbindung, d.h. zum Justieren der Sende- bzw. Empfangsoptiken, kann in jedem Infrarotsender das Pulsgeber-IC eigens derart angesteuert werden, daß eine hohe Impulsfolge mit beispielsweise 20 bis 50 ms Pulsab­stand abgestrahlt wird. In der Raumzentrale kann dieser Zustand über einen Digital-Analog-Wandler als analoge Gleichspannung ausgegeben und damit die Tonfrequenz eines Lautsprechers moduliert werden, so daß anhand der Tonhöhe eine schnelle und exakte Ausrichtung der jeweiligen Optiken möglich ist.In order to align the infrared connection, ie to adjust the transmission or reception optics, the pulser IC can be controlled in each infrared transmitter in such a way that a high pulse sequence with, for example, 20 to 50 ms pulse spacing is emitted. In the room control center, this state can be output as analog DC voltage via a digital-analog converter and thus the tone frequency of a loudspeaker can be modulated so that the respective optics can be aligned quickly and precisely on the basis of the pitch.

In vorteilhafter Weise kann die Raumzentrale batteriegepuffert sein, so daß auch bei einem Netzausfall die Überwachung auf Gefahrenzustände jederzeit gesichert ist. Die Gebäudezentrale ist ohnehin für den Bedarfsfall mit einer netzunabhängigen Stromversorgung ausgerüstet.The room control center can advantageously be battery-backed, so that monitoring of dangerous states is ensured at all times even in the event of a power failure. The building control center is equipped with a mains-independent power supply anyway, if necessary.

Anhand der Zeichnung wird die Erfindung im folgenden erläutert. Dabei zeigen

  • Fig. 1 ein Blockschaltbild des erfindungsgemäßen kabellosen Gefahrenmeldesystems,
  • Fig. 2 eine Prinzipschaltung eines Infrarotsenders und
  • Fig. 3 Zeitdiagramme von Infrarot-Sendeimpulsen.
The invention is explained below with reference to the drawing. Show
  • 1 is a block diagram of the wireless hazard detection system according to the invention,
  • Fig. 2 shows a basic circuit of an infrared transmitter and
  • Fig. 3 timing diagrams of infrared transmission pulses.

In Fig.1 ist schematisch ein kabelloses Gefahrenmeldesystem mit gerichteter Infrarot-Übertragung gezeigt. Über das im allgemeinen vorhandene Lichtnetz NL sind mehrere Raumzentralen, hier lediglich gezeigt RZ1 und RZ2, mit einer Gebäudezentrale GZ bidirektional verbunden. Die Gebäudezentrale kann eine übliche Gefahrenmeldezentrale sein, die, wie hier nur ange­deutet, Störungen ST und Alarm AL anzeigt, die jedoch für den Datenaustausch eine geeignete Netzübertragung aufweist. Eine Netzübertragung NUB ist blockschaltbildmäßig in der Raumzen­trale RZ1 gezeigt. Sie wird von dem Mikroprozessorsystem MPS gesteuert. An das Mikroprozessorsystem MPS sind Infrarot­empfänger IRE1 bis IRE8 angeschlossen. Die Infrarotempfänger stehen jeweils einer mit einem Infrarotsender IRS1 bis IRS8, der im selben Raum, beispielsweise im Bereich eines Fensters, angeordnet ist, über eine Infrarot-Übertragungsstrecke in Verbindung. Dazu sind die Empfangsoptiken der Raumzentrale auf die Sendeoptiken der Infrarotsender ausgerichtet. Hier in der Fig. 1 sind andeutungsweise lediglich noch zwei weitere Infrarotsender IRS2 und IRS3 gezeigt. An den Infrarotsender IRS2 sind beispielsweise zwei Gefahrenmelder GM und ein Tür­kontakt TK angeschlossen.In Fig. 1, a wireless hazard detection system with directional infrared transmission is shown schematically. Via the generally existing light network NL, several room control centers, only shown here RZ1 and RZ2, are connected bidirectionally to a building control center GZ. The building control center can be a conventional danger control center which, as only indicated here, indicates faults ST and alarm AL, but which has a suitable network transmission for data exchange. A network transmission NUB is shown in block diagram form in the room control center RZ1. It is controlled by the MPS microprocessor system. Infrared receivers IRE1 to IRE8 are connected to the microprocessor system MPS. The infrared receivers are each connected to an infrared transmitter IRS1 to IRS8, which is arranged in the same room, for example in the area of a window, via an infrared transmission link. For this purpose, the reception optics of the room control center are aligned with the transmission optics of the infrared transmitter. Here in FIG. 1, only two further infrared transmitters IRS2 and IRS3 are indicated. For example, two danger detectors GM and a door contact TK are connected to the infrared transmitter IRS2.

