EP0307386B1 - Process for producing a titanium alloy, and use of a spraying apparatus for carrying out the process - Google Patents

Process for producing a titanium alloy, and use of a spraying apparatus for carrying out the process Download PDF

Info

Publication number
EP0307386B1
EP0307386B1 EP88890206A EP88890206A EP0307386B1 EP 0307386 B1 EP0307386 B1 EP 0307386B1 EP 88890206 A EP88890206 A EP 88890206A EP 88890206 A EP88890206 A EP 88890206A EP 0307386 B1 EP0307386 B1 EP 0307386B1
Authority
EP
European Patent Office
Prior art keywords
cooling
spraying
phase
optionally
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88890206A
Other languages
German (de)
French (fr)
Other versions
EP0307386A1 (en
Inventor
Johann Dipl.-Ing. Mayerhofer
Robert Dr. Jaffee
Johann Dipl.-Ing. Fladischer
Heimo Dr. Jäger
Herbert Dipl.-Ing. Puschnik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehler GmbH
Original Assignee
Boehler GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler GmbH filed Critical Boehler GmbH
Publication of EP0307386A1 publication Critical patent/EP0307386A1/en
Application granted granted Critical
Publication of EP0307386B1 publication Critical patent/EP0307386B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor

Definitions

  • the invention has recognized that this known method in particular It depends on the fact that the first quenching after annealing takes place quickly and in a controlled manner in order to obtain a structure which is as uniform and fine-crystalline as possible in the form of martensitic ⁇ from the structure initially present ( ⁇ phase in ⁇ + ⁇ matrix) via the ⁇ phase - Structure and / then of fine lamellar ⁇ + ⁇ phase and to avoid thermal stresses that lead to cracks. So far, an optimal structure in crack-free parts could not be achieved due to inadequate quenching conditions, especially in this important quenching phase, especially with large cross sections.
  • At least the first cooling if appropriate also at least one of the further cooling steps, by spraying the preform with water jets and / or water-air mixtures is made. It is preferred if care is taken when spraying that no surface area of the preform to be cooled remains unsprayed for longer than 1 second during the spraying process.
  • a uniform, controllable cooling with a high cooling rate is achieved on the entire surface. Irregularities due to steam bubbles (Leidenfrost phenomenon), which occur when cooling by immersion, are avoided. Due to the temperature decrease taking place evenly over the surface, thermal stress cracks are avoided.
  • the structure of the material is set from its cooled surface due to the contraction of the intensive cooling process and uniform under large, evenly distributed pressure, which supports the formation of the structure in the direction of the formation of a fine grain. Also contributing to the even and rapid cooling is that no area of the surface remains unsprayed for more than 1 second.
  • the preferably rod-shaped primary material is rotated at 1 to 20, preferably 4 to 10, revolutions per minute before the water jets during spraying.
  • the spraying process is carried out intermittently and the duration of the interruptions is selected as a function of the reheating. It is preferred if the cooling rate is adjusted by regulating the water pressure and / or the rotational speed and / or the duration of the spraying process, which may be carried out intermittently.
  • a device is used to carry out the method, which comprises a plurality of spray bars arranged around the receiving space for a preform to be sprayed from the alloy, and a device for rotating the preform past the spray bars.
  • Such facilities are in themselves Known, but have proven to be particularly well suited to achieve or set the cooling conditions required for an optimal structure for the titanium base alloy mentioned.
  • the further cooling steps to be carried out in the course of the production of the alloy are also easier to control with the spray device used according to the invention and can be optimized with regard to the microstructure setting. It is thus possible to carry out one, several or all further cooling steps by means of the device mentioned.
  • the structure achieved according to the invention has a uniform grain distribution with grains ⁇ 10 ⁇ m in diameter and the phase fractions of ⁇ phase and lamellarly distributed ⁇ phase are evenly distributed over the material, optionally in a ratio of about 50:50.
  • Structurally improved materials e.g. for turbine blades, cells for air and space vehicles, screws, bolts, especially components that are subject to fatigue, etc.
  • FIG. 1 shows a spray nozzle 1 of a known type, with which cooling liquid, in particular water, is sprayed with a conical jet onto the preform to be cooled.