An den dritten Infrarotsender IRS3 ist als Gefahrenmelder GM ein Bewegungsmelder BM angeschlossen. Der Infrarotsender IRS1 weist beispielsweise zwei Gefahrenmelder, einen Fensterkontakt FK und einen Glasbruchmelder GBM auf. Ein batteriegespeistes (BAT) Pulsgeber-IC (PIC), das anhand der Fig.3 im Prinzip noch näher erläutert wird, speist einen LED-Sender, der beispiels­weise zwei Sendedioden SD, die hier nicht gezeigt sind, auf­weisen kann.A motion detector BM is connected to the third infrared transmitter IRS3 as a hazard detector GM. The infrared transmitter IRS1 has, for example, two hazard detectors, a window contact FK and a glass break detector GBM. A battery-powered (BAT) pulse generator IC (PIC), which is explained in more detail in principle with reference to FIG. 3, feeds an LED transmitter, which can have, for example, two transmitter diodes SD, which are not shown here.

Das kabellose Gefahrenmeldesystem gestattet, die verschiedenen Einbruchsignalquellen innerhalb eines Raumes drahtlos mit der Raumzentrale zu verbinden. Nun können beispielsweise nicht nur acht, sondern auch sechzehn Infrarotsender mit einer Raum­zentrale in Verbindung stehen. Alle Infrarotsender übertragen die Zustands-Informationen, die an ihren Gefahrenmeldern, beispielsweise Alarmkontakten, anstehen, zur Raumzentrale, die diese Signale der einzelnen Infrarotsender empfängt. Jeder In­frarotsender weist einen batteriebetriebenen, frei laufenden, quarzgesteuerten Sender auf, der periodische Muster von Impulsen aussendet. Dabei kann der einzelne Puls durch einen sehr kurzen, beispielsweise 1,5 µs langen gebildet sein, jedoch einen hohen Pulsstrom, beispielsweise bis zu 2 Ampere, aufweisen. Liegt keine Alarmmeldung vor, so kann der Infrarot­sender beispielsweise in Abständen von 250 ms regelmäßig einen oben geschilderten Impuls absenden. In der Raumzentrale wird diese Impulsfolge empfangen und als Ruhezustand des Melders interpretiert, so daß entsprechend einer Ruhestromüberwachung eine Drahtverbindung vorliegt. Die in der Raumzentrale RZ über die einzelnen Infrarotempfänger IRE1 bis IRE8 empfangenen Impulse werden mittels eines Mikroprozessorsystems MPS verarbeitet. Dazu ist neben einer schnellen und genauen Echtzeit-Messung der Pulsabstände eine rechnerische Auswertung vorgesehen. Die Echtzeitmessung der Pulsabstände erfolgt beispielsweise durch einen 24-Bit-Synchronzähler, der von einem 2 MHz-Quarz-Oszillator hochgezählt wird. Beim Eintreffen eines Infrarotpulses wird der Zählerstand in einen Pufferspeicher gegeben und der Zähler anschließend wieder auf Null gesetzt. Die Echtzeitmessung liefert einen fortlaufenden Strom von bestimmten Meßwerten, die den zeitlichen Abstand aufeinanderfolgender Infrarotpulse darstellen. Der ange­schlossene Rechner, d.h. das Mikroprozessorsystem MPS, liest die Daten aus dem Pufferspeicher aus und findet mit Hilfe eines Auswerteprogramms aus den ermittelten Pulsabständen die jeweiligen Zustandsinformationen der Infrarotsender bzw. der daran angeschlossenen Gefahrenmelder. Dabei sind je Über­tragungskanal mindestens vier Zustandsinformationen vorgesehen: Keine Impulse bedeutet, daß die Übertragung gestört ist (STu). Impulse mit einem definierten Abstand für Ruhe (RUP), beispielsweise 10 sec., bedeutet, daß die Übertragung in Ordnung ist und die angeschlossenen Gefahrenmelder sich in Ruhe befinden. Treffen Impulse in einem wesentlich kürzerem Pulsabstand ein (ALP) ein, beispielsweise in einem Abstand von 250 ms., so bedeutet das, daß die Übertragung in Ordnung ist, jedoch ein Gefahrenmelder angesprochen hat und daher eine Alarmmeldung vorliegt. Treffen unkontrolliert Impulse oder Impulse in völlig anderen Pulsabständen ein, so wird auf Störung beispielsweise durch einen Fremdsender (STf) erkannt. Das Aussenden von Doppelimpulsen ist oben schon genannt worden. Eine zusätzliche Information läßt sich auch noch dadurch gewinnen, daß die Pulshöhe der kurzen Infrarotpulse nach Speicherung in einer Sample-and-Hold-Schaltung mit einem schnellen Analog-Digital-Wandler gemessen und dann weiter verarbeitet wird.The wireless hazard detection system allows the various intrusion signal sources within a room to be wirelessly connected to the room control center. Now, for example, not only eight but also sixteen infrared transmitters can be connected to a room control center. All infrared transmitters transmit the status information that is present at their hazard detectors, for example alarm contacts, to the room control center, which receives these signals from the individual infrared transmitters. Each infrared transmitter has a battery-operated, free-running, quartz-controlled transmitter that emits periodic patterns of pulses. The individual pulse can be formed by a very short, for example 1.5 µs long, but have a high pulse current, for example up to 2 amps. If there is no alarm message, the infrared transmitter can, for example, regularly send an impulse described above at intervals of 250 ms. This pulse sequence is received in the room control center and interpreted as the detector's idle state, so that a wire connection is present in accordance with a quiescent current monitoring. The pulses received in the room control center RZ via the individual infrared receivers IRE1 to IRE8 are processed by means of an MPS microprocessor system. In addition to a quick and accurate real-time measurement of the pulse spacing, a computational evaluation is provided. The real-time measurement of the pulse intervals is carried out, for example, using a 24-bit synchronous counter, which is counted up by a 2 MHz quartz oscillator. When an infrared pulse arrives, the counter reading is Buffer memory is given and the counter is then reset to zero. The real-time measurement supplies a continuous stream of certain measured values, which represent the time interval between successive infrared pulses. The connected computer, ie the MPS microprocessor system, reads the data from the buffer memory and uses an evaluation program to find the respective status information of the infrared transmitters or the danger detectors connected to them from the pulse intervals determined. At least four status information are provided for each transmission channel: No pulses means that the transmission is disturbed (STu). Pulses with a defined interval for rest (RUP), for example 10 seconds, means that the transmission is OK and the connected hazard detectors are at rest. If impulses arrive at a much shorter pulse interval (ALP), for example at a interval of 250 ms, this means that the transmission is OK, but a hazard detector has responded and an alarm message is therefore available. If impulses or impulses arrive at completely different pulse intervals, a fault is detected, for example, by a third-party transmitter (STf). The transmission of double pulses has already been mentioned above. Additional information can also be obtained by measuring the pulse height of the short infrared pulses after storage in a sample-and-hold circuit using a fast analog-digital converter and then further processing them.

In Fig. 2 ist beispielhaft ein Prinzipschaltbild eines Infrarotsenders IRS für eine gerichtete Infrarot-Übertragung dargestellt. Das Pulsgeber IC PIC ist dabei von einer Synchro­nisier- und Umschaltelogik SUL, einem Umschalter UMS, mehreren Teilern (EIT, TL, VOT) und einem Pseudozufallsgenerator ZGE gebildet. Die Synchronisier- und Umschaltelogik SUL weist beispielsweise vier Gefahrenmeldeeingänge GMEG auf: Einen Glasbruch-Meldereingang GBM mit einem zugehörigen Reset-Eingang RGBM und drei Kontakteingängen, beispielsweise Fensterkontakte FK. Ferner weist die Synchronisier- und Umschaltelogik SUL einen Setzeingang SEE zum Einrichten der Optik und zum Setzen der Pseudozusatzfolge auf. Zum Einrichten der Optik wird über diesen Setzeingang SEE eine sehr hohe Pulsfolge ARP erzeugt. ZGE. Die Pulserzeugung erfolgt beispielsweise mit einem einfachen Uhrenquarz UQ und einem nachgeschalteten Vorteiler VOT, der beispielsweise die Schwingungen von 32 kHz im Verhältnis 32 : 1 herunterteilt, so daß ein 1 ms-Takt entsteht, der einerseits auf einen einstellbaren Teiler EIT und andererseits auf den Zufallsgenerator ZGE gelangt. Der Zufallsgenerator ZGE ist über einen Reset-Eingang R vom Synchronisier- und Umschaltelogik-Bauteil SUL ansteuerbar. Um die Sendedioden SD mit den verschiedenen Impulsen und den entsprechenden Impulsabständen zu versorgen, werden die erzeugten Taktimpulse einerseits über den einstellbaren Teiler EIT, der ebenfalls von der Synchronisier- und Umschaltelogik SUL angesteuert wird, und über einen weiteren Teiler TL und einer von der Synchronisier- und Umschaltlogik gesteuerten Umschalteeinrichtung UNS über einen Pulstreiber PTR beaufschlagt. Schematisch ist dies hier insofern dargestellt, als die Ruheimpulse RUP, die in einem Impulsabstand von beispielsweise 10 sec. abgestrahlt werden, aus den nochmals über den Teiler TL heruntergeteilten Pulse gewonnen werden und über den Umschalter UMS am Ruhekontakt RU zur Sendediode SD gelangen. Im Falle einer Alarmgabe AL werden die am Ausgang des einstellbaren Teilers EIT anstehenden Impulse, die beispielsweise einen Abstand von 250 ms haben, über den Schaltkontakt AL des Umschalters UMS an die Sendediode SD gegeben. Die Pseudoimpulse PS, die einen Pulsabstand von ca. 70 sec. haben können, gelangen vom Zufallsgenerator ZGE über den Umschaltkontakt SS zur Sendediode SD. Das Prinzipschaltbild veranschaulicht die Wirkungsweise des erfindungsgemäßen Gefahrenmeldesystems, wobei im Infrarotsender IRS die notwendigen Schaltelemente im Impulsgeber-IC PIC realisiert sind.2 shows an example of a basic circuit diagram of an infrared transmitter IRS for directional infrared transmission. The pulse generator IC PIC is formed by a synchronization and changeover logic SUL, a changeover switch UMS, several dividers (EIT, TL, VOT) and a pseudo random generator ZGE. The synchronization and switchover logic SUL has, for example, four GMEG hazard detection inputs: A glass break detector input GBM with an associated reset input RGBM and three contact inputs, for example window contacts FK. Furthermore, the synchronization and switchover logic SUL has a set input SEE for setting up the optics and for setting the pseudo additional sequence. To set up the optics, a very high pulse sequence ARP is generated via this set input SEE. CGU. The pulse is generated, for example, with a simple clock quartz UQ and a downstream prescaler VOT, which, for example, divides the vibrations of 32 kHz down to a ratio of 32: 1, so that a 1 ms cycle arises, which on the one hand is based on an adjustable divider EIT and on the other hand on the random number generator CGU arrives. The random generator ZGE can be controlled via a reset input R by the synchronization and switching logic component SUL. In order to supply the transmit diodes SD with the various pulses and the corresponding pulse intervals, the clock pulses generated are, on the one hand, via the adjustable divider EIT, which is also controlled by the synchronizing and switching logic SUL, and via a further divider TL and one from the synchronizing and switching logic controlled switching device UNS via a pulse driver PTR. This is shown schematically to the extent that the Ruheim pulses RUP, which are emitted at a pulse interval of, for example, 10 seconds, are obtained from the pulses, which are divided down again via the divider TL, and reach the transmitter diode SD via the changeover switch UMS on the normally closed contact RU. In the event of an alarm AL, the pulses present at the output of the adjustable divider EIT, which for example have a spacing of 250 ms, are given to the transmitter diode SD via the switch contact AL of the switch UMS. The pseudo pulses PS, which can have a pulse interval of approximately 70 seconds, pass from the random generator ZGE via the changeover contact SS to the transmitter diode SD. The basic circuit diagram illustrates the mode of operation of the hazard detection system according to the invention, the necessary switching elements in the pulse generator IC PIC being implemented in the infrared transmitter IRS.