  • the speed and, if necessary, the distribution of the water particles can be adjusted by means of compressed air with a controllable pressure of up to 5 bar and using a water pressure of up to 5 bar.
  • the nozzle At a distance L, the nozzle enables a surface with a defined dimension D to be sprayed.
  • the distance between the nozzle and the preform is adjusted accordingly, so that a surface area dependent on the dimensions of the preform can be sprayed with the appropriate pressure.
  • FIG. 2 shows a cylindrical preform 2 which is arranged centrally to form three nozzles 1 or to horizontal spray strips 4 similar to FIG. 3 and is rotated on rollers 3.
  • the jets of the cooling medium hit corresponding lateral surface areas of the preform 2; the cooling process can be adjusted by adjusting the spray angle and / or the rotation speed be managed.
  • Fig. 3 shows a vertically arranged spray bar 4 with a number of nozzles 1, the spacing of which can be changed with respect to the cylindrical preform 2. 4, three spray bars 4 are arranged around the preform.
  • the preform 2 hangs on a support device 5, from which it is rotated, so that the entire lateral surface is sprayed off.
  • 6 with a device for controlling the amount and pressure of the spray liquid and compressed air, 7 with an adjusting device for the spray bar and 8 with a control device for the rotational speed is designated.
  • the individual facilities are only hinted at.
  • FIG. 5 and 6 show the arrangement of three or four spray strips 4 for cooling a preform 2 with a square cross-section.
  • the spray parameters are adapted to the shape of the preform and the desired cooling parameters, and the rotation of the material, which has a square cross section, can be omitted when 4 nozzles are applied (FIG. 6).
  • the spray parameters of individual nozzles of the spray bars can be adapted to the longitudinal shape of the preform, so that, for example, areas of small diameter are sprayed less in order to adapt the cooling rate in these areas to that with a larger diameter. Carrying out a controlled intermittent spraying also enables the spraying device to be adapted to different preforms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von α+β Ti-Legierungen mit beispielsweise einem Gehalt von etwa 6 Gew.-% Al, etwa 4 Gew.-% V und den herstellungsbedingten Verunreinigungen, wobei die erschmolzene und gegebenenfalls zur Einstellung ei­nes Verformungsgefüges mit einer lamellaren Matrix aus α+β -Phase vorverformte Legierung bei einer Temperatur von 1040 bis 1060°C zur Einstellung der β -Phase geglüht wird, durch eine erste Abkühlung eine Gefügeumwandlung in feinlamellares α+β -Gefüge oder αʹ-Gefüge (=feinstes α+β -Gefüge) vorgenommen wird, danach im Zuge einer Warmverformung im Ausmaß von mindestens 60% Verformungsgrad bei etwa 850 bis 960°C oder bei einer Temperatur von etwa 30 bis 50°C un­terhalb der Transitus-temperatur der Legierung, gegebenenfalls von 980 bis 1000°C, eine hohe Versetzungsdichte ausgebildet wird, hierauf, gegebenenfalls nach einer weiteren Abkühlung, eine kontrollierte Rekristallisation bzw. Gefügeeinstel­lung durch eine Wärmebehandlung bei etwa 950°C erfolgt und eine β -Matrix mit fein verteilter globulitischer α -Phase, z.B. im Verhältnis von etwa 50: 50 Prozent, einge­stellt wird, im Zuge einer darauf folgenden Abkühlung ein weitgehend martensitischer Zerfall der β-Matrix erreicht und in einem folgenden Glühvorgang die martensi­tische Matrix in eine lamellare α+β -Phase übergeführt wird.The invention relates to a process for the production of α + β Ti alloys with, for example, a content of approximately 6% by weight of Al, approximately 4% by weight of V and the production-related impurities, the melted and optionally for setting a deformation structure with a lamellar matrix made of α + β phase pre-deformed alloy is annealed at a temperature of 1040 to 1060 ° C to adjust the β phase, by a first cooling a structural transformation into fine-lamellar α + β structure or αʹ structure (= finest α + β structure) is carried out, then in the course of a hot deformation to the extent of at least 60% degree of deformation at about 850 to 960 ° C or at a temperature of about 30 to 50 ° C below the transit temperature of the alloy, optionally from 980 to 1000 ° C, a high dislocation density is formed, thereupon, if necessary after a further cooling, a controlled recrystallization or microstructure adjustment by means of a e heat treatment takes place at about 950 ° C and a β matrix with finely divided globulitic α phase, e.g. in a ratio of about 50:50 percent, in the course of a subsequent cooling a largely martensitic disintegration of the β-matrix is achieved and in a subsequent annealing process the martensitic matrix is converted into a lamellar α + β phase.