In der Fig. 3 sind Zeitdiagramme der Infrarot-Sendeimpulse gezeigt. Dabei sind im ersten Diagramm drei verschiedene Impulstelegramme dargestellt und im darunter gezeigten Puls­telegramm die Impulsfolge im Falle einer Alarmgabe. Zur Aus­richtung der Infrarot-Übertragungsstrecke wird eine hohe Impulsfolge ARP mit beispielsweise einem Impulsabstand von 20 ms erzeugt, der für die Ausrichtung über den Setz­eingang (SEE an SUL) in der Infrarot-Sendeeinrichtung angesteuert wird. Für die Aussendung des Ruhezustands RU werden hier beispielsweise Ruheimpulse RUP mit einem Impulsabstand von 10 sec. regelmäßig von den Infrarotsendern zu der Raumzentrale übertragen.3 shows time diagrams of the infrared transmission pulses. Three different pulse telegrams are shown in the first diagram and the pulse sequence in the event of an alarm in the pulse telegram shown below. To align the infrared transmission path, a high pulse sequence ARP with, for example, a pulse interval of 20 ms is generated, which is controlled for the alignment via the set input (SEE to SUL) in the infrared transmitter. For the transmission of the idle state RU, Ruheim pulses RUP with a pulse interval of 10 sec. Are regularly transmitted from the infrared transmitters to the room control center, for example.

Zur Sicherung gegen Sabotage (SS) werden ebenfalls über den Setzeingang (SEE) in der Synchronisier- und Umschaltelogik (SUL) gemäß der Fig. 2 Pseudoimpulse PS initiiert, die beispielsweise einen Pulsabstand von ca. 70 Sekunden haben können. Im Alarmfall AL wird sofort eine Alarmpulsabgabe ALP erzeugt, die einen Pulsabstand von beispielsweise 250 ms. hat. Diese Impulsabgabe erfolgt beispielsweise sechzehn Mal, dann wird - wie oben schon erläutert - zur Stromersparnis eine Alarmmeldung automatisch dahingehend umgeschaltet, daß die Alarmimpulsgabe als Daueralarm DALP mit einem wesentlich größeren Pulsabstand erfolgt, der beispielsweise in der Nähe von den üblichen Ruheimpulsabständen liegen kann. Hier sind beispielsweise 9 Sekunden Pulsabstand vorgesehen. Es kann aber auch ein größerer Pulsabstand gewählt werden, beispielsweise 12 Sekunden, der dann über den Abstand für Ruheimpulse liegt. Mit der hier gezeigten Infrarot-Sendeeinrichtung wird ein durchschnittlicher Stromverbrauch von weniger als 3 µA erreicht, so daß mit den dort vorgesehenen Langzeitbatterien eine Kapazität für fünf Jahre garantiert werden kann. Daher ist für derartige Gefahrenmeldeanlagen eine solche Batterie­kapazitätsauslegung mit Sicherheit ausreichend, so daß eine zusätzliche Überwachung auf die Kapazität der Batterie nicht notwendig ist. Ein zu frühes Nachlassen der Batteriekapazität würde in jedem Fall als Störung gemeldet werden, wenn die vorgegebenen Impulsfolgen nicht mehr zeitrichtig in der Raumzentrale eintreffen und von der dortigen Auswertung entsprechend interpretiert werden können.To protect against sabotage (SS), pseudo pulses PS are also initiated via the set input (SEE) in the synchronization and switchover logic (SUL) according to FIG. 2, which may have a pulse interval of approximately 70 seconds, for example. In the event of an alarm AL, an alarm pulse delivery ALP is generated immediately, which has a pulse interval of, for example, 250 ms. Has. This pulse is emitted, for example, sixteen times, then - as already explained above - an alarm message is automatically switched over to save electricity in such a way that the alarm pulse is given as a permanent alarm DALP with a substantially larger pulse interval, which may be, for example, close to the usual home pulse intervals. A pulse interval of 9 seconds is provided here, for example. However, a larger pulse interval can also be selected, for example 12 seconds, which is then greater than the interval for Ruheim pulses. With the infrared transmitter shown here, an average power consumption of less than 3 µA is achieved, so that a capacity for five years can be guaranteed with the long-term batteries provided there. Therefore, such a battery capacity design is certainly sufficient for such hazard detection systems, so that additional monitoring of the capacity of the battery is not necessary. One too early decrease in battery capacity would in any case be reported as a fault if the specified pulse sequences no longer arrive at the room control center in time and can be interpreted accordingly by the evaluation there.

Claims (10)