Die Erfindung hat erkannt, daß es bei diesem bekannten Verfahren insbesondere darauf an kommt, daß das erste Abschrecken nach dem Glühen, rasch und kontrolliert erfolgt, um aus dem eingangs vorhandenen Gefüge (α -Phase in α+β -Matrix) über die β -Phase eine möglichst gleichmäßige und feinkristalline Struktur in Form von martensitischem αʹ-Gefüge und/dann von feinlamellarer α+β -Phase zu er­reichen und Wärmespannungen, die zu Rissen führen, zu vermeiden. Bisher konnte ein optimales Gefüge in riß­freien Teilen aufgrund nicht entsprechender Abschreckbe­dingungen gerade in dieser wichtigen Abschreckphase, ins­besondere bei großen Querschnitten, nicht erreicht wer­den.The invention has recognized that this known method in particular It depends on the fact that the first quenching after annealing takes place quickly and in a controlled manner in order to obtain a structure which is as uniform and fine-crystalline as possible in the form of martensitic αʹ from the structure initially present (α phase in α + β matrix) via the β phase - Structure and / then of fine lamellar α + β phase and to avoid thermal stresses that lead to cracks. So far, an optimal structure in crack-free parts could not be achieved due to inadequate quenching conditions, especially in this important quenching phase, especially with large cross sections.

Erfindungsgemäß wird nunmehr vorgesehen, daß insbesondere zur Erzielung einer einstellbaren, hohen Abkühlungsge­schwindigkeit und einer raschen gleichmäßigen Temperatur­abnahme über die gesamte Oberfläche zur Vermeidung von Spannungen und Rißbildung zumindest die erste Abkühlung, gegebenenfalls auch wenigstens einer der weiteren Abkühlschritte, durch Besprühen des Vorform­teiles mit Wasser strahler und/oder Wasser-Luft-Gemischen vorgenommen wird. Bevorzugt ist es, wenn beim Absprühen darauf geachtet wird, daß während des Absprühvorganges kein Oberflächenbereich des abzukühlenden Vorformteiles länger als 1 Sekunde unbesprüht bleibt. Durch das Ab­sprühen wird auf der gesamten Oberfläche eine gleichmä­ßige, regelbare Abkühlung mit großer Abkühlungsgeschwin­digkeit erreicht. Unregelmäßigkeiten aufgrund von Dampf­blasen (Leidenfrost-Phänomen), die bei einem durch Ein­tauchen erfolgenden Abkühlen auftreten, werden vermieden. Durch die über die gleichmäßig über die Oberfläche er­folgende Temperaturabnahme werden Wärmespannungsrisse vermieden. Aufgrund der hohen aber steuerbaren Abkühlungsgeschwindigkeit kann eine optimale Gefügeumwandlung bzw. -einstellung erreicht werden. Diese Tendenz wird dadurch unterstützt, daß das Gefüge des Materials von seiner abgekühlten Oberfläche aus bedingt durch die Kon­traktion des intensiven Abkühlvorganges und gleichmäßigen unter großen sich gleichmäßig verteilenden Druck gesetzt wird, der die Gefügeausbildung in richtung der Ausbildung eines feinen Kornes unterstützt. Zur gleichmäßigen und raschen Abkühlung trägt auch bei, daß kein Bereich der Oberfläche länger als 1 Sekunde unbesprüht bleibt. Dazu ist es vorteilhaft, wenn das vorzugsweise stangenförmige Vormaterial während des Absprühens mit 1 bis 20, vorzugs­weise 4 bis 10, Umdrehungen pro Minute vor den Wasser­strahlen rotiert wird.According to the invention it is now provided that, in particular to achieve an adjustable, high cooling rate and a rapid, uniform temperature decrease over the entire surface to avoid stresses and cracking, at least the first cooling, if appropriate also at least one of the further cooling steps, by spraying the preform with water jets and / or water-air mixtures is made. It is preferred if care is taken when spraying that no surface area of the preform to be cooled remains unsprayed for longer than 1 second during the spraying process. By spraying, a uniform, controllable cooling with a high cooling rate is achieved on the entire surface. Irregularities due to steam bubbles (Leidenfrost phenomenon), which occur when cooling by immersion, are avoided. Due to the temperature decrease taking place evenly over the surface, thermal stress cracks are avoided. Because of the high but controllable Cooling rate, an optimal structural transformation or adjustment can be achieved. This tendency is supported by the fact that the structure of the material is set from its cooled surface due to the contraction of the intensive cooling process and uniform under large, evenly distributed pressure, which supports the formation of the structure in the direction of the formation of a fine grain. Also contributing to the even and rapid cooling is that no area of the surface remains unsprayed for more than 1 second. For this purpose, it is advantageous if the preferably rod-shaped primary material is rotated at 1 to 20, preferably 4 to 10, revolutions per minute before the water jets during spraying.