1. Kabelloses Gefahrenmeldesystem, bestehend aus mindestens einer Raumzentrale (RZ), einer Gebäudezentrale (GZ), die mit der Raumzentrale über vorhandene Netzleitungen (NL) verbunden ist, und mehreren, in einem jeweiligen Raum angeordneten Infra­rot-Übertragungseinrichtungen, an die jeweils zumindest ein Gefahrenmelder (GM) angeschlossen ist, und die mit einer In­frarot-Übertragungseinrichtung in der Raumzentrale (RZ) in Verbindung stehen,
dadurch gekennzeichnet, daß die Infrarot-­Übertragungseinrichtung für Melder einen batteriegespeisten Infrarotsender (IRS) mit einem quarzgesteuerten Pulsgeber-IC (PIC) aufweist, an das mehrere Gefahren-Melder bzw. -Sensoren (GM) angeschlossen sind, daß eine oder mehrere Sendedioden (SD) vorgesehen sind, denen eine verhältnismäßig einfache Optik zugeordnet ist und die zur Raumzentrale (RZ) ausgerichtet sind, und daß die Raumzentrale (RZ) mindestens einen Infrarot­empfänger (IRE) und ein Mikroprozessorsystem (MPS) aufweist, das die Empfangsdaten verarbeitet und für die Netzübertragung zur Gebäudezentrale (GB) über eine zugeordnete Netzübertragungs­einrichtung (NUB) aufbereitet.
1. Wireless hazard detection system, consisting of at least one room control center (RZ), a building control center (GZ), which is connected to the room control center via existing power lines (NL), and several infrared transmission devices arranged in a respective room, each of which has at least one Hazard detector (GM) is connected, and which are connected to an infrared transmission device in the room control center (RZ),
characterized in that the infrared transmission device for detectors has a battery-powered infrared transmitter (IRS) with a quartz-controlled pulser IC (PIC), to which several hazard detectors or sensors (GM) are connected, that one or more transmitter diodes (SD ) are provided, which are assigned a relatively simple optics and which are aligned with the room center (RZ), and that the room center (RZ) has at least one infrared receiver (IRE) and a microprocessor system (MPS) that processes the received data and for network transmission processed to the building control center (GB) via an assigned network transmission device (NUB).
2. Kabelloses Gefahrenmeldesystem nach Anspruch 1, dadurch gekennzeichnet, daß die Raum­zentrale (RZ) einen ungerichteten Rundum-Infrarot-Empfänger (IRE) aufweist, und daß die einzelnen Infrarotsender (IRS) jeweils eine andere Sendercodierung aufweisen.2. Wireless hazard detection system according to claim 1, characterized in that the room center (RZ) has an omnidirectional all-round infrared receiver (IRE), and that the individual infrared transmitter (IRS) each have a different transmitter coding. 3. Kabelloses Gefahrenmeldesystem nach Anspruch 1, dadurch gekennzeichnet, daß die Raum­zentrale (RZ) mehrere Infrarotempfänger (IRE) aufweist, denen jeweils eine Empfangsoptik mit einer extremen Strahlbündelung (z.B. < 2°) zugeordnet ist, daß jeweils ein Infrarotempfänger (IRE) auf einen Infrarotsender (IRS) ausgerichtet ist, und daß die Infrarotsender (IRS) identisch, d.h. ohne individuelle Codierung, ausgebildet sind.3. Wireless hazard detection system according to claim 1, characterized in that the room control center (RZ) has a plurality of infrared receivers (IRE), each of which is associated with an optical receiving system with an extreme beam bundling (eg <2 °), that an infrared receiver (IRE) on each Infrared transmitter (IRS) is aligned, and that the infrared transmitter (IRS) are identical, ie without individual coding. 4. Kabelloses Gefahrenmeldesystem nach einem der vorher­gehenden Ansprüche, dadurch gekennzeichnet, daß die Infrarotsender (IRS) regelmäßig pulsabstandsmodulier­te Impulstelegramme (RUP, PS, ALP, DALP) abstrahlen, wobei zumindest vier verschiedene Zustands-Informationen (RU, AL, STu, STt) übertragen werden, und daß in der Raumzentrale (RZ) durch Echtzeitmessung die entsprechenden Zustände ermittelt werden.4. Wireless hazard alarm system according to one of the preceding claims, characterized in that the infrared transmitter (IRS) regularly emit pulse-distance-modulated pulse telegrams (RUP, PS, ALP, DALP), at least four different status information (RU, AL, STu, STt) being transmitted and that the corresponding states are determined in the room control center (RZ) by real-time measurement. 5. Kabelloses Gefahrenmeldesystem nach Anspruch 4, dadurch gekennzeichnet, daß Doppelimpulse erzeugt werden, wobei die verschiedenen Zustands-Informationen von verschiedenen Abständen der Pulse des Doppelpulses und von unterschiedlichen Abständen der Impulspaare abhängen.5. Wireless hazard detection system according to claim 4, characterized in that double pulses are generated, the different status information depending on different intervals of the pulses of the double pulse and on different intervals of the pulse pairs. 6. Kabelloses Gefahrenmeldesystem nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß zufalls­generiert (ZGE) zusätzliche Impulse (PS) außerhalb der Puls­abstände für die Zustands-Meldungen zur Sicherung gegen Sabotage (SS) übertragen werden, wobei das zeitrichtige Ein­treffen des Zusatzimpulses (PS) in der Raumzentrale (RZ) erkannt wird.6. Wireless hazard detection system according to claim 4 or 5, characterized in that randomly generated (CGU) additional pulses (PS) are transmitted outside the pulse intervals for the status messages to protect against sabotage (SS), the correct arrival of the additional pulse (PS) is recognized in the room control center (RZ). 7. Kabelloses Gefahrenmeldesystem nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Alarmzu­stand (AL) nach Abgabe einer Reihe von Alarm-Pulsen (ALP, z.B.16) mit geringem Pulsabstand (z.B. ca. 250 ms.) gegenüber Ruhe-Impulsen (RUP; z.B. ca. 10 sec.) automatisch auf stromsparenden Daueralarm (DALP) umgeschaltet wird, wobei der Impulsabstand für Daueralarm (DALP) im Bereich des Pulsab­standes für Ruhe-Impulse liegt.7. Wireless hazard detection system according to claim 4 or 5, characterized in that the alarm state (AL) after emitting a series of alarm pulses (ALP, for example 16) with a small pulse interval (for example about 250 ms.) Versus resting pulses (RUP; for example approx. 10 sec.) is automatically switched to energy-saving permanent alarm (DALP), the pulse interval for permanent alarm (DALP) being in the range of the pulse interval for idle pulses. 8. Kabelloses Gefahrenmeldesystem nach einem der vorher­gehenden Ansprüche, dadurch gekennzeichnet, daß zum Ausrichten der Infrarot-Verbindung im Infrarotsender (IRS) eine Impulsfolge (ARP) mit einem sehr geringem Puls­abstand (z.B. ca. 20 ms.) erzeugbar ist (SEE).8. Wireless hazard detection system according to one of the preceding claims, characterized in that for aligning the infrared connection in the infrared transmitter (IRS) a pulse train (ARP) with a very small pulse interval (for example about 20 ms.) Can be generated (SEE). 9. Kabelloses Gefahrenmeldesystem nach einem der vorher­gehenden Ansprüche, dadurch gekennzeichnet, daß die Gebäudezentrale (GZ) mit den Raumzentralen (RZ) bi­direktonal verbunden ist und das gesamte Meldesystem synchroni­siert.9. Wireless hazard detection system according to one of the preceding claims, characterized in that the building control center (GZ) with the room control center (RZ) is connected bidirectionally and synchronizes the entire reporting system. 10. Kabelloses Gefahrenmeldesystem nach einem der vorher­gehenden Ansprüche, dadurch gekennzeichnet, daß die Raumzentrale (RZ) batteriegepuffert ist.10. Wireless hazard detection system according to one of the preceding claims, characterized in that the room control center (RZ) is battery-backed.
EP88118986A 1987-11-17 1988-11-14 Cableless danger signal system Expired - Lifetime EP0316853B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88118986T ATE102727T1 (en) 1987-11-17 1988-11-14 WIRELESS ALERT SYSTEM.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3739042 1987-11-17
DE3739042 1987-11-17