Zur Verbesserung der gewünschten Gefügeeinstellung kann es vorteilhaft sein, wenn der Absprühvorgang intermit­tierend durchgeführt wird und die Zeitdauer der Unter­brechungen in Abhängigkeit von der Rück-Wärmung gewählt wird. Bevorzugt ist es, wenn durch Regelung des Wasser­druckes und/oder der Rotationsgeschwindigkeit und/oder der Zeitdauer des gegebenenfalls intermittierend geführ­ten Absprühvorganges die Abkühlungsgeschwindigkeit ein­gestellt wird.To improve the desired microstructure setting, it can be advantageous if the spraying process is carried out intermittently and the duration of the interruptions is selected as a function of the reheating. It is preferred if the cooling rate is adjusted by regulating the water pressure and / or the rotational speed and / or the duration of the spraying process, which may be carried out intermittently.

Zweckmäßigerweise wird zur Durchführung des Verfahrens eine Vorrichtung verwendet, die eine Mehrzahl von Spritzleisten, die um den Aufnahmeraum für einer ab­zusprühenden Vorformteil aus der Legierung angeordnet sind, sowie eine Einrichtung zur Rotation des Vorformteiles vorbei an den Spritzlei­sten, umfaßt. Derartige Einrichtungen sind an sich bekannt, haben sich aber als ganz besonders gut geeignet erwiesen, die für ein optimales Gefüge erforderlichen Ab­kühlungsbedingungen für die erwähnte Titanbasis-Legierung zu erreichen bzw. einzustellen.Appropriately, a device is used to carry out the method, which comprises a plurality of spray bars arranged around the receiving space for a preform to be sprayed from the alloy, and a device for rotating the preform past the spray bars. Such facilities are in themselves Known, but have proven to be particularly well suited to achieve or set the cooling conditions required for an optimal structure for the titanium base alloy mentioned.

Auch die weiteren im Zuge der Herstellung der Legierung vorzunehmenden Abkühlungsschritte sind mit der erfin­dungsgemäß verwendeten Sprüheinrichtung leichter be­herrschbar und hinsichtlich der Gefügeeinstellung opti­mierbar. Es ist somit möglich, einen, mehrere oder alle weiteren Abkühlungsschritte mittels der erwähnten Vorrichtung durchzuführen.The further cooling steps to be carried out in the course of the production of the alloy are also easier to control with the spray device used according to the invention and can be optimized with regard to the microstructure setting. It is thus possible to carry out one, several or all further cooling steps by means of the device mentioned.

Das erfindungsgemäß erreichte Gefüge besitzt eine gleich­mäßige Kornverteilung mit Körnern < 10 µm Durchmesser und die Phasenanteile an α -Phase und lamellar verteilter β -Phase sind gleichmäßig über das Material verteilt, gegebenenfalls im Verhältnis von etwa 50: 50.The structure achieved according to the invention has a uniform grain distribution with grains <10 μm in diameter and the phase fractions of α phase and lamellarly distributed β phase are evenly distributed over the material, optionally in a ratio of about 50:50.

Mit dem erfindungsgemäßen Verfahren können strukturell verbesserte Vormaterialien z.B. für Turbinenschaufeln, Zellen für Luft- und Raumfahrzeuge, Schrauben, Bolzen, insbesondere auf Ermüdung beanspruchte Bauteile, usw. hergestellt werden.Structurally improved materials, e.g. for turbine blades, cells for air and space vehicles, screws, bolts, especially components that are subject to fatigue, etc.

Mit der erfindungsgemäßen Vorgangsweise ist es möglich, die gewünschte Gefügestruktur auch in besonders großem Vormaterial zu erzielen.With the procedure according to the invention, it is possible to achieve the desired structural structure even in particularly large primary material.

In der Zeichnung sind Ausführungsbeispiele von erfin­dungsgemäß einsetzbaren Vorrichtungen dargestellt.

  • Fig. 1 zeigt eine Sprühdüse,
  • Fig. 2 einen Schnitt durch eine erste Aus­führungsform,
  • Fig. 3 und 4 eine Draufsicht und einen Schnitt durch eine weitere Ausführungsform,
  • Fig. 5 und 6 mögliche Anordnungen von Sprüh­düsen.
The drawing shows exemplary embodiments of devices which can be used according to the invention.
  • 1 shows a spray nozzle,
  • 2 shows a section through a first embodiment,
  • 3 and 4 is a plan view and a section through a further embodiment,
  • 5 and 6 possible arrangements of spray nozzles.

In Fig. 1 ist eine Sprühdüse 1 bekannter Bauart darge­stellt, mit der Kühlflüssigkeit, insbesondere Wasser, mit kegeligem Strahl auf den abzukühlenden Vorformteil ge­spritzt wird. Mittels Preßluft mit einem regelbaren Druck von bis zu 5 bar und unter Anwenddung eines Wasserdruches bis zu 5 bar können die Geschwindigkeit und ge­gebenenfalls die Verteilung der Wasserteilchen, eingestellt werden. Die Düse ermöglicht in einem Abstand L das Besprühen einer Fläche mit einer definierten Abmessung D. Der Abstand Düse-Vorformteil wird entsprechend einge­stellt, sodaß ein von den Abmessungen des Vorformteiles abhängiger Oberflächenbereich mit entsprechendem Druck besprüht werden kann.1 shows a spray nozzle 1 of a known type, with which cooling liquid, in particular water, is sprayed with a conical jet onto the preform to be cooled. The speed and, if necessary, the distribution of the water particles can be adjusted by means of compressed air with a controllable pressure of up to 5 bar and using a water pressure of up to 5 bar. At a distance L, the nozzle enables a surface with a defined dimension D to be sprayed. The distance between the nozzle and the preform is adjusted accordingly, so that a surface area dependent on the dimensions of the preform can be sprayed with the appropriate pressure.

Fig. 2 zeigt einen zylindrischen Vorformteil 2, der zen­trisch zu drei Düsen 1, bzw. zu horizontalen Spritzlei­sten 4 ähnlich Fig. 3 zusammengefaßten Düsen 1 angeordnet ist und auf Rollen 3 rotiert wird. Die Strahlen des Kühl­mediums treffen entsprechende Mantelflächenbereiche des Vorformteiles 2; durch Einstellung des Sprühwinkels und/­oder der Rotationsgeschwindigkeit kann der Abkühlvorgang geregelt werden.FIG. 2 shows a cylindrical preform 2 which is arranged centrally to form three nozzles 1 or to horizontal spray strips 4 similar to FIG. 3 and is rotated on rollers 3. The jets of the cooling medium hit corresponding lateral surface areas of the preform 2; the cooling process can be adjusted by adjusting the spray angle and / or the rotation speed be managed.

Fig. 3 zeigt eine vertikal angeordnete Spritzleiste 4 mit einer Anzahl von Düsen 1, deren Abstand in Bezug auf den zylindrischen Vorformteil 2 ver­änderbar ist. Entsprechend Fig. 4 sind drei Spritzleisten 4 um den Vorformteil angeordnet. Der Vorformteil 2 hängt an einer Trageinrichtung 5, von der er rotiert wird, sodaß die gesamte Mantelfläche abgesprüht wird. Mit 6 ist eine Einrichtung zur Regelung der Menge und des Druckes der Spritzflüssigkeit und der Preßluft, mit 7 eine Ver­stelleinrichtung für die Spritzleiste und mit 8 eine Re­geleinrichtung für die Rotationsgeschwindigkeit bezeich­net. Die einzelnen Einrichtungen sind nur angedeutet.Fig. 3 shows a vertically arranged spray bar 4 with a number of nozzles 1, the spacing of which can be changed with respect to the cylindrical preform 2. 4, three spray bars 4 are arranged around the preform. The preform 2 hangs on a support device 5, from which it is rotated, so that the entire lateral surface is sprayed off. 6 with a device for controlling the amount and pressure of the spray liquid and compressed air, 7 with an adjusting device for the spray bar and 8 with a control device for the rotational speed is designated. The individual facilities are only hinted at.

Fig. 5 und 6 zeigen die Anordnung von drei bzw. vier Spritzleisten 4 zur Abkühlung eines Vorformteiles 2 mit quadratischem Querschnitt. Auch hier erfolgt eine An­passung der Sprühparameter an die Form des Vorformteiles und die gewünschten Abkühlungsparameter, wobei die Rota­tion des Materials, welches Vierkantquerschnitt aufweist, bei 4-Düsenbeaufschlagung (Fig. 6) unterbleiben kann.5 and 6 show the arrangement of three or four spray strips 4 for cooling a preform 2 with a square cross-section. Here, too, the spray parameters are adapted to the shape of the preform and the desired cooling parameters, and the rotation of the material, which has a square cross section, can be omitted when 4 nozzles are applied (FIG. 6).