Publications (2)

Publication Number Publication Date
EP0316853A1 true EP0316853A1 (en) 1989-05-24
EP0316853B1 EP0316853B1 (en) 1994-03-09

Family

ID=6340695

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88118986A Expired - Lifetime EP0316853B1 (en) 1987-11-17 1988-11-14 Cableless danger signal system

Country Status (3)

Country Link
EP (1) EP0316853B1 (en)
AT (1) ATE102727T1 (en)
DE (1) DE3888291D1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477411A1 (en) * 1990-09-27 1992-04-01 Siemens Aktiengesellschaft Remote control for wide area
DE4242973A1 (en) * 1992-12-18 1994-06-23 Grundig Emv Radio alarm system with a large number of message channels formed by the code multiplex method
DE4243026A1 (en) * 1992-12-18 1994-06-23 Grundig Emv Radio alarm system with asynchronous transmission of messages via time channels of different periods
DE4307244A1 (en) * 1993-03-08 1994-09-15 Siemens Ag Alarm signalling system
EP0911775A2 (en) * 1997-09-30 1999-04-28 Siemens Aktiengesellschaft Method for radio transmission in an alarm signalling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006021597A1 (en) * 2006-05-09 2007-11-22 Siemens Ag Network unit`s e.g. switching station, impairment detecting device, has wireless transmitter arranged in or at housing, to send signal to external receiver, as long as there is no impairment detected in network unit by units

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0125387A1 (en) * 1983-04-29 1984-11-21 Cerberus Ag Risk signalling method and apparatus
EP0197815A1 (en) * 1985-03-15 1986-10-15 Societe Electronique De La Region Pays De Loire Method ensuring the surveillance of persons and/or goods, and system using this method
FR2588682A1 (en) * 1985-10-16 1987-04-17 Gurba Jean Luc Alarm device comprising at least one sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0125387A1 (en) * 1983-04-29 1984-11-21 Cerberus Ag Risk signalling method and apparatus
EP0197815A1 (en) * 1985-03-15 1986-10-15 Societe Electronique De La Region Pays De Loire Method ensuring the surveillance of persons and/or goods, and system using this method
FR2588682A1 (en) * 1985-10-16 1987-04-17 Gurba Jean Luc Alarm device comprising at least one sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PROC. CARNAHAM CONFERENCE ON CRIME COUNTERMEASURES, Lexington, 6.-8. April 1977, Seiten 45-50; R. PERRAU et al.: "Technology developments for low-cost residential alarm systems" *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477411A1 (en) * 1990-09-27 1992-04-01 Siemens Aktiengesellschaft Remote control for wide area
DE4242973A1 (en) * 1992-12-18 1994-06-23 Grundig Emv Radio alarm system with a large number of message channels formed by the code multiplex method
DE4243026A1 (en) * 1992-12-18 1994-06-23 Grundig Emv Radio alarm system with asynchronous transmission of messages via time channels of different periods
DE4307244A1 (en) * 1993-03-08 1994-09-15 Siemens Ag Alarm signalling system
EP0911775A2 (en) * 1997-09-30 1999-04-28 Siemens Aktiengesellschaft Method for radio transmission in an alarm signalling system
EP0911775A3 (en) * 1997-09-30 2000-12-27 Siemens Aktiengesellschaft Method for radio transmission in an alarm signalling system

Also Published As

Publication number Publication date
EP0316853B1 (en) 1994-03-09
DE3888291D1 (en) 1994-04-14
ATE102727T1 (en) 1994-03-15

Similar Documents

Publication Publication Date Title
EP1206765B1 (en) Method and device for automatically allocating detector addresses in an alarm system
DE102016217163B4 (en) Low power alarm mechanism for wireless devices
DE4344172C2 (en) Method and arrangement for synchronizing the outdoor units of a radio alarm system with the central unit
DE2165754C3 (en) System for issuing an indication of one of several alarm states in one of several outstations to a monitoring station
WO1984003264A1 (en) Method for the transmission of informations and/or instructions
EP0125387B1 (en) Risk signalling method and apparatus
CH664637A5 (en) METHOD FOR TRANSMITTING MEASURED VALUES IN A MONITORING SYSTEM.
DE2922471A1 (en) PASSENGER COUNTING DEVICE
EP0316853B1 (en) Cableless danger signal system
CH660926A5 (en) MONITORING SYSTEM.
EP0591704B1 (en) Method for the high-frequency transfer of measuring signals, particularly of temperature signals
DE2513905A1 (en) RADAR SYSTEM
DE19539312A1 (en) Procedure for increasing the transmission security in radio alarm systems
DE2923732C2 (en) Order to raise an alarm in the event of unauthorized entry into a protected area
DE3614692C2 (en)
DE3225032C2 (en) Method and device for the optional automatic query of the detector identification or the detector measured value in a hazard alarm system
EP0492427A2 (en) Battery saver circuit for alarm system
EP0254125A1 (en) Danger signalling system
EP0362797B2 (en) Method for the energy-saving operation of risk detectors in a risk detection arrangement
DE2245928A1 (en) PROCEDURE AND EQUIPMENT FOR CENTRALIZED DETECTION OF TRIPPED DETECTORS
DE3036029C2 (en) Circuit arrangement for monitoring a connecting line
DE102010032368B4 (en) Full-duplex radio communication method in a synchronous radio system
DE3225044C2 (en) Process and device for the automatic query of the detector measured value and the detector recognition in a hazard alarm system
DE19539989C1 (en) Alarm system for houses and other buildings etc.
DE102010032349B4 (en) Radio communication method with fast alarm notification

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19891108

17Q First examination report despatched

Effective date: 19920204

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 102727

Country of ref document: AT

Date of ref document: 19940315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3888291

Country of ref document: DE

Date of ref document: 19940414

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940516

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EAL Se: european patent in force in sweden

Ref document number: 88118986.4

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951019

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951025

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19951101

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19951116

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951117

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951123

Year of fee payment: 8

Ref country code: FR

Payment date: 19951123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960119

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961114

Ref country code: GB

Effective date: 19961114

Ref country code: AT

Effective date: 19961114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19961130

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19961130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970801

EUG Se: european patent has lapsed

Ref document number: 88118986.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051114