Bei geformten Vorformteilen können die Sprühparameter einzelner Düsen der Spritzleisten an die Längsform des Vorformteiles angepaßt werden, sodaß z.B. Bereiche ge­ringen Durchmessers weniger besprüht werden, um die Ab­kühlungsgeschwindigkeit in diesen Bereichen an diejenige mit größerem Durchmesser anzupassen. Auch die Durchführung eines gesteuerten intermittierenden Absprühens ermöglicht eine Anpassung der Sprüheinrichtung an verschiedene Vor­formteile.In the case of molded preforms, the spray parameters of individual nozzles of the spray bars can be adapted to the longitudinal shape of the preform, so that, for example, areas of small diameter are sprayed less in order to adapt the cooling rate in these areas to that with a larger diameter. Carrying out a controlled intermittent spraying also enables the spraying device to be adapted to different preforms.

In einem Versuch wurde eine Legierung der Zusammensetzung 6,03 Gew.-% Al, 4,03 Gew.-% V, 0,012 Gew.-% C, 74 ppm H, 0,024 Gew.-% N, 0,14 Gew.-% 0, 0,14 Gew.-% Verunreini­gungen, Rest Ti erschmolzen und wurden daraus mittels des erfin­dungsgemäßen Verfahrens Formteile hergestellt. Ver­gleichsversuche mit Formteilen, die durch Eintauchen in Wasser abgeschreckt wurden, ergaben, daß die erfindungsge­mäß hergestellten Formteile gegenüber den durch Eintauchen in Wasser­abgeschreckten Formteilen auch bei doppeltem Durchmesser noch immer ein feineres Gefüge und entsprechend bessere Kenndaten hatten.In an experiment, an alloy of the composition 6.03 wt.% Al, 4.03 wt.% V, 0.012 wt.% C, 74 ppm H, 0.024 wt.% N, 0.14 wt. % 0.14% by weight of impurities, remainder Ti melted and molded parts were produced therefrom by means of the method according to the invention. Comparative experiments with molded parts which were quenched by immersion in water showed that the molded parts produced according to the invention still had a finer structure and correspondingly better characteristics than the molded parts quenched by immersion in water, even at twice the diameter.

Claims (7)

1. Method of producing α+β Ti-alloys, in which the molten alloy, which is optionally pre-strained in order to set a deformation structure with a lamellar matrix of α+β phase, is annealed at a temperature of 1040 to 1060°C in order to set the β phase, by means of a first cooling a structural transformation into fine lamellar α+β structure or αʹ structure (= finest α+β structure) is carried out, thereafter in the course of hot forming to the extent of a 60% degree of deformation at approxi­mately 850 to 960°C or at a temperature of approximately 30 to 50°C below the transition temperature of the alloy, optionally from 980 to 1000°C, a high dislocation density is produced, then, optionally after further cooling, a controlled recrystallisation or structural setting is achieved by heat treatment at approximately 950°C and a β matrix with finely globulitic α phase is set, in the course of a subsequent cooling a largely martensitic decomposition of the β matrix is achieved and in a subsequent annealing operation the martensitic matrix is converted into a lamellar α+β phase, characterised in that particularly in order to achieve an adjustable high rate of cooling and a rapid and even temperature drop over the entire surface in order to avoid tensions and fractures at least the first cooling, and optionally also at least one of the further cooling steps, is carried out by spraying the preformed part with water jets and/or water-air mixtures.
2. Method as claimed in Claim 1, characterised in that during spraying care is taken to ensure that during the spraying operation no surface region of the preformed part to be cooled remains unsprayed for longer than one second.
3. Method as claimed in Claims 1 or 2, characterised in that the initial material of the alloy is rotated during the spraying at 1 to 20, preferably 4 to 10, revolutions per minute in front of the water jets or water-air jets.
4. Method as claimed in one of Claims 1 to 3, characterised in that the spraying operation is carried out intermittently and the duration of the interruptions is chosen as a function of the back heating.
5. Method as claimed in one of Claims 1 to 4, characterised in that the rate of cooling is set by regulating the water pressure and/or the rate of rotation and/or the duration of the spraying operation which is optionally carried out intermittently.
6. Method as claimed in one of Claims 1 to 5, characterised in that, in the case of preformed parts made from the alloy and having an angular cross-section, there is provided for each surface a spray strip by means of which the respective surface is sprayed to completion or in its entirety.
7. Use of a device which incorporates a plurality of spray strips which are arranged around the receiving chamber for a preformed part which is to be sprayed, as well as an arrangement for rotating the preformed part past the spray strips, for carrying out the method according to one of Claims 1 to 6.
EP88890206A 1987-08-31 1988-08-08 Process for producing a titanium alloy, and use of a spraying apparatus for carrying out the process Expired - Lifetime EP0307386B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0218187A AT391882B (en) 1987-08-31 1987-08-31 METHOD FOR HEAT TREATING ALPHA / BETA TI ALLOYS AND USE OF A SPRAYING DEVICE FOR CARRYING OUT THE METHOD
AT2181/87 1987-08-31

Publications (2)

Publication Number Publication Date
EP0307386A1 EP0307386A1 (en) 1989-03-15
EP0307386B1 true EP0307386B1 (en) 1991-03-06

Family

ID=3529445

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88890206A Expired - Lifetime EP0307386B1 (en) 1987-08-31 1988-08-08 Process for producing a titanium alloy, and use of a spraying apparatus for carrying out the process

Country Status (4)

Country Link
US (1) US4902355A (en)
EP (1) EP0307386B1 (en)
AT (1) AT391882B (en)
DE (1) DE3861940D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104139141A (en) * 2014-06-30 2014-11-12 贵州安大航空锻造有限责任公司 Equiaxed grain forging forming method for titanium alloy ring piece

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032189A (en) * 1990-03-26 1991-07-16 The United States Of America As Represented By The Secretary Of The Air Force Method for refining the microstructure of beta processed ingot metallurgy titanium alloy articles
FR2676460B1 (en) * 1991-05-14 1993-07-23 Cezus Co Europ Zirconium PROCESS FOR THE MANUFACTURE OF A TITANIUM ALLOY PIECE INCLUDING A MODIFIED HOT CORROYING AND A PIECE OBTAINED.
JP3319195B2 (en) * 1994-12-05 2002-08-26 日本鋼管株式会社 Toughening method of α + β type titanium alloy
RU2134308C1 (en) * 1996-10-18 1999-08-10 Институт проблем сверхпластичности металлов РАН Method of treatment of titanium alloys
US6589371B1 (en) 1996-10-18 2003-07-08 General Electric Company Method of processing titanium metal alloys
JP3959766B2 (en) * 1996-12-27 2007-08-15 大同特殊鋼株式会社 Treatment method of Ti alloy with excellent heat resistance
CN1055323C (en) * 1997-11-03 2000-08-09 冶金工业部钢铁研究总院 Method for texture homogenization fining of Ti-Al alloy cast
DE69809294T2 (en) * 1998-01-27 2003-08-21 Tag Heuer Sa METHOD FOR PRODUCING TITANIUM ALLOY WATCH PARTS
CN100348743C (en) * 2006-06-13 2007-11-14 上海交通大学 Process controlling quenching cooling speed by regulating pulse itt duty ratio
CN102031470A (en) * 2010-12-28 2011-04-27 西部钛业有限责任公司 On-line water-quenching quickly-cooling method for titanium alloy subjected to hot working
CN103898428B (en) * 2014-03-14 2015-10-28 西北工业大学 In near αtitanium alloy mixed structure, sheet α's repeats spheronization process of annealing
US10094013B2 (en) * 2014-12-23 2018-10-09 Spirit Aerosystems, Inc. Method to prevent abnormal grain growth for beta annealed TI-6AL-4V forgings

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1204662A (en) * 1958-05-19 1960-01-27 Creusot Forges Ateliers Blown gas quenching plant and liquid mist
US3649374A (en) * 1970-04-24 1972-03-14 Armco Steel Corp Method of processing alpha-beta titanium alloy
US3748194A (en) * 1971-10-06 1973-07-24 United Aircraft Corp Processing for the high strength alpha beta titanium alloys
US3901743A (en) * 1971-11-22 1975-08-26 United Aircraft Corp Processing for the high strength alpha-beta titanium alloys
US4098623A (en) * 1975-08-01 1978-07-04 Hitachi, Ltd. Method for heat treatment of titanium alloy
DE2602941C3 (en) * 1976-01-23 1980-12-18 Mannesmann Ag, 4000 Duesseldorf Device for cooling cast, non-rotating round strands
US4053330A (en) * 1976-04-19 1977-10-11 United Technologies Corporation Method for improving fatigue properties of titanium alloy articles
US4110092A (en) * 1977-01-26 1978-08-29 Nippon Kokan Kabushiki Kaisha Method of apparatus for cooling inner surface of metal pipe
JPS5853695B2 (en) * 1980-01-16 1983-11-30 新日本製鐵株式会社 Cooling method for steel pipes
DD153559B1 (en) * 1980-10-16 1986-07-09 Rolf Zenker DEVICE FOR PRODUCING AN ABLEADING SPRAY FOR HEAT-TREATED OBJECTS
FR2524001B1 (en) * 1982-03-25 1987-02-20 Pechiney Aluminium COOLING PROCESS MINIMIZING DEFORMATION OF METALLURGICAL PRODUCTS
CA1193176A (en) * 1982-07-06 1985-09-10 Robert J. Ackert Method for the production of improved railway rails by accelerated colling in line with the production rolling mill
AT376914B (en) * 1983-03-10 1985-01-25 Ver Edelstahlwerke Ag METHOD FOR PRODUCING TURBINE BLADES
JPS603913A (en) * 1983-06-22 1985-01-10 Sumitomo Metal Ind Ltd Extrusion method of titanium alloy
US4631092A (en) * 1984-10-18 1986-12-23 The Garrett Corporation Method for heat treating cast titanium articles to improve their mechanical properties
JPS61204359A (en) * 1985-03-07 1986-09-10 Nippon Mining Co Ltd Manufacture of beta type titanium alloy material
JPS61217563A (en) * 1985-03-25 1986-09-27 Sumitomo Metal Ind Ltd Manufacture of titanium alloy
JPS6274062A (en) * 1985-09-27 1987-04-04 Mitsubishi Metal Corp Manufacture of ti alloy foil
JPS62170415A (en) * 1986-01-23 1987-07-27 Nagano Tanko Kk Hardening method utilizing water soluble hardening agent
JPS63130755A (en) * 1986-11-21 1988-06-02 Sumitomo Metal Ind Ltd Working heat treatment of alpha+beta type titanium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104139141A (en) * 2014-06-30 2014-11-12 贵州安大航空锻造有限责任公司 Equiaxed grain forging forming method for titanium alloy ring piece

Also Published As

Publication number Publication date
DE3861940D1 (en) 1991-04-11
EP0307386A1 (en) 1989-03-15
AT391882B (en) 1990-12-10
US4902355A (en) 1990-02-20
ATA218187A (en) 1990-06-15

Similar Documents

Publication Publication Date Title
EP0307386B1 (en) Process for producing a titanium alloy, and use of a spraying apparatus for carrying out the process
DE69520007T3 (en) HEAT TREATMENT METHOD FOR ALUMINUM ALLOY PLATE
DE3000762C2 (en)
DE60004233T2 (en) METHOD AND PLANT FOR INLINE HEAT TREATMENT OF HOT ROLLED ROLLING MATERIAL
DE2501216A1 (en) METHOD AND DEVICE FOR MANUFACTURING GLASS FIBERS
DE2207727A1 (en) Glass-ceramic materials and devices produced by rapid post-heating
CH629538A5 (en) METHOD AND DEVICE FOR PRODUCING OR REPAIRING METAL PRODUCTS WITH A FLOW OF SPRAYED, MELTED METAL PARTICLES.
WO2003012151A1 (en) Method for cooling work pieces especially shape-rolled products from rail steel
DE102005004116A1 (en) Method for cold gas spraying and cold gas spray gun
DE3919178C2 (en)
EP0684883B1 (en) Process for manufacturing a light metal wheel in a single piece from a wrought aluminium material
DE2719306C2 (en) Process for the production of a powder suitable for plastisol formation from polyvinyl chloride or from a vinyl chloride copolymer as well as drying tower for carrying out the process
DE69208666T2 (en) Method and device for producing strip products by spraying
DE685576C (en) Process for the production of metal powder from liquid metal
DE901592C (en) Process for the production of polyamides
DE804112C (en) Method and device for the production of mineral fibers, in particular glass fibers
DE19750606A1 (en) Heat treatment and tempering of surgical needles
EP0067374B1 (en) Method for the thermo-mechanical treatment of hot rolled steel
DE2541978B2 (en) PROCESS FOR THE HEAT TREATMENT OF SOFT PARTS IN A CONTINUOUS PROCESS
DE102020131314B3 (en) Process and heat treatment system for the heat treatment of cast components
DE102015013169B3 (en) Process for the heat treatment of a light metal component
DE2433844C3 (en) Device for controlled temperature control of material to be heat treated in a continuous process
DE366828C (en) Process of hardening and tempering carbon steel in a single operation
EP0119186B1 (en) Method of manufacturing turbine blades
DE832048C (en) Method for stress relieving glass

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19900727

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3861940

Country of ref document: DE

Date of ref document: 19910411

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920714

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920715

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920716

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930808

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST